MQ X th

H B S R R B S

FHAR[F BN
FEIEAT = BRd)
- ActiveMQ RabbitMQ | RocketMq Joram HornetQ OpenMQ MuleMQ SonicMQ ZeroMQ
XEE | B 5 h & 0 & 1 1 h
PYFRE | AR e ELB AR EUERRkEh | EUBRAREL | PURRAR gg:z e N
=t Mozilla
/2 | Apache Public Alibaba Oow?2 Jboss Sun Mule Progress
i) License
XS
;*EE = = i h B {159 = {9 {9
Xt |z £ rh & o B B o
BT ;i; :'"i“é
Erl wit = o FEBEENE BEH | &
e i Eai rang Et?ﬁ%ﬁﬁ-i —— EEEE S o ﬁi: E_.—:
e ESRHE | AHA X5 E ¥.5 MERELHRY | 48E , &S
% | ABRFREEE | . VERSEHY
P AeS] . MERE | ARG ; SR AO MuleESB | &l MQ 43 H&RHR
REF HERET ; MhRe e TERG =1
P BESER
PN ray
ﬁﬂﬁ FiE FiE FiE FrR FriR FIR il l FR
I
1B
:’El“ Java Erlang Java Java Java Java Java Java C
OpenWire, ST
%$540 | STOMP, =
N AMQP E(H X2 JMS JMS JMS JMS JMS TCP, UDP
Y REST, XMPP, IMS--TRHiER)
AMQP
Java, C, Java, C,
- python,
BRiR | C++. C++. Java :
N - Java, C, java,
XIFE | Python, Python, C++ (AEE) | Java Java Java Java
- C++. .net | php. .net
= PHP, PHP. Perl .
Perl, net% | & F
NE XA, WE X | RE X | RE X | RIFE X | RfFE X, | BERRE
Rk HUEE P, | B % (o (o % HiEE Im{RTF
B | =5 R3ZH5 -2 bz X¥F X¥F oz 2 R>HF
£ | 3F 2 2 oz X¥F X¥F Bz 2 R>HF
gl | XI5 2 2 oz X¥F X¥F Bz 2 R>HF
fEF IS S NAFAE S5 1T 5 A JCHESE, 235 Hadoop~ YARN. HBase. Storm. Spark. MQ % peng.he.ia@gmail.com

&
7c
=
; Gl 7 HREweb | —f %= —% —% 17 %
console SCIR
= - e T‘_ [T'_ e
iﬁﬁ I BN | M a7 ﬁ“*ﬁ fi‘m ﬁi‘m | 7
i :
fangE
EOSA (JMS
HENRSE
EHFAZ
). EREX
— WERIFE, B0
a TR
A4
J Fioras S
5, BEER -
SNENEEIRT | i : ':;c’ketmq -~
e .
A (ancm% mj—hs e
we). B8 | erlangiES N
SHISRS, & | B mq Eéﬁﬁ;t
NS | MR ; §m~&;#*
7 EEEE | SERER RS
S = 17, ETLUARE
el
P ; BARIATI g“;”¢,ﬁ
B - HRAE | o
e, 6
HRIEEMD | BORIF ; X -
RN, [
. BAFRRR, & | Famagp &R | _ .
T 5 ‘ BESE, A
HEEHDN |8 BB | S
%, IeE | BEEE ;ﬁéﬁ'
s, amqp 9% |
ffﬁiio POREIR |
Fim—apollo | & : %f[:;{;ﬁ 528
+%£7T , B#i | erlangiE :ﬁﬁrzf"m
HRAER, | SHER pﬁiﬁﬁmq
EIXd Sx P | K, SEBER | Ao ek
g IMS &0 %
B ; TS
. BERGTHS
Activemq & | E. R
EARFLT i
ATAFIRIRIF PEPEDE
e —EFFE
= 9 MQ API , iX
— 2 APIETLUE
R
2 MQ HISZH
%43 (PIERPOER
£ mq fusC
I, %0 notify,
B IS Ry AP S T H A HESE, £13E Hadoop. YARN, HBase. Storm. Spark. MQ & peng.he.ia@gmail.com

metaql.x,
metag2.x ,
rocketmq %),
5 TE mq &
VARTT (BRI
ITIHRFIFH R
Xt RZ ATE
I , BanxX
—ERFERFF
iR

¥ Protocols X} EL

The following table lists the supported protocols of each broker.

