项目作者: enhuiz

项目描述 :
PyTorch dataset wrappers for PHOENIX 2014 & PHOENIX-2014-T sign language datasets.
高级语言: Lex
项目地址: git://github.com/enhuiz/phoenix-datasets.git
创建时间: 2020-10-26T12:07:27Z
项目社区:https://github.com/enhuiz/phoenix-datasets

开源协议:MIT License

下载


PHOENIX Datasets 🐦

Introduction

PHOENIX-2014 and PHOENIX-2014-T are popular large scale German sign language datasets developed by Human Language Technology & Pattern Recognition Group from RWTH Aachen University, Germany. This package provides a PyTorch dataset wrapper for those two datasets to make the building of PyTorch model on these two datasets easier.

Installation

  1. pip install git+https://github.com/enhuiz/phoenix-datasets

Example Usage

Dataset

  1. from phoenix_datasets import PhoenixVideoTextDataset
  2. from torch.utils.data import DataLoader
  3. dtrain = PhoenixVideoTextDataset(
  4. # your path to this folder, download it from official website first.
  5. root="data/phoenix-2014-multisigner",
  6. split="train",
  7. p_drop=0.5,
  8. random_drop=True,
  9. random_crop=True,
  10. base_size=[256, 256]
  11. crop_size=[224, 224],
  12. )
  13. vocab = dtrain.vocab
  14. print("Vocab", vocab)
  15. dl = DataLoader(dtrain, collate_fn=dtrain.collate_fn)
  16. for batch in dl:
  17. video = batch["video"]
  18. label = batch["label"]
  19. signer = batch["signer"]
  20. assert len(video) == len(label)
  21. print(len(video))
  22. print(video[0].shape)
  23. print(label[0].shape)
  24. print(signer)
  25. break

Evaluation

Go to phoenix-2014-multisigner/evaluation/NIST-sclite_sctk-2.4.0-20091110-0958.tar.bz2 to install sclite (the official tool for WER calculation) first and then put it in your PATH.

  1. from phoenix_datasets.evaluators import PhoenixEvaluator
  2. evaluator = PhoenixEvaluator("data/phoenix-2014-multisigner")
  3. hyp = evaluator.corpus.load_data_frame("dev")["annotation"].apply(" ".join).tolist()
  4. hyp[0] = "THIS SENTENCE IS WRONG"
  5. results = evaluator.evaluate("dev", hyp)
  6. print(results["parsed_dtl"])
  7. print(results["sum"])

Supported Features

  • Load the automatic alignments for PHOENIX-2014
  • Randomly/evenly frame dropping augmentation
  • Evaluation for Phoenix-2014
  • Language Model

TODOs

  • Implement Corpus and evaluation for PHOENIX-2014-T