项目作者: comidan

项目描述 :
Collection of all courses, and their materials, attended at Politecnico di Milano during both Bachelor level degree and Master level degree in Engineering, Computer Science Engineering
高级语言: HTML
项目地址: git://github.com/comidan/Computer-Science-Engineering.git
创建时间: 2020-06-17T11:49:40Z
项目社区:https://github.com/comidan/Computer-Science-Engineering

开源协议:

下载


Computer Science Engineering

Collection of the various courses, and their materials, attended at Politecnico di Milano during both Bachelor level degree and Master level degree in Engineering, Computer Science Engineering.

I really enjoyed this path I chose, during high school I sometimes doubted or even get sad about doing computer science only for the purpose of building software, applications and so on.
I wanted to apply it to something important, tangible, being not a “full stack developer” but rather a “full stack engineer” which means for me knowing everything from the mathematics then to the physichs behind something, then eletctronics, circuits, hardware architectures, signal processing and trasmission, low level software and then at the end the more and more abstraction reaching more related computer sciences only topics which obviously I love too if it wasn’t clear.

That’s why I chose engineering: you can do quite anything, you achieve a very large and broad knowledge at the cost of being a difficult path to follow regarding the load of the study and the time required, but if you want to find a better purpose and mastering all other fields, including Computer Science, like Electronics, Networks, Physics, Advanced math, Logic circuits, Automation, Telecomunications, Computer architectures, and so many other things.

If you want to build, this here is the right choice.

Feel free to make any requests, comments or anything else.



