Gamma distribution constructor.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Gamma distribution constructor.
bash
npm install @stdlib/stats-base-dists-gamma-ctor
script
tag without installation and bundlers, use the [ES Module][es-module] available on the [esm
][esm-url] branch (see [README][esm-readme]).deno
][deno-url] branch (see [README][deno-readme] for usage intructions).umd
][umd-url] branch (see [README][umd-readme]).javascript
var Gamma = require( '@stdlib/stats-base-dists-gamma-ctor' );
javascript
var gamma = new Gamma();
var mode = gamma.mode;
// returns 0.0
alpha = 1.0
and beta = 1.0
. To create a distribution having a different alpha
(shape parameter) and beta
(rate parameter), provide the corresponding arguments.javascript
var gamma = new Gamma( 2.0, 4.0 );
var mu = gamma.mean;
// returns 0.5
alpha
must be a positive number.javascript
var gamma = new Gamma();
var alpha = gamma.alpha;
// returns 1.0
gamma.alpha = 3.0;
alpha = gamma.alpha;
// returns 3.0
beta
must be a positive number.javascript
var gamma = new Gamma( 2.0, 4.0 );
var b = gamma.beta;
// returns 4.0
gamma.beta = 3.0;
b = gamma.beta;
// returns 3.0
javascript
var gamma = new Gamma( 4.0, 12.0 );
var entropy = gamma.entropy;
// returns ~-0.462
javascript
var gamma = new Gamma( 4.0, 12.0 );
var kurtosis = gamma.kurtosis;
// returns 1.5
javascript
var gamma = new Gamma( 4.0, 12.0 );
var mu = gamma.mean;
// returns ~0.333
javascript
var gamma = new Gamma( 4.0, 12.0 );
var mode = gamma.mode;
// returns 0.25
javascript
var gamma = new Gamma( 4.0, 12.0 );
var skewness = gamma.skewness;
// returns 1.0
javascript
var gamma = new Gamma( 4.0, 12.0 );
var s = gamma.stdev;
// returns ~0.167
javascript
var gamma = new Gamma( 4.0, 12.0 );
var s2 = gamma.variance;
// returns ~0.028
javascript
var gamma = new Gamma( 2.0, 4.0 );
var y = gamma.cdf( 0.5 );
// returns ~0.594
javascript
var gamma = new Gamma( 2.0, 4.0 );
var y = gamma.logcdf( 0.5 );
// returns ~-0.521
javascript
var gamma = new Gamma( 2.0, 4.0 );
var y = gamma.logpdf( 0.8 );
// returns ~-0.651
javascript
var gamma = new Gamma( 2.0, 4.0 );
var y = gamma.mgf( 0.5 );
// returns ~1.306
javascript
var gamma = new Gamma( 2.0, 4.0 );
var y = gamma.pdf( 0.8 );
// returns ~0.522
p
.javascript
var gamma = new Gamma( 2.0, 4.0 );
var y = gamma.quantile( 0.5 );
// returns ~0.42
y = gamma.quantile( 1.9 );
// returns NaN
javascript
var Gamma = require( '@stdlib/stats-base-dists-gamma-ctor' );
var gamma = new Gamma( 2.0, 4.0 );
var mu = gamma.mean;
// returns 0.5
var mode = gamma.mode;
// returns 0.25
var s2 = gamma.variance;
// returns 0.125
var y = gamma.cdf( 0.8 );
// returns ~0.829