项目作者: Softdude47

项目描述 :
Trying to gain top 5 spot in kaggle dog vs cat compettition (www.kaggle.com/c/dogs-vs-cats) by training the dataset on AlexNet
高级语言: Python
项目地址: git://github.com/Softdude47/kaggle-dog-vs-cat.git
创建时间: 2021-04-30T06:52:14Z
项目社区:https://github.com/Softdude47/kaggle-dog-vs-cat

开源协议:

下载


KAGGLE DOG VS CAT

Script

Primary files

build_dog_vs_cat.py

  • info:
    • splits and builds dataset in HDF5 format
  • arguments:
    • none

train_alexnet.py

  • info:
    • train AlexNet model on dataset generated by build_dog_vs_cat.py
  • arguments:
    • none

evaluate.py

  • info:
    • evaluates AlexNet model on test data split generated by build_dog_vs_cat.py
  • arguments:
    • none

Alternative files

alt_build_dog_vs_cat.py

  • info:
    • rebuilds dataset structure to one suitable for tensorflow.keras.preprocessing.image.ImageDataGenerator
  • arguments:
    • none
  • alternative:
    • build_dog_vs_cat.py

alt_train_alexnet.py

  • info:
    • train AlexNet model on dataset generated by alt_build_dog_vs_cat.py
  • arguments:
    • none
  • alternative:
    • train_alexent.py

alt_evaluate.py

  • info:
    • evaluates AlexNet model on test data split generated by alt_build_dog_vs_cat.py
  • arguments:
    • none
  • alternative:
    • evaluate.py

Feature Extraction

extract_features.py

  • info:
    • builds new dataset with image features extracted with pretrained ResNet50 model
  • arguments:
    • —dataset[required]: path to the raw image dataset
    • —trainpath[_optional] : full path to output train split of extracted features
    • —valpath[_optional] : full path to output train-validation split of extracted features
    • —testpath[_optional] : full path to output test split of extracted features
    • —test-size[optional]: float value size of non-training(test + train-validation) dataset split
    • —batch-size[optional] : size of feature and label samples to train model per each steps

train_model.py

  • info:
    • trains and evaluates BoboNet model on extracted features
  • arguments:
    • —model[required]: path to output trained model
    • —classes[optional] : number of uniques classes
    • —epochs[optional]: number of training epochs
    • —batch-size[optional] : number of feature and label samples to train model per each steps
    • —train-db[optional] : path to train dataset(HDF5 format) split
    • —test-db[optional] : path to test dataset(HDF5 format) split
    • —val-db[optional] : path to train-validation dataset(HDF5 format) split