licia+slides+-+series+050607_1648320357912.pdf
licia+slides+-+series+06+-+2_1648320357977.pdf
licia+slides+-+series+07+-+2_1648320358048.pdf
licia+slides+-+series+08+-+2_1648320358088.pdf
licia+slides+-+series+080910_1648320358151.pdf
licia+slides+-+series+09+-+2_1648320358238.pdf
licia+slides+-+series+10+-+2_1648320358374.pdf
licia+slides+-+series+15_1648320358483.pdf
licia+slides+-+series+1516+-+2_1648320358521.pdf
licia+slides+-+series+16_1648320358608.pdf
licia+slides+-+series+17+-+2_1648320358681.pdf
licia+slides+-+series+17_1648320358751.pdf
licia+slides+-+series+18+-+2_1648320358861.pdf
Christos H. Papadimitriou, Kenneth Steiglitz - Combinatorial Optimization_ Algorithms and Complexity (1998, Dover Publications)_1648320359168.pdf
Frederick S. Hillier, Gerald J. Lieberman - Introduction to Operations Research (2010, McGraw-Hill)_1648320360669.pdf
Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin - Network Flows_ Theory, Algorithms, and Applications (1993, Prentice Hall)_1648320368034.pdf
(Adaptive Computation and Machine Learning) Richard S. Sutton, Andrew G. Barto - Reinforcement Learning_ An Introduction-The MIT Press (2018)_1648320403348.pdf
Bishop - Pattern Recognition And Machine Learning - Springer 2006_1648320412876.pdf
Lecture+1+-+Introduction_1648320422256.pdf
Lecture+10+-+RL+in+finte+MDPs_1648320423493.pdf
Lecture+11+-+MAB_1648320424217.pdf
Lecture+2+-+Linear+regression_1648320424966.pdf
Lecture+3+-+Linear+classification_1648320425256.pdf
Lecture+4+-+Bias-Variance+Trade-off+and+Model+Selection_1648320425797.pdf
Lecture+5+-+PAC-Learning+and+VC-Dimension_1648320426084.pdf
Lecture+6+-+Kernel+Methods_1648320426655.pdf
Lecture+7+-+Support+Vector+Machines_1648320426823.pdf
Lecture+8+-+Markov+Decision+Processes_1648320428086.pdf
Lecture+9+-+Dynamic+Programming_1648320428513.pdf
TheoryMain_1648320430553.pdf
AppuntiIMAD_1648320452455.pdf
MIDA1_PMDS_v2_1648320453735.pdf
Mida1_1648320458048.pdf
Sergio_Bittanti_Model_Identification_1648320460809.pdf
MIDA2-2020-exercises-2020-04-28_1648320462293.pdf
MIDA2-2020-exercises-2020-05-06_1648320463764.pdf
MIDA2-2020-exercises-2020-05-13_1648320464098.pdf
MIDA2-2020-exercises-2020-05-20_1648320464726.pdf
MIDA2-2020-exercises-2020-05-21_1648320465440.pdf
MIDA2-2020-exercises-2020-05-26_1648320466362.pdf
MIDA2-2020-exercises-2020-05-28_1648320467452.pdf
MIDA2-2020-exercises-2020-06-03_1648320468554.pdf
MIDA-examples (1)_1648320474895.pdf
MIDA2-2020-Chapter2-frequency-identification_1648320477620.pdf
MIDA2-2020-Chapter3-Kalman-filter-for-sw-sensing_1648320482986.pdf
MIDA2-2020-Chapter4-BB-sw-sensing_1648320485635.pdf
MIDA2-2020-Chapter5-gray-box-identification_1648320488777.pdf
MIDA2-2020-chapter6-MinimumVarianceControl_1648320491584.pdf
MIDA2-2020-intro-chapter1-4SID-part-1_1648320496653.pdf
MIDA2-2020-intro-chapter1-4SID-part-2_1648320500605.pdf
MIDA2 (1)_1648320501947.pdf
Mida2_1648320505946.pdf
Sergio_Bittanti_Model_Identification_1648320508408.pdf
Lab1 Python-NLTK-intro_1648320508861.pdf
NLP1-INTRO-reduced_1648320510985.pdf
NLP10-ANAPHORA-COHERENCE-reduced_1648320512030.pdf
NLP11-DIAL1-reduced_1648320513469.pdf
NLP11-DIAL2-reduced_1648320514871.pdf
NLP12-SENTIMENT-reduced_1648320516314.pdf
NLP13-ASR-TTS_1648320517393.pdf
NLP13-Human voice - A brief introduction reduced_1648320521428.pdf
NLP14-01 - DL for NLP - Introduction_1648320526026.pdf
NLP14-02 - DL for NLP - Vector Semantics_1648320528204.pdf
NLP14-03 - DL for NLP - Acoustic Fatures_1648320529276.pdf
NLP14-04 - DL for NLP - Applications_1648320531233.pdf
NLP2-morphology-reduced_1648320531984.pdf
NLP3-WORDS-RT_1648320533088.pdf
NLP4-POSTAG_1648320534888.pdf
NLP5-SYNT-CHUNKING-reduced_1648320535195.pdf
NLP6-SYNT-GRAMMARS_1648320535788.pdf
NLP7-SYNT-PARSING-reduced_1648320536330.pdf
NLP7-SYNT-PROB_PARSING-reduced_1648320537563.pdf
NLP8-notes on sem2_1648320537881.pdf
NLP8-notes on sem3-prob-table_1648320538020.pdf
NLP8-semantics1_1648320539253.pdf
NLP8-semantics2-reduced_1648320540114.pdf
NLP8-semantics3_1648320540803.pdf
NLP9-SUMMARIZATION-QA-RT_1648320541766.pdf
NLP_PMDS_1648320542725.pdf
SpeechAndLanguageProcessing3ed_1648320546717.pdf
Neuro-fuzzy and soft computing_ a computational approach to learning and machine intelligence-Prentice Hall (1997)_1648320553799.pdf
1IntroductionSoftComputing_1648320556214.pdf
2IntroductionFuzzySets_1648320557157.pdf
3IntroductionFuzzyLogic_1648320557626.pdf
4FuzzyRules_1648320557825.pdf
Applications+of+Fuzzy+Systems_1648320558455.pdf
Bayesian+Networks+Introduction_1648320559121.pdf
Dynamic+Bayesian+Networks_1648320559665.pdf
Inference+in+Bayesian+Networks_1648320560954.pdf
Introduction+to+Fuzzy+Logic_1648320561648.pdf
Introduction+to+Genetic+Algorithms_1648320562825.pdf
Introduction+to+Probabilistic+Reasoning_1648320564411.pdf
Introduction+to+Soft+Computing+and+course_1648320565114.pdf
Introduction+to+fuzzy+rule+systems_1648320565625.pdf
Introduction+to+fuzzy+sets_1648320565855.pdf
Notes+on+designing+fuzzy+systems_1648320566248.pdf
Soft Computing - Detailed Schedule_1648320566409.pdf
TB04_soft-computing_1648320569318.pdf
Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli - Fundamentals of Software Engineering (2003, Pearson, Prentice Hall)_1648320585131.pdf
0. Course Introduction_1648320594016.pdf