项目作者: leowyy

项目描述 :
PyTSor实现GraphTSNE,ICLR'19
高级语言: Jupyter Notebook
项目地址: git://github.com/leowyy/GraphTSNE.git
创建时间: 2019-04-15T07:17:18Z
项目社区:https://github.com/leowyy/GraphTSNE

开源协议:MIT License

下载


GraphTSNE

Blog Post | Paper

GraphTSNE: A Visualization Technique for Graph-Structured Data

International Conference on Learning Representations 2019

Workshop for Representation Learning on Graphs and Manifolds





GraphTSNE on the Cora Citation Network


Codes

The code demo_notebook.ipynb creates a visualization of the Cora citation network using GraphTSNE. The original Cora dataset and other citation networks can be found here: http://linqs.cs.umd.edu/projects/projects/lbc/.

The notebook takes roughly 3 minutes to run with GPU, or 8 minutes with CPU.

Installation

  1. # Install Python libraries using conda
  2. conda env create -f environment.yml
  3. conda activate graph_tsne
  4. python -m ipykernel install --user --name graph_tsne --display-name "graph_tsne"
  5. # Run the notebook
  6. jupyter notebook

When should I use this algorithm?

For visualizing graph-structured data such as social networks, functional brain networks and gene-regulatory networks. Concretely, graph-structured datasets contain two sources of information: graph connectivity between nodes and node features.

Cite

If you use GraphTSNE in your work, we welcome you to cite our ICLR’19 workshop paper:

  1. @inproceedings{leow19GraphTSNE,
  2. title={GraphTSNE: A Visualization Technique for Graph-Structured Data},
  3. author={Leow, Yao Yang and Laurent, Thomas and Bresson, Xavier},
  4. booktitle={ICLR Workshop on Representation Learning on Graphs and Manifolds},
  5. year={2019}
  6. }