Gold Loss Correction for training neural networks with labels corrupted with severe noise
Unofficial implementation of Using Trusted Data to Train Deep Networks on
Labels Corrupted by Severe Noise (NIPS 18) in PyTorch.
(See example.ipynb for a walkthrough on MNIST)
from datasets import GoldCorrectionDataset
from glc import CorrectionGenerator, GoldCorrectionLossFunction
c_gen = CorrectionGenerator(simulate=True, dataset=trn_ds, randomization_strength=1.0)
# Fetch both corrupted and clean datasets if in simuate mode
trusted_dataset, untrusted_dataset = c_gen.fetch_datasets()
"""
Train the model on untrusted_dataset
"""
# Generate correction matrix
label_correction_matrix = c_gen.generate_correction_matrix(trainer.model, 32)
# Wrap trusted and untrusted dataset together using GoldCorrectionDataset class
gold_ds = GoldCorrectionDataset(trusted_dataset, untrusted_dataset)
gold_dl = DataLoader(gold_ds, batch_size=32, shuffle=True)
# Modified loss function
gold_loss = GoldCorrectionLossFunction(label_correction_matrix)
"""
Train using gold_ds and gold_loss the model, until convergence
"""