‘HornetQ
AMQP 1.0 0-8, 0-9, - announced 1.0 |-
0-9-1
MQTT v v - - - -
OpenWire v - - - - -
REST v’ v’ - v - -
STOMP v’ v’ - v - -
STOMP over v’ v’ - v - -
Websockets
XMPP v’ Over - - - -
Gateway
Client Interfaces Xttt

Access to a message broker is not only reserved for Java applications. For many brokers there are client APIs
in different programming languages. It is even common for client and broker to use different platforms, eg when a
Java application accesses an Erlang written RabbitMQ broker.Since AMQP has standardized the protocol on the
“cable level", it is even possible to connect the AMQP client library of a broker of another broker. For this to work
the AMQP versions have to match because each version of the protocol are not compatible.Through the STOMP
protocol different client platforms can be connected to a broker. STOMP is favorited to access a broker with
scripting languages such as Perl, PHP and Ruby.

ActiveMQ ‘RabbitMQ ‘ RocketMQ HornetQ Qpid ‘ ZeroQ

C v v - - v v
C++ - v v - v v
Erlang - v’ - - - v
Haskell - v’ - - - v’
Java JMS v’ 4 v’ v v’ -

1B I S9FE oA A S T A SSHESE, A3 Hadoop. YARN. HBase. Storm. Spark. MQ &5 peng.he.ia@gmail.com

ActiveMQ RabbitMQ ‘ RocketMQ HornetQ Qpid ‘ ZeroQ
Java proprietary v v - v -

<

NET - v - - v
Objective-C - - - - -
Perl -
PHP -
Python -
Ruby -

SINISN S
SINIS|N S

mq benchmark™!

ik

1. EEGH MQ F, rabbitmq F 1 RE R ILALT .
2. kafka FITEREIL T rabbitmqs;

&4 MQ X} EL

YRt

e Scenario A: Enqueuing 20,000 messages of 1024 bytes each, then dequeuing them afterwards.
e Scenario B: Enqueuing and dequeuing simultaneously 20,000 messages 0f1024 bytes each.

e Scenario C: Enqueuing and dequeuing simultaneously 200,000 messages of32 bytes each.

e Scenario D: Enqueuing and dequeuing simultaneously 200 messages 0f32768 bytes each.

Scenario A

1B I S9FE oA A S T A SSHESE, A3 Hadoop. YARN. HBase. Storm. Spark. MQ &5 peng.he.ia@gmail.com

Engueues | Dequeues | 20000 x 1024 bytes

60

30
0 | - . .

ZeroMQ_Transient RabbitMQ_AMQP ActiveMQ_STOMP RabbitMQ_STOMP Apallo_STOMP QPID_AMQP HometQ_STOMP

[=]

—_
=

W Persistent Engueue Time (s) MPersistent Dequeue Time (s) © Transient Enqueue Time (s) MTransient Dequeue Time (s)
Scenario B

Engueues & Dequeues | 20000 x 1024 bytes

70

40
; n B H

ZeroMQ_Transient RabhitMQ_AMQP ActiveMQ STOMP RabbitMQ STOMP Apalla_STOMP QPID_AMQP Hornet@_STOMP

(%)
=

=

-
=

B Persistent Enqueue Time (s) MPersistent Dequeue Time (s} © Transient Enqueue Time (s) MTransient Dequeue Time (s)

Scenario C

EZ IS SS90 A AR 51T A SSHELS, £145 Hadoop. YARN. HBase. Storm. Spark. MQ % peng.he.ia@gmail.com

Engueues & Dequeues | 200000 x 32 bytes

300
800
700

600

: _-lililllill‘

ZeroMQ Transient RabbitMQ AMQP ActiveMQ STOMP RabhitMQ STOMP Apolio_STOMP QPID_AMQP HometQ_STOMP

5

2

Al

=

3

2

2

s

1

g

B Persistent Enqueus Time (s) MPersistent Dequeue Time (s) © Transient Enqueue Time (s) MTransient Dequeue Time (s)

Scenario D

Engueues & Dequeues | 200 x 32768 bytes

12
10
8
6
4
U s 1NN -
ZeroMQ_Transient RabbitMQ_AMQP ActiveMQ STOMP RabbitMQ_STOMP Apolla_STOMP QPID_AMQP HormetQ_STOMP
B Persistent Enqueus Time (s) B Persistent Dequeue Time (s) © Transient Enqueue Time (s) B Transient Dequeue Time (s)
Kafka vs rabbitmq
g

1E kafka 11 rabbitmq %L, kafka (14 BE L I LT .

