项目作者: bat67

项目描述 :
PyTorch1.x tutorials, examples and some books I found 【不定期更新】整理的PyTorch 1.x 最新版教程、例子和书籍
高级语言: Jupyter Notebook
项目地址: git://github.com/bat67/pytorch-tutorials-examples-and-books.git


PyTorch tutorials, examples and books

Table of Contents / 目录:

PyTorch 1.x tutorials and examples

Books and slides about PyTorch 书籍、PPT等

Note: some of these are old version; 下面的书籍部分还不是1.x版本。

该目录更新可能有延迟,全部资料请看该文件夹内文件

  • Automatic differentiation in PyTorch.pdf
  • A brief summary of the PTDC ’18 PyTorch 1.0 Preview and Promise - Hacker Noon.pdf
  • Deep Architectures.pdf
  • Deep Architectures.pptx
  • Deep Learning Toolkits II pytorch example.pdf
  • Deep Learning with PyTorch - Vishnu Subramanian.pdf
  • Deep-Learning-with-PyTorch.pdf
  • Deep_Learning_with_PyTorch_Quick_Start_Guide.pdf
  • First steps towards deep learning with pytorch.pdf
  • Introduction to Tensorflow, PyTorch and Caffe.pdf
  • pytorch 0.4 - tutorial - 有目录版.pdf
  • PyTorch 0.4 中文文档 - 翻译.pdf
  • PyTorch 1.0 Bringing research and production together Presentation.pdf
  • PyTorch Recipes - A Problem-Solution Approach - Pradeepta Mishra.pdf
  • PyTorch under the hood A guide to understand PyTorch internals.pdf
  • pytorch-internals.pdf
  • PyTorchtutorial_0.0.4余霆嵩.pdf
  • PyTorchtutorial_0.0.5余霆嵩.pdf
  • pytorch卷积、反卷积 - download from internet.pdf
  • PyTorch深度学习实战 - 侯宜军.epub
  • PyTorch深度学习实战 - 侯宜军.pdf
  • 深度学习之Pytorch - 廖星宇.pdf
  • 深度学习之PyTorch实战计算机视觉 - 唐进民.pdf
  • 深度学习入门之PyTorch - 廖星宇(有目录).pdf
  • 深度学习框架PyTorch:入门与实践 - 陈云.pdf
  • Udacity: Deep Learning with PyTorch

    展开查看

    1. Part 1: Introduction to PyTorch and using tensors
    2. Part 2: Building fully-connected neural networks with PyTorch
      Part 3: How to train a fully-connected network with backpropagation on MNIST
    3. Part 4: Exercise - train a neural network on Fashion-MNIST
      Part 5: Using a trained network for making predictions and validating networks
    4. Part 6: How to save and load trained models
      Part 7: Load image data with torchvision, also data augmentation
    5. Part 8: Use transfer learning to train a state-of-the-art image classifier for dogs and cats

  • PyTorch-Zero-To-All:Slides-newest from Google Drive

    展开查看

    1. Lecture 01_ Overview.pptx
    2. Lecture 02 Linear Model.pptx
      * Lecture 03
      Gradient Descent.pptx
      Lecture 04_ Back-propagation and PyTorch autograd.pptx
    3. Lecture 05 Linear regression in PyTorch way.pptx
      * Lecture 06
      Logistic Regression.pptx
      Lecture 07 Wide Deep.pptx
    4. Lecture 08 DataLoader.pptx
      * Lecture 09
      Softmax Classifier.pptx
      Lecture 10_ Basic CNN.pptx
    5. Lecture 11 Advanced CNN.pptx
      * Lecture 12
      RNN.pptx
      Lecture 13_ RNN II.pptx
    6. Lecture 14 Seq2Seq.pptx
      * Lecture 15
      NSML, Smartest ML Platform.pptx

  • Deep Learning Course Slides and Handout - fleuret.org

    展开查看

    1. 1-1-from-anns-to-deep-learning.pdf
    2. 1-2-current-success.pdf
      1-3-what-is-happening.pdf
    3. 1-4-tensors-and-linear-regression.pdf
      1-5-high-dimension-tensors.pdf
    4. 1-6-tensor-internals.pdf
      2-1-loss-and-risk.pdf
    5. 2-2-overfitting.pdf
      2-3-bias-variance-dilemma.pdf
    6. 2-4-evaluation-protocols.pdf
      2-5-basic-embeddings.pdf
    7. 3-1-perceptron.pdf
      3-2-LDA.pdf
    8. 3-3-features.pdf
      3-4-MLP.pdf
    9. 3-5-gradient-descent.pdf
      3-6-backprop.pdf
    10. 4-1-DAG-networks.pdf
      4-2-autograd.pdf
    11. 4-3-modules-and-batch-processing.pdf
      4-4-convolutions.pdf
    12. 4-5-pooling.pdf
      4-6-writing-a-module.pdf
    13. 5-1-cross-entropy-loss.pdf
      5-2-SGD.pdf
    14. 5-3-optim.pdf
      5-4-l2-l1-penalties.pdf
    15. 5-5-initialization.pdf
      5-6-architecture-and-training.pdf
    16. 5-7-writing-an-autograd-function.pdf
      6-1-benefits-of-depth.pdf
    17. 6-2-rectifiers.pdf
      6-3-dropout.pdf
    18. 6-4-batch-normalization.pdf
      6-5-residual-networks.pdf
    19. 6-6-using-GPUs.pdf
      7-1-CV-tasks.pdf
    20. 7-2-image-classification.pdf
      7-3-object-detection.pdf
    21. 7-4-segmentation.pdf
      7-5-dataloader-and-surgery.pdf
    22. 8-1-looking-at-parameters.pdf
      8-2-looking-at-activations.pdf
    23. 8-3-visualizing-in-input.pdf
      8-4-optimizing-inputs.pdf
    24. 9-1-transposed-convolutions.pdf
      9-2-autoencoders.pdf
    25. 9-3-denoising-and-variational-autoencoders.pdf
      9-4-NVP.pdf
    26. 10-1-GAN.pdf
      10-2-Wasserstein-GAN.pdf
    27. 10-3-conditional-GAN.pdf
      10-4-persistence.pdf
    28. 11-1-RNN-basics.pdf
      11-2-LSTM-and-GRU.pdf
    29. 11-3-word-embeddings-and-translation.pdf

