Tests for rotational symmetry on the hypersphere. Software companion for "On optimal tests for rotational symmetry against new classes of hyperspherical distributions"
Software companion for the paper “On optimal tests for rotational
symmetry against new classes of hyperspherical distributions”
(García-Portugués, Paindaveine and Verdebout, 2020). It implements the
proposed tests for rotational symmetry of hyperspherical data and allows
to replicate the data application presented.
Get the released version from CRAN:
# Install the package
install.packages("rotasym")
# Load package
library(rotasym)
Alternatively, get the latest version from GitHub:
# Install the package
library(devtools)
install_github("egarpor/rotasym")
# Load package
library(rotasym)
The following are some simple examples of the usage of the main function
of the package, test_rotasym
, with simulated data. More examples are
available in ?test_rotasym
.
# Sample data from a vMF (rotational symmetric distribution about mu)
n <- 200
p <- 10
theta <- c(1, rep(0, p - 1))
set.seed(123456789)
data_0 <- r_vMF(n = n, mu = theta, kappa = 1)
# theta known
test_rotasym(data = data_0, theta = theta, type = "sc")
#>
#> Scatter test for rotational symmetry
#>
#> data: data_0
#> Q_sc = 35.013, df = 44, p-value = 0.8315
test_rotasym(data = data_0, theta = theta, type = "loc_vMF")
#>
#> Location vMF test for rotational symmetry
#>
#> data: data_0
#> Q_loc_vMF = 11.316, df = 9, p-value = 0.2547
test_rotasym(data = data_0, theta = theta, type = "hyb_vMF")
#>
#> Hybrid vMF test (addition of statistics) for rotational symmetry
#>
#> data: data_0
#> Q_hyb_vMF = 46.329, df = 53, p-value = 0.7297
# theta unknown (employs the spherical mean as estimator)
test_rotasym(data = data_0, type = "sc")
#>
#> Scatter test for rotational symmetry
#>
#> data: data_0
#> Q_sc = 36.568, df = 44, p-value = 0.7793
test_rotasym(data = data_0, type = "loc_vMF")
#>
#> Location vMF test for rotational symmetry
#>
#> data: data_0
#> Q_loc_vMF = 12.335, df = 9, p-value = 0.1951
test_rotasym(data = data_0, type = "hyb_vMF")
#>
#> Hybrid vMF test (addition of statistics) for rotational symmetry
#>
#> data: data_0
#> Q_hyb_vMF = 48.902, df = 53, p-value = 0.6344
The data application in García-Portugués, Paindaveine and Verdebout
(2020) can be replicated through the script
sunspots-births.R
(data gathering and preprocessing) and the code snippet below.
# Load data
data("sunspots_births")
sunspots_births$X <-
cbind(cos(sunspots_births$phi) * cos(sunspots_births$theta),
cos(sunspots_births$phi) * sin(sunspots_births$theta),
sin(sunspots_births$phi))
# Test rotational symmetry for the 23rd cycle
sunspots_23 <- subset(sunspots_births, cycle == 23)
test_rotasym(data = sunspots_23$X, type = "sc", theta = c(0, 0, 1))
#>
#> Scatter test for rotational symmetry
#>
#> data: sunspots_23$X
#> Q_sc = 3.5964, df = 2, p-value = 0.1656
test_rotasym(data = sunspots_23$X, type = "loc", theta = c(0, 0, 1))
#>
#> Location test for rotational symmetry
#>
#> data: sunspots_23$X
#> Q_loc = 1.5657, df = 2, p-value = 0.4571
test_rotasym(data = sunspots_23$X, type = "hyb", theta = c(0, 0, 1))
#>
#> Hybrid test (addition of statistics) for rotational symmetry
#>
#> data: sunspots_23$X
#> Q_hyb = 5.1622, df = 4, p-value = 0.2711
# Test rotational symmetry for the 22nd cycle
sunspots_22 <- subset(sunspots_births, cycle == 22)
test_rotasym(data = sunspots_22$X, type = "sc", theta = c(0, 0, 1))
#>
#> Scatter test for rotational symmetry
#>
#> data: sunspots_22$X
#> Q_sc = 4.4577, df = 2, p-value = 0.1077
test_rotasym(data = sunspots_22$X, type = "loc", theta = c(0, 0, 1))
#>
#> Location test for rotational symmetry
#>
#> data: sunspots_22$X
#> Q_loc = 8.7579, df = 2, p-value = 0.01254
test_rotasym(data = sunspots_22$X, type = "hyb", theta = c(0, 0, 1))
#>
#> Hybrid test (addition of statistics) for rotational symmetry
#>
#> data: sunspots_22$X
#> Q_hyb = 13.216, df = 4, p-value = 0.01027
# More analyses in ?sunspots_births
example("sunspots_births")
#>
#> snspt_> # Load data
#> snspt_> data("sunspots_births")
#>
#> snspt_> # Transform to Cartesian coordinates
#> snspt_> sunspots_births$X <-
#> snspt_+ cbind(cos(sunspots_births$phi) * cos(sunspots_births$theta),
#> snspt_+ cos(sunspots_births$phi) * sin(sunspots_births$theta),
