ASU-Net: Attention to Scale with U-Net for Semantic Segmentation (Implemented with TensorFlow)
This is a TensorFlow implementation of our ASU-Net. We train Multi-scale U-Net model first, and then the ASU-Net.
For more details, check our paper. (Link coming soon)
└── __init__.py
└── .gitignore
└── ASUNet.py
└── BatchDatasetReader.py
└── bfscore.py
└── CalculateUtil.py
└── denseCRF.py
└── EvalMetrics.py
└── function_definitions.py
└── LICENSE
└── read_10k_data.py
└── read_CFPD_data.py
└── read_LIP_data.py
└── README.md
└── requirements.txt
└── TensorflowUtils.py
└── test_human.py
└── UNetMSc.py
pip install -r requirements.txt
conda install -c conda-forge pydensecrf
. For linux, use pip: pip install pydensecrf
.read_dataset
function of corresponding data reading script, for example, for LIP dataset, check paths in read_LIP_data.py
and modify as necessary.read_CFPD_data.py
for example, on how to put directory and stuff)python UNetMSc.py
and then python ASUNet.py
python UNetMSc.py --mode=train
and python ASUNet.py --mode=train
debug
flag can be set during training to add information regarding activations, gradients, variables etc.--mode=test
, e.g., python ASUNet.py --mode=test
--mode=visualize
python denseCRF.py
, after setting your paths.python bfscore.py
, after setting your paths.