项目作者: stdlib-js

项目描述 :
Gamma distribution constructor.
高级语言: JavaScript
项目地址: git://github.com/stdlib-js/stats-base-dists-gamma-ctor.git
创建时间: 2021-06-15T17:38:41Z
项目社区:https://github.com/stdlib-js/stats-base-dists-gamma-ctor

开源协议:Apache License 2.0

下载




About stdlib…

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.


The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.


When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.


To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!


Gamma

[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]

Gamma distribution constructor.





## Installation

bash npm install @stdlib/stats-base-dists-gamma-ctor

Alternatively,

- To load the package in a website via a script tag without installation and bundlers, use the [ES Module][es-module] available on the [esm][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [deno][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [umd][umd-url] branch (see [README][umd-readme]).

The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.



## Usage

javascript var Gamma = require( '@stdlib/stats-base-dists-gamma-ctor' );

#### Gamma( [alpha, beta] )

Returns a [gamma][gamma-distribution] distribution object.

javascript var gamma = new Gamma(); var mode = gamma.mode; // returns 0.0

By default, alpha = 1.0 and beta = 1.0. To create a distribution having a different alpha (shape parameter) and beta (rate parameter), provide the corresponding arguments.

javascript var gamma = new Gamma( 2.0, 4.0 ); var mu = gamma.mean; // returns 0.5



## gamma

A [gamma][gamma-distribution] distribution object has the following properties and methods…

### Writable Properties

#### gamma.alpha

Shape parameter of the distribution. alpha must be a positive number.

javascript var gamma = new Gamma(); var alpha = gamma.alpha; // returns 1.0 gamma.alpha = 3.0; alpha = gamma.alpha; // returns 3.0

#### gamma.beta

Rate parameter of the distribution. beta must be a positive number.

javascript var gamma = new Gamma( 2.0, 4.0 ); var b = gamma.beta; // returns 4.0 gamma.beta = 3.0; b = gamma.beta; // returns 3.0


### Computed Properties

#### Gamma.prototype.entropy

Returns the [differential entropy][entropy].

javascript var gamma = new Gamma( 4.0, 12.0 ); var entropy = gamma.entropy; // returns ~-0.462

#### Gamma.prototype.kurtosis

Returns the [excess kurtosis][kurtosis].

javascript var gamma = new Gamma( 4.0, 12.0 ); var kurtosis = gamma.kurtosis; // returns 1.5

#### Gamma.prototype.mean

Returns the [expected value][expected-value].

javascript var gamma = new Gamma( 4.0, 12.0 ); var mu = gamma.mean; // returns ~0.333

#### Gamma.prototype.mode

Returns the [mode][mode].

javascript var gamma = new Gamma( 4.0, 12.0 ); var mode = gamma.mode; // returns 0.25

#### Gamma.prototype.skewness

Returns the [skewness][skewness].

javascript var gamma = new Gamma( 4.0, 12.0 ); var skewness = gamma.skewness; // returns 1.0

#### Gamma.prototype.stdev

Returns the [standard deviation][standard-deviation].

javascript var gamma = new Gamma( 4.0, 12.0 ); var s = gamma.stdev; // returns ~0.167

#### Gamma.prototype.variance

Returns the [variance][variance].

javascript var gamma = new Gamma( 4.0, 12.0 ); var s2 = gamma.variance; // returns ~0.028

*

### Methods

#### Gamma.prototype.cdf( x )

Evaluates the [cumulative distribution function][cdf] (CDF).

javascript var gamma = new Gamma( 2.0, 4.0 ); var y = gamma.cdf( 0.5 ); // returns ~0.594

#### Gamma.prototype.logcdf( x )

Evaluates the natural logarithm of the [cumulative distribution function][cdf] (CDF).

javascript var gamma = new Gamma( 2.0, 4.0 ); var y = gamma.logcdf( 0.5 ); // returns ~-0.521

#### Gamma.prototype.logpdf( x )

Evaluates the natural logarithm of the [probability density function][pdf] (PDF).

javascript var gamma = new Gamma( 2.0, 4.0 ); var y = gamma.logpdf( 0.8 ); // returns ~-0.651

#### Gamma.prototype.mgf( t )

Evaluates the [moment-generating function][mgf] (MGF).

javascript var gamma = new Gamma( 2.0, 4.0 ); var y = gamma.mgf( 0.5 ); // returns ~1.306

#### Gamma.prototype.pdf( x )

Evaluates the [probability density function][pdf] (PDF).

javascript var gamma = new Gamma( 2.0, 4.0 ); var y = gamma.pdf( 0.8 ); // returns ~0.522

#### Gamma.prototype.quantile( p )

Evaluates the [quantile function][quantile-function] at probability p.

javascript var gamma = new Gamma( 2.0, 4.0 ); var y = gamma.quantile( 0.5 ); // returns ~0.42 y = gamma.quantile( 1.9 ); // returns NaN






## Examples



javascript var Gamma = require( '@stdlib/stats-base-dists-gamma-ctor' ); var gamma = new Gamma( 2.0, 4.0 ); var mu = gamma.mean; // returns 0.5 var mode = gamma.mode; // returns 0.25 var s2 = gamma.variance; // returns 0.125 var y = gamma.cdf( 0.8 ); // returns ~0.829





*

## Notice

This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].

#### Community

[![Chat][chat-image]][chat-url]

—-

## License

See [LICENSE][stdlib-license].


## Copyright

Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].