项目作者: jiema58

项目描述 :
自己尝试写一个tensorflow的vae实现
高级语言: Jupyter Notebook
项目地址: git://github.com/jiema58/VAE.git
创建时间: 2017-09-12T03:48:20Z
项目社区:https://github.com/jiema58/VAE

开源协议:

下载


VAE

Build a vanila VAE model. It is composed of 2 parts: 1.Encoder 2.Decoder

1.Encoder - a MLP with 2 hidden layers. Activation function: softplus

2.Decoder - a MLP with 2 hidden layers. Activation function: softplus

Thanks to [1] to deliver the inspiration of Bernoulli cross-entropy

Dependencies

  1. Python - 3.6

  2. Tensorflow - 1.0

Result

2-D Latent Code space Distribution:

latent code

Use 2-D latent codes to generate image. Latent codes are sampled from uniform distribution. Below is the generated images:

generated

The dimension of latent codes has an impact on VAE performance. I trained 3 models with latent dimension: 2, 20, 100. 20 model renders the best performance while 100 model ranks the last

Reference

[1].http://jmetzen.github.io/2015-11-27/vae.html