EZ IS SS90 A AR 51T A SSHELS, £145 Hadoop. YARN. HBase. Storm. Spark. MQ % peng.he.ia@gmail.com

(7]

rocketmq I & A metaq, metaq 155 —MRASZE AT LB 72 linkedin [1) kafka (scala) 1) java fRAS, Ffx) Ho i
N7 HS . rocketmq N metaq3.0, FHEL T 4G kafka, HAE K S H T HLEH log collecting Z4h, B igtn
HA. H5ERE, RN IhRe A L, AT UERE S RE 75 MQ.

H AT SRR I E RS A, I BArE ARk 2 & i 2 BT LA notify, meta 2.x LARTEIRE S, BT
rocketmq B L BGHT, HLUE J7 %A 45 HIAB N I benchmark. 1 rocketmq 1 [X FEE IR E S 2P EE N A G, K AE
FEHIEXT L rocketma FTEAN A S . 7EIX HH kafka A1 LA BAZFEATXF L, rocketmq HITERE LE kafka B4 —1L,

kafka rabbitmq benchmark

M3 SR -

0OsS:

cpu:

linux
8core 2GHZ

memory: 16GB

disks: 6 disks raid 10

network: 1Gbps
FESAXT L, BIEB)EA producer, 774 1000 3551 R, B4 B K/NJY 200bytes; kafka SCHFE & ARIEMIFLZ
ORI 7 it BB (batchsize) 730wl B 1 #1150, Hh BN 1 /] LUE OB HLSAE S MQ. &% Producer H:

MRS R T
activemq = Kafka (batch 50) Kafka (batch 1) =rabbitmqg
500000
400000
g
E- 300000
&0
7
2 200000
=
100000
[]I Ll R |||||||Tw|-||-|||| II'_'ll'l-‘_
10 SO0 990 1480 1970
accumulated produced messages in MB
Figure 4. Producer Performance
£ X} consumer:

fEF IS S NAFAE S5 1T 5 A JCHESE, 235 Hadoop~ YARN. HBase. Storm. Spark. MQ %

peng.he.ia@gmail.com

===activemgq ===Kafka ===rabbitmq
25000
20000
=
b3
= 15000
2
=14
o
2 10000
E
SO0
UIIII'I"II"I"IIIIIIIIIIIIIII
10 500 990 1480 1970
accumulated consumed messages in MB

Figure 5. Consumer Performance

b

T At =AU, kafka) produce it sl m . et &R (batchsize=1) I, kafka P4 HEANIE T rabbitmq
H activemq. T consumer, HiT kafka)i {845 broker ASTEBEAE AN [delivery state, 3 H B (I 7EM% 1T
Bhf, R A MQ. 248R, It benchmark J& H1 kafka A A5, H:H' activemq. rabbitmgq 353 A 347
AL, I H R FHA producer. consumer I, NIEFFFE kafka (T S45E S, KR BA —E2%

B BAERRHEAE NS, TN, 4 BeA RS EN B Clk SR 4t

kafka vs rabbitmq in detail

rabbitmq kafka rocketmq
WITHIHE A FHEHE SR E, A | [kafka;
FLZ TERMRIEHE®EAS; | A consumer A— 4T | HHERE T HERM:;
NN consumer & —HE AT | alive tRE;
alive IR 290 P0H B E o S N AP TV
broker “it LU E, FF4 | NiERFFM R
R ARE broker & it4i4%, AIRAF
consumer 1 Z0IRAS
% P AT FEEH routing, SE | topic routing only topic routing only
BT amgp HJ exchange.
binding. queuing 5 model,
queue. topic %¥ routing #f
XRF;
SRR X2 B SRR RS | AR R RIS, H2 | [F] kafka
LEREXT producer FHAESE
4%, producer 75 A
OB K &R W — A
fEF IS S NAFAE S5 1T 5 A JCHESE, 235 Hadoop~ YARN. HBase. Storm. Spark. MQ % peng.he.ia@gmail.com

