Medical Image Segmentation and Applications (MISA) LAB task.
Medical Image Segmentation and Applications (MISA) LAB task.
Functions Used in two codes::
show_slice(img, slice_no):
Inputs: Name of the Image Array, img=name.get_fdata()
Slice number you want to knoe,Slice no = 24
output: Plot Image.
gmm(x, mean, cov):
Inputs:
x (numpy.ndarray): nxd dimentional array. where n= number of samples
d= dimention
mean (numpy.ndarray): d-dimentional mean value.
cov (numpy.ndarray): dxd dimentional covariance matrix.
output:
(numpy.ndarray): Gaussian mixture for every point in feature space.
dice_similarity(Seg_img, GT_img,state):
Inputs:
Seg_img (numpy.ndarray): Segmented Image.
GT_img (numpy.ndarray): Ground Truth Image.
State: "nifti" if the images are nifti file
"arr" if the images are an ndarray
output:
Dice Similarity Coefficient: dice_CSF, dice_GM, dice_WM.
Dice_and_Visualization_of_one_slice(Seg_img, GT_img,state,number_of_slice):
“””Example Use: Dice_and_Visualization_of_one_slice(Seg,Label_img,”arr”,30)”””
Inputs:
Seg_img (numpy.ndarray): Segmented Image.
GT_img (numpy.ndarray): Ground Truth Image.
State: "nifti" if the images are nifti file
"arr" if the images are an ndarray
output:
Dice Similarity Coefficient: dice_CSF, dice_GM, dice_WM.
Ploting image