XOS>> scn>> 返回
项目作者: ychfan

项目描述 :
Scale-wise Convolution for Image Restoration
高级语言: Python
项目地址: git://github.com/ychfan/scn.git
创建时间: 2020-02-09T15:39:27Z
项目社区:https://github.com/ychfan/scn

开源协议:MIT License

下载


Scale-wise Convolution for Image Restoration

AAAI 2020 [Arxiv]

This package is adapted from WDSR @ 3aeff43.

Performance

Networks Parameters DIV2K (val) Set5 B100 Urban100 Pre-trained models Training command
WDSR x2 1,190,100 34.76 38.08 32.23 32.34 Download
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 2 --job_dir ./wdsr_x2
WDSR x3 1,195,605 31.03 34.45 29.14 28.33 Download
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 3 --job_dir ./wdsr_x3
WDSR x4 1,203,312 29.04 32.22 27.61 26.21 Download
detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 4 --job_dir ./wdsr_x4

Usage

Dependencies

  1. conda install pytorch torchvision -c pytorch
  2. conda install tensorboard h5py scikit-image
  3. pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" git+https://github.com/NVIDIA/apex.git

Evaluation

  1. python trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 2 --job_dir ./wdsr_x2 --eval_only

Datasets

DIV2K dataset: DIVerse 2K resolution high quality images as used for the NTIRE challenge on super-resolution @ CVPR 2017
Benchmarks (Set5, BSDS100, Urban100)

Download and organize data like:

  1. wdsr/data/DIV2K/
  2. ├── DIV2K_train_HR
  3. ├── DIV2K_train_LR_bicubic
  4. └── X2
  5. └── X3
  6. └── X4
  7. ├── DIV2K_valid_HR
  8. └── DIV2K_valid_LR_bicubic
  9. └── X2
  10. └── X3
  11. └── X4
  12. wdsr/data/Set5/*.png
  13. wdsr/data/BSDS100/*.png
  14. wdsr/data/Urban100/*.png