以下是一些独立的教程

1) PyTorch深度学习:60分钟入门与实战


展开查看


  1. 什么是PyTorch?(What is PyTorch?)
  2. 入门
    张量
  3. 运算
    NumPy
  4. torchTensor转化为NumPy数组
    NumPy数组转化为Torch张量
  5. CUDA上的张量

    Autograd:自动求导
  6. 张量
    梯度
  7. 神经网络(Neural Networks

    定义网络
  8. 损失函数
    反向传播
  9. 更新权重

    训练分类器(Training a Classifier
  10. 数据呢?
    训练一个图片分类器
  11. 1.加载并标准化CIFAR10
    2.定义卷积神经网络
  12. 3.定义损失函数和优化器
    4.训练网络
  13. 5.使用测试数据测试网络
    GPU上训练
  14. 在多GPU上训练
    接下来要做什么?
  15. 选读:数据并行处理(Optional: Data Parallelism

    导入和参数
  16. 虚拟数据集
    简单模型
  17. 创建一个模型和数据并行
    运行模型
  18. 结果
    2GPU
  19. 3GPU
    8GPU
  20. 总结


2) Learning PyTorch with Examples 用例子学习PyTorch


展开查看


  1. 张量(Tensors)
  2. 热身:使用NumPy
    PyTorch:张量(Tensors))
  3. 自动求导(Autograd)

    PyTorch:自动求导(Autograd))
  4. PyTorch:定义自己的自动求导函数
    TensorFlow:静态图
  5. nn模块(nn module)

    PyTorch:神经网络模块nn
  6. PyTorch:优化模块optim
    PyTorch:定制神经网络nn模块
  7. PyTorch:控制流和参数共享


How to run? 推荐的运行方式

Some code in this repo is separated in blocks using #%%.
A block is as same as a cell in Jupyter Notebook. So editors/IDEs supporting this functionality is recommanded.

Such as:

