项目作者: fmaglia

项目描述 :
Keras implementation of R-MAC+ descriptors
高级语言: Python
项目地址: git://github.com/fmaglia/keras_rmac_plus.git
创建时间: 2018-09-26T13:25:01Z
项目社区:https://github.com/fmaglia/keras_rmac_plus

开源协议:

下载


keras_rmac_plus

Keras implementation of R-MAC+ descriptors.

[paper] [project]

The image below represents the query phase exeucted for the R-MAC+ descriptors.

query phase

Prerequisites for Python3

  • Keras (> 2.0.0)
  • Tensorflow (> 1.5)
  • Scipy
  • Sklearn
  • OpenCV 3

Networks

The pipeline was tested with VGG16 and ResNet50. For the VGG16 the best performance are reached when the features are extracted from the block5_pool, instead for ResNet from the activation_43.
It is possible to try with other networks. Please before to try it, check if there are available the Keras weight for the selected network.

Datasets

  • Holidays
  • Oxford5k
  • Paris6k

Download the datasets and put it into the data folder. Then compile the script for the evaluation of the retrieval system.

Test

python3 Keras_test_MAC.py

Results

Method Network Oxford5k Paris6k Holidays
R-MAC VGG16 65.56% 82.80% 87.65%
R-MAC ResNet50 71.77% 83.31% 92.55%
M-R RMAC+ ResNet50 78.88% 88.63% 94.63% / 95.58%
M-R RMAC+ with retrieval based on ‘db regions’ ResNet50 85.39 % 91.90% 94.37% / 95.87%

The R-MAC is an our re-implementation of the Tolias et al. 2016 paper, instead M-R RMAC comes from the Gordo et al. 2016 paper.
The last two experiments are also executed on the rotated version of Holidays.

References

  1. @article{magliani2018accurate,
    title={An accurate retrieval through R-MAC+ descriptors for landmark recognition},
    author={Magliani, Federico and Prati, Andrea},
    journal={arXiv preprint arXiv:1806.08565},
    year={2018}
    }

  2. @article{tolias2015particular,
    title={Particular object retrieval with integral max-pooling of CNN activations},
    author={Tolias, Giorgos and Sicre, Ronan and J{\’e}gou, Herv{\’e}},
    journal={arXiv preprint arXiv:1511.05879},
    year={2015}
    }

  3. @inproceedings{gordo2016deep,
    title={Deep image retrieval: Learning global representations for image search},
    author={Gordo, Albert and Almaz{\’a}n, Jon and Revaud, Jerome and Larlus, Diane},
    booktitle={European Conference on Computer Vision},
    pages={241257},
    year={2016},
    organization={Springer}
    }