Evaluate a polynomial.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Evaluate a [polynomial][polynomial] using double-precision floating-point arithmetic.
x
can be expressed asmath
c_nx^n + c_{n-1}x^{n-1} + \ldots + c_1x^1 + c_0 = \sum_{i=0}^{n} c_ix^i
c_n, c_{n-1}, ..., c_0
are constants.bash
npm install @stdlib/math-base-tools-evalpoly
script
tag without installation and bundlers, use the [ES Module][es-module] available on the [esm
][esm-url] branch (see [README][esm-readme]).deno
][deno-url] branch (see [README][deno-readme] for usage intructions).umd
][umd-url] branch (see [README][umd-readme]).javascript
var evalpoly = require( '@stdlib/math-base-tools-evalpoly' );
c
and degree n
at a value x
, where n = c.length-1
.javascript
var v = evalpoly( [ 3.0, 2.0, 1.0 ], 10 ); // => 3*10^0 + 2*10^1 + 1*10^2
// returns 123.0
javascript
var polyval = evalpoly.factory( [ 3.0, 2.0, 1.0 ] );
var v = polyval( 10.0 ); // => 3*10^0 + 2*10^1 + 1*10^2
// returns 123.0
v = polyval( 5.0 ); // => 3*5^0 + 2*5^1 + 1*5^2
// returns 38.0
evalpoly()
.javascript
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var uniform = require( '@stdlib/random-base-uniform' );
var evalpoly = require( '@stdlib/math-base-tools-evalpoly' );
// Create an array of random coefficients:
var coef = discreteUniform( 10, -100, 100 );
// Evaluate the polynomial at random values:
var v;
var i;
for ( i = 0; i < 100; i++ ) {
v = uniform( 0.0, 100.0 );
console.log( 'f(%d) = %d', v, evalpoly( coef, v ) );
}
// Generate an `evalpoly` function:
var polyval = evalpoly.factory( coef );
for ( i = 0; i < 100; i++ ) {
v = uniform( -50.0, 50.0 );
console.log( 'f(%d) = %d', v, polyval( v ) );
}