项目作者: fitushar

项目描述 :
Medical Image Segmentation and Applications (MISA) LAB task.
高级语言: Python
项目地址: git://github.com/fitushar/Brain-Tissue-Segmentation-Using-Expectation-Maximization.git


Brain-Tissue-Segmentation-Using-Expectation-Maximization

Medical Image Segmentation and Applications (MISA) LAB task.

Functions Used in two codes::

  1. show_slice(img, slice_no):

    Inputs: Name of the Image Array, img=name.get_fdata()

    1. Slice number you want to knoe,Slice no = 24

    output: Plot Image.

  2. gmm(x, mean, cov):

    Inputs:

    1. x (numpy.ndarray): nxd dimentional array. where n= number of samples
    2. d= dimention
    3. mean (numpy.ndarray): d-dimentional mean value.
    4. cov (numpy.ndarray): dxd dimentional covariance matrix.

    output:

    1. (numpy.ndarray): Gaussian mixture for every point in feature space.
  3. dice_similarity(Seg_img, GT_img,state):

    Inputs:

    1. Seg_img (numpy.ndarray): Segmented Image.
    2. GT_img (numpy.ndarray): Ground Truth Image.
    3. State: "nifti" if the images are nifti file
    4. "arr" if the images are an ndarray

    output:

    1. Dice Similarity Coefficient: dice_CSF, dice_GM, dice_WM.
  4. Dice_and_Visualization_of_one_slice(Seg_img, GT_img,state,number_of_slice):
    “””Example Use: Dice_and_Visualization_of_one_slice(Seg,Label_img,”arr”,30)”””

    Inputs:

    1. Seg_img (numpy.ndarray): Segmented Image.
    2. GT_img (numpy.ndarray): Ground Truth Image.
    3. State: "nifti" if the images are nifti file
    4. "arr" if the images are an ndarray

    output:

    1. Dice Similarity Coefficient: dice_CSF, dice_GM, dice_WM.
    2. Ploting image