partition; [F] At A IX —
USRI TV S 3 5
i1t (partition PYIFTH B2
I £) 5
HA B mirror queue K | i#IT replica k3 HF FE, HFTEEN LU
(master/slave) queue [1] master/slave 7] | master Fl slave [{f;
master $2fitiik%%, slave 1 | LLEBIVIH (24 master &
#r 5D
H BN & M B E~=20k/sec; VH S E>100k/sec VH S E>100k/sec
I qE <1000 SCREETTBAS pxs AWVl
i 458 328 ANLHF XRF XRF
HEM ANLHF ANLFF B&s

Kafka is a general purpose message broker, like RabbltMQ, with similar distributed deployment goals, but with
very different assumptions on message model semantics. | would be skeptical of the "AMQP is more mature"
argument and look at the facts of how either solution solves your problem.

a) Use Kafka if you have a fire hose of events (100k+/sec) you need delivered in partitioned order 'at least once' with a
mix of online and batch consumers, you want to be able to re-read messages, you can deal with current limitations
around node-level HA (or can use trunk code), and/or you don't mind supporting incubator-level software yourself via
forums/IRC.

b) Use Rabbit if you have messages (20k+/sec) that need to be routed in complex ways to consumers, you want
per-message delivery guarantees, you don't care about ordered delivery, you need HA at the cluster-node level now,
and/or you need 24x7 paid support in addition to forums/IRC.

Neither offers great "filter/query" capabilities - if you need that, consider using Storm on top of one of these
solutions to add computation, filtering, querying, on your streams. Or use something like Cassandra as your
queryable cache. Kafka is also definitely not "mature” even though it is "production ready".

Details (caveat - my opinion, I've not used either in great anger, and | have more exposure to RabbitMQ)

Firstly, on RabbitMQ vs. Kafka. They are both excellent solutions, RabbitMQ being more mature, but both have very
different design philosophies. Fundamentally, I'd say RabbitMQ is broker-centric, focused around delivery
guarantees between producers and consumers, with transient preferred over durable messages. Whereas Kafka
is producer-centric, based around partitioning a fire hose of event data into durable message brokers with cursors,
supporting batch consumers that may be offline, or online consumers that want messages at low latency.

RabbitMQ uses the broker itself to maintain state of what's consumed (via message acknowledgements) - it uses
Erlang's Mnesia to maintain delivery state around the broker cluster. Kafka doesn't have message acknowledgements,
it assumes the consumer tracks of what's been consumed so far. Both Kafka brokers & consumers use Zookeeper to
reliably maintain their state across a cluster.

RabbitMQ presumes that consumers are mostly online, and any messages "in wait" (persistent or not) are held
opaquely (i.e. no cursor). RabbitMQ pre-2.0 (2010) would fall over if your consumers were too slow, but now it's robust
for online and batch consumers - but clearly large amounts of persistent messages sitting in the broker was not the
main design case for AMQP in general. Kafka was based from the beginning around both online and batch

fEF IS S NAFAE S5 1T 5 A JCHESE, 235 Hadoop~ YARN. HBase. Storm. Spark. MQ %

peng.he.ia@gmail.com

consumers, and also has producer message batching - it's designed for holding and distributing large volumes of
messages.

RabbitMQ provides rich routing capabilities with AMQP 0.9.1's exchange, binding and queuing model. Kafka has a
very simple routing approach - in AMQP parlance it uses topic exchanges only.

Both solutions run as distributed clusters, but RabbitMQ's philosophy is to make the cluster transparent, as if it were a
virtual broker. Kafka makes it explicit, by forcing the producer to know it is partitioning a topic's messages across
several nodes, this has the benefit ofpreserving ordered delivery within a partition, which is richer than what
RabbitMQ exposes, which is almost always unordered delivery (the AMQP 0.9.1 model says "one producer channel,
one exchange, one queue, one consumer channel" is required for in-order delivery).

