项目作者: nvanandsah

项目描述 :
Web based visualization of neural network prediction using keras and streamlit
高级语言: Python
项目地址: git://github.com/nvanandsah/Neural-Network-Visualizer-Web-App.git
创建时间: 2020-06-21T17:48:31Z
项目社区:https://github.com/nvanandsah/Neural-Network-Visualizer-Web-App

开源协议:Apache License 2.0

下载


Neural-Network-Visualizer-Web-App

Web based visualization of neural network prediction using keras and streamlit.

Working screen

Initial setup

  1. Clone the repository: git clone https://github.com/nvanandsah/Neural-Network-Visualizer-Web-App.git
  2. Install virtualenv: (sudo) pip install virtualenv (sudo if required).
  3. cd <repository-path>
  4. virtualenv venv
  5. Activate virtual environment:
    For mac and linux: source venv/bin/activate.
    For windows: source venv/bin/activate.
  6. Install the python libraries: pip install -r requirements.txt

Running the program

  1. Train the model using python train_model.py.
  2. Start the flask server using python ml_server.py.
  3. While the flask server is running, in a new terminal activate the virtual environment and run streamlit server using streamlit run app.py

To start working

  1. Activate virtual environment: source venv/bin/activate
  2. git checkout master
  3. git pull
  4. Create a new working branch: git checkout -tb <new-working-branch-name>.

To push your changes-

  1. Make sure you are in the new branch you created. You can check the current working branch using git branch.
  2. git add .
  3. git commit -m "<commit-message>"
  4. git push origin <branch-name>
  5. Create a pull request.

If you ever install a new python library, make sure to run this command

pip freeze > requirements.txt