项目作者: safir72347

项目描述 :
Candidate-Elimination Algorithm is a Machine Learning Algorithm that builds the version space from Specific Hypothesis and General Hypothesis.
高级语言: Python
项目地址: git://github.com/safir72347/ML-CandidateElimination-PyPi.git
创建时间: 2020-09-11T08:50:17Z
项目社区:https://github.com/safir72347/ML-CandidateElimination-PyPi

开源协议:MIT License

下载


Candidate-Elimination Algorithm

Candidate-Elimination Algorithm is a Machine Learning Algorithm that builds the version space from Specific Hypothesis and General Hypothesis.


Installation

Install directly from my PyPi

pip install classic-CandidateElimination

Or Clone the Repository and install

python3 setup.py install

Parameters

* X_train


The Training Set array consisting of Features.

* y_train


The Training Set array consisting of Outcome.

Attributes

* fit(X_train, y_train)


Fit the Training Set to the model.

* predict(y_test)


Predict the Test Set Results.

Documentation" class="reference-link"> Documentation

1. Install the package

pip install classic_FindS

2. Import the library

from classic_CandidateElimination import Candidate_Elimination

3. Create an object for FindS class

ce = Candidate_Elimination()

4. Fit your Training Set to the model

fs.fit(X_train, y_train)

5. Predict your Test Set results

y_pred = fs.predict(y_test)


Example Code

1. Import the dataset and Preprocess

  • import numpy as np
  • import pandas as pd
  • dataset = pd.read_csv(‘Covid-19_Data.csv’)
  • result = {‘Yes’:1, ‘No’:0}
  • dataset[‘Covid_19’] = dataset[‘Covid_19’].map(result)
  • X = dataset.iloc[:, 0:5].values
  • y = dataset.iloc[:, -1].values

  • from sklearn.model_selection import KFold

  • kf = KFold(n_splits=10)
  • for train_index, test_index in kf.split(X,y):
    • X_train, X_test = X[train_index], X[test_index]
    • y_train, y_test = y[train_index], y[test_index]

2. Use the Candidate Elimination Library

  • from classic_CandidateElimination import Candidate_Elimination
  • ce = Candidate_Elimination()
  • ce.fit(X_train, y_train)
  • y_pred = ce.predict(X_test)

Footnotes

You can find the code at my Github.

Connect with me on Social Media