项目作者: davidevdt

项目描述 :
Regularized Principal Component Analysis via Variational Bayes inference
高级语言: R
项目地址: git://github.com/davidevdt/bayespca.git
创建时间: 2019-05-31T16:46:42Z
项目社区:https://github.com/davidevdt/bayespca

开源协议:

下载


bayespca: Regularized Principal Component Analysis via Variational Bayes inference

An R package for regularized Principal Component Analysis via Variational Bayes methods.

Author

Davide Vidotto d.vidotto@uvt.nl

Description

bayespca performs Bayesian estimation of weight vectors in PCA.
To achieve regularization, the method allows specifying fixed precisions
in the prior distributions of the weights; alternatively, it is possible
to implement Gamma priors on such parameters. The method allows
for variable selection through Automatic Relevance Determination.
Check the vignettes and package documentation for further details.

Functions

  • vbpca for model estimation
  • vbpca_control for settings of control parameters
  • is.vbpca for testing the class
  • plotheatmap for plotting the precision and weights matrices;
  • plothpdi for plotting high probability density intervals

Install

devtools::install_github(“davidevdt/bayespca”)

Version

0.3.0

Depends

R (>= 3.3.3)

License

GPL-2