Gumbel distribution skewness.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
[Gumbel][gumbel-distribution] distribution [skewness][skewness].
μ and scale β ismath
\mathop{\mathrm{skew}}\left( X \right) = {\frac{12{\sqrt{6}}\,\zeta(3)}{\pi^{3}}} \approx 1.14ζ is the [Riemann zeta function][zeta].bash
npm install @stdlib/stats-base-dists-gumbel-skewnessscript tag without installation and bundlers, use the [ES Module][es-module] available on the [esm][esm-url] branch (see [README][esm-readme]).deno][deno-url] branch (see [README][deno-readme] for usage intructions).umd][umd-url] branch (see [README][umd-readme]).javascript
var skewness = require( '@stdlib/stats-base-dists-gumbel-skewness' );mu and scale parameter beta.javascript
var y = skewness( 2.0, 1.0 );
// returns ~1.14
y = skewness( 0.0, 1.0 );
// returns ~1.14
y = skewness( -1.0, 4.0 );
// returns ~1.14NaN as any argument, the function returns NaN.javascript
var y = skewness( NaN, 1.0 );
// returns NaN
y = skewness( 0.0, NaN );
// returns NaNbeta <= 0, the function returns NaN.javascript
var y = skewness( 0.0, 0.0 );
// returns NaN
y = skewness( 0.0, -1.0 );
// returns NaNjavascript
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var skewness = require( '@stdlib/stats-base-dists-gumbel-skewness' );
var opts = {
'dtype': 'float64'
};
var beta = uniform( 10, 0.0, 10.0, opts );
var mu = uniform( 10, -5.0, 5.0, opts );
logEachMap( 'µ: %0.4f, β: %0.4f, skew(X;µ,β): %0.4f', mu, beta, skewness );c
#include "stdlib/stats/base/dists/gumbel/skewness.h"mu and scale beta.c
double y = stdlib_base_dists_gumbel_skewness( 0.0, 1.0 );
// returns ~1.14[in] double location parameter.[in] double scale parameter.c
double stdlib_base_dists_gumbel_skewness( const double mu, const double beta );c
#include "stdlib/stats/base/dists/gumbel/skewness.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double beta;
double mu;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
mu = random_uniform( -5.0, 5.0 );
beta = random_uniform( 0.0, 20.0 );
y = stdlib_base_dists_gumbel_skewness( mu, beta );
printf( "µ: %lf, β: %lf, Skew(X;µ,β): %lf\n", mu, beta, y );
s}
}