#> snspt_+ sin(sunspots_births$phi))
#>
#> snspt_> # Plot data associated to the 23rd cycle
#> snspt_> sunspots_23 <- subset(sunspots_births, cycle == 23)
#>
#> snspt_> n <- nrow(sunspots_23$X)
#>
#> snspt_> if (requireNamespace("rgl")) {
#> snspt_+ rgl::plot3d(0, 0, 0, xlim = c(-1, 1), ylim = c(-1, 1), zlim = c(-1, 1),
#> snspt_+ radius = 1, type = "s", col = "lightblue", alpha = 0.25,
#> snspt_+ lit = FALSE)
#> snspt_+ }
#>
#> snspt_> n_cols <- 100
#>
#> snspt_> cuts <- cut(x = sunspots_23$date, include.lowest = TRUE,
#> snspt_+ breaks = quantile(sunspots_23$date,
#> snspt_+ probs = seq(0, 1, l = n_cols + 1)))
#>
#> snspt_> if (requireNamespace("rgl")) {
#> snspt_+ rgl::points3d(sunspots_23$X, col = viridisLite::viridis(n_cols)[cuts])
#> snspt_+ }
#>
#> snspt_> # Spörer's law: sunspots at the beginning of the solar cycle (dark blue
#> snspt_> # color) tend to appear at higher latitudes, gradually decreasing to the
#> snspt_> # equator as the solar cycle advances (yellow color)
#> snspt_>
#> snspt_> # Estimation of the density of the cosines
#> snspt_> V <- cosines(X = sunspots_23$X, theta = c(0, 0, 1))
#>
#> snspt_> h <- bw.SJ(x = V, method = "dpi")
#>
#> snspt_> plot(kde <- density(x = V, bw = h, n = 2^13, from = -1, to = 1), col = 1,
#> snspt_+ xlim = c(-1, 1), ylim = c(0, 3), axes = FALSE, main = "",
#> snspt_+ xlab = "Cosines (latitude angles)", lwd = 2)
#>
#> snspt_> at <- seq(-1, 1, by = 0.25)
#>
#> snspt_> axis(2); axis(1, at = at)
#>
#> snspt_> axis(1, at = at, line = 1, tick = FALSE,
#> snspt_+ labels = paste0("(", 90 - round(acos(at) / pi * 180, 1), "º)"))
#>
#> snspt_> rug(V)
#>
#> snspt_> legend("topright", legend = c("Full cycle", "Initial 25% cycle",
#> snspt_+ "Final 25% cycle"),
#> snspt_+ lwd = 2, col = c(1, viridisLite::viridis(12)[c(3, 8)]))
#>
#> snspt_> # Density for the observations within the initial 25% of the cycle
#> snspt_> part1 <- sunspots_23$date < quantile(sunspots_23$date, 0.25)
#>
#> snspt_> V1 <- cosines(X = sunspots_23$X[part1, ], theta = c(0, 0, 1))
#>
#> snspt_> h1 <- bw.SJ(x = V1, method = "dpi")
#>
#> snspt_> lines(kde1 <- density(x = V1, bw = h1, n = 2^13, from = -1, to = 1),
#> snspt_+ col = viridisLite::viridis(12)[3], lwd = 2)
#>
#> snspt_> # Density for the observations within the final 25% of the cycle
#> snspt_> part2 <- sunspots_23$date > quantile(sunspots_23$date, 0.75)
#>
#> snspt_> V2 <- cosines(X = sunspots_23$X[part2, ], theta = c(0, 0, 1))
#>
#> snspt_> h2 <- bw.SJ(x = V2, method = "dpi")
#>
#> snspt_> lines(kde2 <- density(x = V2, bw = h2, n = 2^13, from = -1, to = 1),
#> snspt_+ col = viridisLite::viridis(12)[8], lwd = 2)
#>
#> snspt_> # Computation the level set of a kernel density estimator that contains
#> snspt_> # at least 1 - alpha of the probability (kde stands for an object
#> snspt_> # containing the output of density(x = data))
#> snspt_> kde_level_set <- function(kde, data, alpha) {
#> snspt_+
#> snspt_+ # Estimate c from alpha
#> snspt_+ c <- quantile(approx(x = kde$x, y = kde$y, xout = data)$y, probs = alpha)
#> snspt_+
#> snspt_+ # Begin and end index for the potentially many intervals in the level sets
#> snspt_+ kde_larger_c <- kde$y >= c
#> snspt_+ run_length_kde <- rle(kde_larger_c)
#> snspt_+ begin <- which(diff(kde_larger_c) > 0) + 1
#> snspt_+ end <- begin + run_length_kde$lengths[run_length_kde$values] - 1
#> snspt_+
#> snspt_+ # Return the [a_i, b_i], i = 1, ..., K in the K rows
#> snspt_+ return(cbind(kde$x[begin], kde$x[end]))
#> snspt_+
#> snspt_+ }
#>
#> snspt_> # Level set containing the 90% of the probability, in latitude angles
#> snspt_> 90 - acos(kde_level_set(kde = kde, data = V, alpha = 0.10)) / pi * 180
#> [,1] [,2]
#> [1,] -29.448244 -2.455986
#> [2,] 2.582017 28.123329
#>
#> snspt_> # Modes (in cosines and latitude angles)
#> snspt_> modes <- c(kde$x[kde$x < 0][which.max(kde$y[kde$x < 0])],
#> snspt_+ kde$x[kde$x > 0][which.max(kde$y[kde$x > 0])])
#>
#> snspt_> 90 - acos(modes) / pi * 180
#> [1] -13.69322 16.49001
García-Portugués, E., Paindaveine, D., and Verdebout, T. (2020). On
optimal tests for rotational symmetry against new classes of
hyperspherical distributions. Journal of the American Statistical
Association, 115(532):1873–1887.
doi:10.1080/01621459.2019.1665527.