项目作者: PanShi2016

项目描述 :
Krylov Subspace Approximation for Local Community Detection in Large Networks
高级语言: Matlab
项目地址: git://github.com/PanShi2016/LOSP_Plus.git
创建时间: 2018-12-02T11:11:01Z
项目社区:https://github.com/PanShi2016/LOSP_Plus

开源协议:GNU General Public License v3.0

下载


LOSP_Plus

These codes are for our paper “Krylov Subspace Approximation for Local Community Detection in Large Networks”

Requirements

Before compiling codes, the following software should be installed in your system.

WalkMode: 1: standard, 2: light lazy, 3: lazy, 4: personalized (default: 2)

d: dimension of local spectral subspace (default: 2)

k: number of random walk steps (default: 3)

alpha: a parameter controls random walk diffusion (default: 1)

TruncateMode: 1: truncation by truth size, 2: truncation by local minimal conductance (default: 2)

beta: a parameter controls local minimal conductance (default: 1.02)

How to run baseline algorithms

run LEMON algorithm

  1. $ cd baseline_codes/LEMON
  2. $ matlab
  3. $ LEMON

run PGDC-d algorithm

  1. $ cd baseline_codes/PGDc-d
  2. $ matlab
  3. $ PGDC_d

run HK algorithm

  1. $ cd baseline_codes/HK
  2. $ matlab
  3. $ mex -largeArrayDims hkgrow_mex.cpp % compile the mex file
  4. $ HK

run PR algorithm

  1. $ cd baseline_codes/PR
  2. $ matlab
  3. $ mex -largeArrayDims pprgrow_mex.cc % compile the mex file
  4. $ PR

More comparison

run GLOSP algorithm for evaluating the effectiveness of Krylov subspace approximation

  1. $ cd LOSP_Plus_codes
  2. $ matlab
  3. $ GLOSP_Plus % GLOSP algorithm using eigenspace rather than Krylov subspace

run HKL and PRL for evaluating the effectiveness of local minimal conductance truncation

  1. $ cd LOSP_Plus_codes
  2. $ matlab
  3. $ mex -largeArrayDims hkvec_mex.cpp % compile mex file
  4. $ mex -largeArrayDims pprvec_mex.cc % compile mex file
  5. $ HK_local % HKL algorithm based on local minimal conductance truncation
  6. $ PR_local % PRL algorithm based on local minimal conductance truncation

Announcements

Licence

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://fsf.org/.

Notification

Please email to panshi@hust.edu.cn or setup an issue if you have any problems or find any bugs.

Acknowledgement

In the program, we incorporate some open source codes as baseline algorithms from the following websites: