项目作者: TreezzZ

项目描述 :
Source code for paper "Asymmetric Deep Supervised Hashing" on AAAI-2018
高级语言: Python
项目地址: git://github.com/TreezzZ/ADSH_PyTorch.git
创建时间: 2019-10-08T09:06:59Z
项目社区:https://github.com/TreezzZ/ADSH_PyTorch

开源协议:

下载


Asymmetric Deep Supervised Hashing

REQUIREMENTS

  1. pytorch >= 1.0
  2. loguru

DATASETS

  1. CIFAR-10
  2. NUS-WIDE Password: uhr3

USAGE

  1. usage: run.py [-h] [--dataset DATASET] [--root ROOT] [--batch-size BATCH_SIZE]
  2. [--lr LR] [--code-length CODE_LENGTH] [--max-iter MAX_ITER]
  3. [--max-epoch MAX_EPOCH] [--num-query NUM_QUERY]
  4. [--num-train NUM_TRAIN] [--num-workers NUM_WORKERS]
  5. [--topk TOPK] [--gpu GPU] [--gamma GAMMA]
  6. ADSH_PyTorch
  7. optional arguments:
  8. -h, --help show this help message and exit
  9. --dataset DATASET Dataset name.
  10. --root ROOT Path of dataset
  11. --batch-size BATCH_SIZE
  12. Batch size.(default: 64)
  13. --lr LR Learning rate.(default: 1e-4)
  14. --code-length CODE_LENGTH
  15. Binary hash code length.(default: 12)
  16. --max-iter MAX_ITER Number of iterations.(default: 50)
  17. --max-epoch MAX_EPOCH
  18. Number of epochs.(default: 3)
  19. --num-query NUM_QUERY
  20. Number of query data points.(default: 1000)
  21. --num-train NUM_TRAIN
  22. Number of training data points.(default: 2000)
  23. --num-workers NUM_WORKERS
  24. Number of loading data threads.(default: 0)
  25. --topk TOPK Calculate map of top k.(default: all)
  26. --gpu GPU Using gpu.(default: False)
  27. --gamma GAMMA Hyper-parameter.(default: 200)

EXPERIMENTS

cifar10: 1000 query images, 2000 sampling images.

nus-wide: Top 21 classes, 2100 query images, 2000 sampling images.

model: Alexnet

12 bits 24 bits 32 bits 48 bits
cifar-10 MAP@ALL 0.9075 0.9047 0.9116 0.9045
nus-wide MAP@5000 0.8698 0.9022 0.9079 0.9133