项目作者: Ling-yun-mu

项目描述 :
本资源提供python打包.apk文件配置环境时所需要的所有资源。包括:kivy_deps.glew-0.2.0-cp37-cp37m-win_amd64.whl、kivy_deps.glew-0.2.0-cp37-cp37m-win_amd64.whl、kivy_deps.gstreamer-0.2.0-cp37-cp37m-win_amd64.whl、kivy_deps.sdl2-0.2.0-cp37-cp37m-win_amd64.whl、VirtualBox-4.3.12-93733-Win、Oracle_VM_VirtualBox_Extension_Pack-4.3.12-93733.vbox-extpack、kivydev.ova、以及一些工程示例。相应文章链接:https://blog.csdn.net/qq_43551034/article/details/104839917
高级语言:
项目地址: git://github.com/Ling-yun-mu/kivy-apk.git
创建时间: 2020-03-13T08:37:06Z
项目社区:https://github.com/Ling-yun-mu/kivy-apk

开源协议:

下载


kivy-apk

本资源提供python打包.apk文件配置环境时所需要的所有资源。包括:kivy_deps.glew-0.2.0-cp37-cp37m-win_amd64.whl、kivy_deps.glew-0.2.0-cp37-cp37m-win_amd64.whl、kivy_deps.gstreamer-0.2.0-cp37-cp37m-win_amd64.whl、kivy_deps.sdl2-0.2.0-cp37-cp37m-win_amd64.whl、VirtualBox-4.3.12-93733-Win、Oracle_VM_VirtualBox_Extension_Pack-4.3.12-93733.vbox-extpack、kivydev.ova、以及一些工程示例。相应文章链接:https://blog.csdn.net/qq_43551034/article/details/104839917

Recent Update

2018.07.04: I achieved a better accuracy(99.2%,[trained model] on LFW. I did some modification as bellow:

  • Align webface and lfw dataset to 112x112([casia-112x112],[lfw-112x112] using [insightface align method]
  • Set a bigger margin parameter (0.35) and a higher feature embedding demension (1024)
  • Use the clean dataset and the details can be seen [this]

    CosFace

    This project is aimmed at implementing the CosFace described by the paper CosFace: Large Margin Cosine Loss for Deep Face Recognition. The code can be trained on CASIA-Webface and the best accuracy LFW is 98.6%. The result is lower than reported by paper(99.33%), which may be caused by sphere network implemented in tensorflow. I train the sphere network implemented in tensorflow using the softmax loss and just obtain the accuracy 95.6%, which is more lower than caffe version(97.88%).

Preprocessing

I supply the preprocessed dataset in baidu pan:[CASIA-WebFace-112X96] You can download and unzip them to dir dataset.

Train

./train.sh

Test

Modify the MODEL_DIR in test.sh and run ./test.sh.