深度学习框架PyTorch:入门与实践 - 陈云_1649413378599.pdf
深度学习入门之PyTorch - 廖星宇(有目录)_1649413376552.pdf
深度学习之Pytorch - 廖星宇_1649413373579.pdf
深度学习之PyTorch实战计算机视觉 - 唐进民_1649413280487.pdf
pytorch卷积、反卷积 - download from internet_1649413279000.pdf
pytorch 0.4 - tutorial - 有目录版_1649413278219.pdf
pytorch-internals_1649413278721.pdf
PyTorch_tutorial_0.0.4_余霆嵩_1649413276768.pdf
PyTorch_tutorial_0.0.5_余霆嵩_1649413277437.pdf
PyTorch深度学习实战 - 侯宜军_1649413277689.pdf
해커톤 문제정의_1649413275562.pptx
template_1649413274944.pptx
Lecture 14_ Seq2Seq_1649413274105.pptx
Lecture 15_ NSML, Smartest ML Platform_1649413274515.pptx
P-Epilogue_ What_s the next__1649413274673.pptx
Lecture 12_ RNN_1649413271722.pptx
Lecture 13_ RNN II_1649413273622.pptx
Lecture 11_ Advanced CNN_1649413271253.pptx
Lecture 10_ Basic CNN_1649413270147.pptx
Lecture 07_ Wide _ Deep_1649413268991.pptx
Lecture 08_ DataLoader_1649413269126.pptx
Lecture 09_ Softmax Classifier_1649413269418.pptx
Lecture 02_ Linear Model_1649413267973.pptx
Lecture 03_ Gradient Descent_1649413268076.pptx
Lecture 04_ Back-propagation and PyTorch autograd_1649413268287.pptx
Lecture 05_ Linear regression in PyTorch way_1649413268580.pptx
Lecture 06_ Logistic Regression_1649413268791.pptx
Lecture 01_ Overview_1649413266841.pptx
PyTorch under the hood A guide to understand PyTorch internals_1649413266053.pdf
PyTorch Recipes - A Problem-Solution Approach - Pradeepta Mishra_1649413265373.pdf
Introduction to Tensorflow, PyTorch and Caffe_1649413263711.pdf
PyTorch 0.4 中文文档 - 翻译_1649413264237.pdf
PyTorch 1.0 Bringing research and production together Presentation_1649413264536.pdf
Deep_Learning_with_PyTorch_Quick_Start_Guide_1649413263110.pdf
First steps towards deep learning with pytorch_1649413263409.pdf
Deep-Learning-with-PyTorch_1649413259088.pdf
ee559-slides-9-2-autoencoders_1649413258047.pdf
ee559-slides-9-3-denoising-and-variational-autoencoders_1649413258088.pdf
ee559-slides-9-4-NVP_1649413258474.pdf
ee559-slides-8-2-looking-at-activations_1649413256925.pdf
ee559-slides-8-3-visualizing-in-input_1649413257228.pdf
ee559-slides-8-4-optimizing-inputs_1649413257662.pdf
ee559-slides-9-1-transposed-convolutions_1649413257831.pdf
ee559-slides-7-1-CV-tasks_1649413255999.pdf
ee559-slides-7-2-image-classification_1649413256090.pdf
ee559-slides-7-3-object-detection_1649413256334.pdf
ee559-slides-7-4-segmentation_1649413256464.pdf
ee559-slides-7-5-dataloader-and-surgery_1649413256682.pdf
ee559-slides-8-1-looking-at-parameters_1649413256743.pdf
ee559-slides-5-4-l2-l1-penalties_1649413254949.pdf
ee559-slides-5-5-initialization_1649413255113.pdf
ee559-slides-5-6-architecture-and-training_1649413255250.pdf
ee559-slides-5-7-writing-an-autograd-function_1649413255384.pdf
ee559-slides-6-1-benefits-of-depth_1649413255450.pdf
ee559-slides-6-2-rectifiers_1649413255506.pdf
ee559-slides-6-3-dropout_1649413255585.pdf
ee559-slides-6-4-batch-normalization_1649413255640.pdf
ee559-slides-6-5-residual-networks_1649413255722.pdf
ee559-slides-6-6-using-GPUs_1649413255768.pdf
ee559-slides-4-1-DAG-networks_1649413253994.pdf
ee559-slides-4-2-autograd_1649413254076.pdf
ee559-slides-4-3-modules-and-batch-processing_1649413254207.pdf
ee559-slides-4-4-convolutions_1649413254274.pdf
ee559-slides-4-5-pooling_1649413254355.pdf
ee559-slides-4-6-writing-a-module_1649413254453.pdf
ee559-slides-5-1-cross-entropy-loss_1649413254622.pdf
ee559-slides-5-2-SGD_1649413254742.pdf
ee559-slides-5-3-optim_1649413254831.pdf
ee559-slides-2-5-basic-embeddings_1649413253017.pdf
ee559-slides-3-1-perceptron_1649413253087.pdf
ee559-slides-3-2-LDA_1649413253210.pdf
ee559-slides-3-3-features_1649413253708.pdf
ee559-slides-3-4-MLP_1649413253796.pdf
ee559-slides-3-5-gradient-descent_1649413253891.pdf
ee559-slides-3-6-backprop_1649413253946.pdf
ee559-slides-10-3-conditional-GAN_1649413252134.pdf
ee559-slides-10-4-persistence_1649413252279.pdf
ee559-slides-11-1-RNN-basics_1649413252407.pdf
ee559-slides-11-2-LSTM-and-GRU_1649413252443.pdf
ee559-slides-11-3-word-embeddings-and-translation_1649413252513.pdf
ee559-slides-2-1-loss-and-risk_1649413252569.pdf
ee559-slides-2-2-overfitting_1649413252632.pdf
ee559-slides-2-3-bias-variance-dilemma_1649413252687.pdf
ee559-slides-2-4-evaluation-protocols_1649413252803.pdf
ee559-slides-1-6-tensor-internals_1649413250998.pdf
ee559-slides-10-1-GAN_1649413251292.pdf
ee559-slides-10-2-Wasserstein-GAN_1649413251720.pdf
ee559-slides-1-2-current-success_1649413250162.pdf
ee559-slides-1-3-what-is-happening_1649413250547.pdf
ee559-slides-1-4-tensors-and-linear-regression_1649413250809.pdf
ee559-slides-1-5-high-dimension-tensors_1649413250932.pdf
ee559-handout-8-4-optimizing-inputs_1649413248850.pdf
ee559-handout-9-1-transposed-convolutions_1649413249283.pdf
ee559-handout-9-2-autoencoders_1649413249349.pdf
ee559-handout-9-3-denoising-and-variational-autoencoders_1649413249491.pdf
ee559-handout-9-4-NVP_1649413249618.pdf
ee559-slides-1-1-from-anns-to-deep-learning_1649413249776.pdf
ee559-handout-8-1-looking-at-parameters_1649413248113.pdf
ee559-handout-8-2-looking-at-activations_1649413248297.pdf
ee559-handout-8-3-visualizing-in-input_1649413248600.pdf