摘要(Abstract)

NFV,即网络功能虚拟化,Network Function Virtualization。通过使用x86等通用性硬件以及虚拟化技术,来承载很多功能的软件处理。从而降低网络昂贵的设备成本。可以通过软硬件解耦及功能抽象,使网络设备功能不再依赖于专用硬件,资源可以充分灵活共享,实现新业务的快速开发和部署,并基于实际业务需求进行自动部署、弹性伸缩、故障隔离和自愈等。


主题(Topic)

项目(Project)
OpenSLX/eaas-client OpenSLX/eaas-server OpenSLX/eaas-proxy ExplorViz/EaaS-server ExplorViz/EaaS-base-image ayushc13/Implementation-of-Brick-Smasher-game-using-HDL-verilog-on-FPGA fellowshiptech/ft-outreach gfrebello/sinfonia Graham-Beer/AzureVirtualMachineTools electrocucaracha/cFW-demo ekman900509/SDN-NFV gauravpuri334/SDN-NFV netgroup-polito/vnfs with >. File dependencies are displayed in the web page with embedded links, which are implemented in HTML5 with anchor elements: source code file name For each class, we will, optionally, implement outlining, similar to the visual studio outlining feature. To do that we will use the CSS display property, with values: normal or none, to control whether the contents of a div are visible or not. The Code Publisher will be embedded in a mock Repository with almost no functionality except to support publishing of source code as web pages. Specifically you are not expected to provide support for: package checkin or checkout versioning You are expected to support: Dependency analysis of the C++ source code files you will publish, using the analyzer you developed in Project #2. The ability to specify, on the command line, files to be published, by providing command line arguments for path and file patterns. The ability to display any file cited on the command line, by starting a process that runs a browser of your choice, naming the specification of the file you want to display. Note that the CodePublisher project creates a code generator. Its inputs are C++ code and its outputs are HTML code. Requirements: Your CodePublisher Project: (1) Shall use Visual Studio 2015 and its C++ Windows console projects, as provided in the ECS computer labs. (2) Shall use the C++ standard library's streams for all console I/O and new and delete for all heap-based memory management1. (4) Shall provide a Publisher program that provides for creation of web pages each of which captures the content of a single C++ source code file, e.g., *.h or *.cpp. (10) Shall, optionally2 provide the facility to expand or collapse class bodies, methods, and global functions using JavaScript and CSS properties. (2) Shall provide a CSS style sheet that the Publisher uses to style its generated pages and (if you are implementing the previous optional requirement) a JavaScript file that provides functionality to hide and unhide sections of code for outlining, using mouse clicks. (2) Shall embed in each web page's section links to the style sheet and JavaScript file. (4) Shall embedd HTML5 links to dependent files with a label, at the top of the web page. Publisher shall use functionality from your Project #2 to discover package dependencies within the published set of source files. (2) Shall develop command line processing to define the files to publish by specifying path and file patterns. (3) Shall demonstrate the CodePublisher functionality by publishing all the important packages in your Project #3. (5) Shall include an automated unit test suite that demonstrates you meet all the requirements of this project2. That means that you are not allowed to use any of the C language I/0, e.g., printf, scanf, etc, nor the C memory management, e.g., calloc, malloc, or free. This optional requirement will take a significant amount of work to complete successfully. You should get everything else working before attempting this additional effort. This is in addition to the construction tests you include as part of every package you submit." class="topic-tag topic-tag-link"> jashwanth/remote_code_publisher mortrevere/docker-vnf netgroup-polito/vnf-template-library superfluidity/RFB omec-project/deployment girishsg24/NFV-for-NAT-Using-CLICK-Elements CN-UPB/B-JointSP Nordix/xcluster kumarcv/openstack-nf stevelorenz/build-vnf SOYJUN/Implement-ODR-protocol /tmp/mylsmod target$ scp /tmp/mylsmod host:/tmp host$ make LSMOD=/tmp/mylsmod localmodconfig The above also works when cross compiling. "make localyesconfig" Similar to localmodconfig, except it will convert all module options to built in (=y) options. You can find more information on using the Linux kernel config tools in Documentation/kbuild/kconfig.txt. - NOTES on "make config": - Having unnecessary drivers will make the kernel bigger, and can under some circumstances lead to problems: probing for a nonexistent controller card may confuse your other controllers - Compiling the kernel with "Processor type" set higher than 386 will result in a kernel that does NOT work on a 386. The kernel will detect this on bootup, and give up. - A kernel with math-emulation compiled in will still use the coprocessor if one is present: the math emulation will just never get used in that case. The kernel will be slightly larger, but will work on different machines regardless of whether they have a math coprocessor or not. - The "kernel hacking" configuration details usually result in a bigger or slower kernel (or both), and can even make the kernel less stable by configuring some routines to actively try to break bad code to find kernel problems (kmalloc()). Thus you should probably answer 'n' to the questions for "development", "experimental", or "debugging" features. COMPILING the kernel: - Make sure you have at least gcc 3.2 available. For more information, refer to Documentation/Changes. Please note that you can still run a.out user programs with this kernel. - Do a "make" to create a compressed kernel image. It is also possible to do "make install" if you have lilo installed to suit the kernel makefiles, but you may want to check your particular lilo setup first. To do the actual install, you have to be root, but none of the normal build should require that. Don't take the name of root in vain. - If you configured any of the parts of the kernel as `modules', you will also have to do "make modules_install". - Verbose kernel compile/build output: Normally, the kernel build system runs in a fairly quiet mode (but not totally silent). However, sometimes you or other kernel developers need to see compile, link, or other commands exactly as they are executed. For this, use "verbose" build mode. This is done by inserting "V=1" in the "make" command. E.g.: make V=1 all To have the build system also tell the reason for the rebuild of each target, use "V=2". The default is "V=0". - Keep a backup kernel handy in case something goes wrong. This is especially true for the development releases, since each new release contains new code which has not been debugged. Make sure you keep a backup of the modules corresponding to that kernel, as well. If you are installing a new kernel with the same version number as your working kernel, make a backup of your modules directory before you do a "make modules_install". Alternatively, before compiling, use the kernel config option "LOCALVERSION" to append a unique suffix to the regular kernel version. LOCALVERSION can be set in the "General Setup" menu. - In order to boot your new kernel, you'll need to copy the kernel image (e.g. .../linux/arch/i386/boot/bzImage after compilation) to the place where your regular bootable kernel is found. - Booting a kernel directly from a floppy without the assistance of a bootloader such as LILO, is no longer supported. If you boot Linux from the hard drive, chances are you use LILO, which uses the kernel image as specified in the file /etc/lilo.conf. The kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or /boot/bzImage. To use the new kernel, save a copy of the old image and copy the new image over the old one. Then, you MUST RERUN LILO to update the loading map!! If you don't, you won't be able to boot the new kernel image. Reinstalling LILO is usually a matter of running /sbin/lilo. You may wish to edit /etc/lilo.conf to specify an entry for your old kernel image (say, /vmlinux.old) in case the new one does not work. See the LILO docs for more information. After reinstalling LILO, you should be all set. Shutdown the system, reboot, and enjoy! If you ever need to change the default root device, video mode, ramdisk size, etc. in the kernel image, use the 'rdev' program (or alternatively the LILO boot options when appropriate). No need to recompile the kernel to change these parameters. - Reboot with the new kernel and enjoy. IF SOMETHING GOES WRONG: - If you have problems that seem to be due to kernel bugs, please check the file MAINTAINERS to see if there is a particular person associated with the part of the kernel that you are having trouble with. If there isn't anyone listed there, then the second best thing is to mail them to me (torvalds@linux-foundation.org), and possibly to any other relevant mailing-list or to the newsgroup. - In all bug-reports, *please* tell what kernel you are talking about, how to duplicate the problem, and what your setup is (use your common sense). If the problem is new, tell me so, and if the problem is old, please try to tell me when you first noticed it. - If the bug results in a message like unable to handle kernel paging request at address C0000010 Oops: 0002 EIP: 0010:XXXXXXXX eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx ds: xxxx es: xxxx fs: xxxx gs: xxxx Pid: xx, process nr: xx xx xx xx xx xx xx xx xx xx xx or similar kernel debugging information on your screen or in your system log, please duplicate it *exactly*. The dump may look incomprehensible to you, but it does contain information that may help debugging the problem. The text above the dump is also important: it tells something about why the kernel dumped code (in the above example, it's due to a bad kernel pointer). More information on making sense of the dump is in Documentation/oops-tracing.txt - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump as is, otherwise you will have to use the "ksymoops" program to make sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred). This utility can be downloaded from ftp://ftp..kernel.org/pub/linux/utils/kernel/ksymoops/ . Alternatively, you can do the dump lookup by hand: - In debugging dumps like the above, it helps enormously if you can look up what the EIP value means. The hex value as such doesn't help me or anybody else very much: it will depend on your particular kernel setup. What you should do is take the hex value from the EIP line (ignore the "0010:"), and look it up in the kernel namelist to see which kernel function contains the offending address. To find out the kernel function name, you'll need to find the system binary associated with the kernel that exhibited the symptom. This is the file 'linux/vmlinux'. To extract the namelist and match it against the EIP from the kernel crash, do: nm vmlinux | sort | less This will give you a list of kernel addresses sorted in ascending order, from which it is simple to find the function that contains the offending address. Note that the address given by the kernel debugging messages will not necessarily match exactly with the function addresses (in fact, that is very unlikely), so you can't just 'grep' the list: the list will, however, give you the starting point of each kernel function, so by looking for the function that has a starting address lower than the one you are searching for but is followed by a function with a higher address you will find the one you want. In fact, it may be a good idea to include a bit of "context" in your problem report, giving a few lines around the interesting one. If you for some reason cannot do the above (you have a pre-compiled kernel image or similar), telling me as much about your setup as possible will help. Please read the REPORTING-BUGS document for details. - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you cannot change values or set break points.) To do this, first compile the kernel with -g; edit arch/i386/Makefile appropriately, then do a "make clean". You'll also need to enable CONFIG_PROC_FS (via "make config"). After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore". You can now use all the usual gdb commands. The command to look up the point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes with the EIP value.) gdb'ing a non-running kernel currently fails because gdb (wrongly) disregards the starting offset for which the kernel is compiled." class="topic-tag topic-tag-link"> N30nHaCkZ/linux wolabs/womano OpenStackSanDiego/ServiceChains GanapathyRaman/NETWORK-MANAGEMENT-USING-SDN-and-NFV opnfv/samplevnf miladghaznavi/Elastic-VNF-Placement 全部项目