项目作者: sachdevkartik

项目描述 :
Feature assessment and importance of Machine Learning Models using SHAP and CXPlain libraries
高级语言: Jupyter Notebook
项目地址: git://github.com/sachdevkartik/ExplainableAI.git
创建时间: 2021-05-01T17:05:37Z
项目社区:https://github.com/sachdevkartik/ExplainableAI

开源协议:

下载


Explainable AI using SHAP & CXPlain

About

Project Flow

  • A ML model is trained on a tabular dataset for binary classification task
  • Using this trained model, feature importance for the input features are calculated with the help of CXPlain and SHAP model interpretation library
    • Results are compared quantitatively.

Requirements

  • cxplain 1.0.3
  • shap 0.37.0
  • pycaret 2.3.0
  • tensorflow 2.4.1
  • plotly 4.14.3

Installation procedure

  1. pip install cxplain
  2. pip install shap
  3. pip install pycaret
  4. pip install tensorflow
  5. pip install plotly

Results


Light Gradient Boosting Machine Classification Report



alt text

Light Gradient Boosting Machine Confusion Matrix



alt text

Relative importance of features using SHAP



alt text
alt text


#### How a particular feature affects a prediction:

alt text


Relative importance of features using CXPlain



alt text

Team members