Cauchy distribution mode.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
[Cauchy][cauchy-distribution] distribution [mode][mode].
x0
and scale parameter Ɣ > 0
ismath
\mathop{\mathrm{mode}}\left( X \right) = x_0
bash
npm install @stdlib/stats-base-dists-cauchy-mode
script
tag without installation and bundlers, use the [ES Module][es-module] available on the [esm
][esm-url] branch (see [README][esm-readme]).deno
][deno-url] branch (see [README][deno-readme] for usage intructions).umd
][umd-url] branch (see [README][umd-readme]).javascript
var mode = require( '@stdlib/stats-base-dists-cauchy-mode' );
x0
and scale parameter gamma
.javascript
var v = mode( 10.0, 5.0 );
// returns 10.0
v = mode( 7.0, 2.0 );
// returns 7.0
NaN
as any argument, the function returns NaN
.javascript
var v = mode( NaN, 5.0 );
// returns NaN
v = mode( 20.0, NaN );
// returns NaN
gamma <= 0
, the function returns NaN
.javascript
var v = mode( 1.0, -1.0 );
// returns NaN
v = mode( 1.0, 0.0 );
// returns NaN
javascript
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var EPS = require( '@stdlib/constants-float64-eps' );
var mode = require( '@stdlib/stats-base-dists-cauchy-mode' );
var opts = {
'dtype': 'float64'
};
var gamma = uniform( 10, EPS, 10.0, opts );
var x0 = uniform( 10, 0.0, 100.0, opts );
logEachMap( 'x0: %0.4f, γ: %0.4f, mode(X;x0,γ): %0.4f', x0, gamma, mode );
c
#include "stdlib/stats/base/dists/cauchy/mode.h"
x0
and scale parameter gamma
.c
double out = stdlib_base_dists_cauchy_mode( 10.0, 5.0 );
// returns 10.0
[in] double
location parameter.[in] double
scale parameter.c
double stdlib_base_dists_cauchy_mode( const double x0, const double gamma );
c
#include "stdlib/stats/base/dists/cauchy/mode.h"
#include "stdlib/constants/float64/eps.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double gamma;
double x0;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
x0 = random_uniform( 0.0, 100.0 );
gamma = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 10.0 );
y = stdlib_base_dists_cauchy_mode( x0, gamma );
printf( "x0: %lf, γ: %lf, mode(X;x0,γ): %lf\n", x0, gamma, y );
}
}