Put another way, Kafka presumes that producers generate a massive stream of events on their own timetable - there's
no room for throttling producers because consumers are slow, since the data is too massive. The whole job of Kafka is
to provide the "shock absorber" between the flood of events and those who want to consume them in their own way --
some online, others offline - only batch consuming on an hourly or even daily basis. Kafka can deliver "at least once"
semantics per partition (since maintains delivery order), just like RabbitMQ, but it does it in a very different way.

Performance-wise, if you require ordered durable message delivery, currently it looks like there's no
comparison: Kafka currently blows away RabbitMQ in terms of performance on synthetic benchmarks. This
paper indicates 500,000 messages published per second and 22,000 messages consumed per second on a 2-node
cluster with 6-disk RAID 10.

http://research.microsoft.com/en...

Of course this was written by the Linkedln guys without necessarily expert RabbitMQ input, so YMMV.

Finally, a reminder: Kafka is an early Apache incubator project. It doesn't necessarily have all the hard-learned
aspects in RabbitMQ.

Now, a word on AMQP. Frankly, it seems the standard is a mess. Officially there is a 1.0 proposed specification
that is going through the OASIS standards process. In practice it is a forked standard, one (0.9.1) supported by
vendors, the other (1.0) supported by the working group. A set of generally available, widely-adopted,
production-quality AMQP 1.0 implementations across the major releases (Qpid from Redhat, RabbitMQ, etc.) won't
exist until 2013, if ever.

As an external observer with no inside knowledge, here is what it looks like: the working group spent 5 years on a
spec, from 2003 to 2008, culminating in a widely adopted release (0.9.1). Then a subset of more powerful working
group members rewrote the spec by late 2011, completely shifting the focus of the spec from a messaging model to a
transport protocol (sort of like TCP++), and declared it 1.0. So, we have the strange case where the "mature” AMQP
is the non-standard 0.9.1 specification and the "immature" AMQP is the actual 1.0 standard.

This isn't to suggest 1.0 isn't good technology, it likely is, but that it's a much lower-level spec than AMQP intended to
be for most of its published life, and is not widely supported yet beyond prototypes and one GA implementation that |
know of (IIT SwiftMQ). The RabbitMQ folks have a prototype that has layers the 0.9.1 model on top of 1.0 but have not
committed to a GA timeframe.

So, in my opinion, AMQP has lost some of its sheen, as while there's ample evidence it is interoperable from the

EZ IS SS90 A AR 51T A SSHELS, £145 Hadoop. YARN. HBase. Storm. Spark. MQ % peng.he.ia@gmail.com

http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf

various connect-fests over the years, the standards politics have delayed the official standard and called into question
its widespread support. On the bright side, one can argue that AMQP has already succeeded in its goal of helping to
break the hold TIBCO had on high performance, low latency messaging through 2007 or so. Now there are many
options. Bet on the broker you choose to use, and don't expect bug-free interoperability for a few years (if ever).

Just wanted to add a comment on Stuarts answer. Don't use rabbit if you need clustering for HA their clustering does
not actually support network partitions. This is well explained in their documentation.

http://blog.x-aeon.com/2013/04/10/a-quick-message-queue-benchmark-activemqg-rabbitmg-hornetq-gpid-apollo/

http://www.quora.com/RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-with-good-query-features

http://activemg.apache.org/version-5-getting-started.html

http://predic8.com/activemg-hornetg-rabbitmg-apollo-gpid-comparison.htm

paper: Kafka: a Distributed Messaging System for Log Processing
http://my.oschina.net/geecoodeer/blog/194829

2

1

2

3. https://www.rabbitmqg.com/tutorials/amgp-concepts.html
4

5

6

7

8

B I S9FE A A S T A SSHESE , 435 Hadoop. YARN. HBase. Storm. Spark. MQ % peng.he.ia@gmail.com

http://blog.x-aeon.com/2013/04/10/a-quick-message-queue-benchmark-activemq-rabbitmq-hornetq-qpid-apollo/
http://www.quora.com/RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-with-good-query-features
https://www.rabbitmq.com/tutorials/amqp-concepts.html
http://activemq.apache.org/version-5-getting-started.html
http://predic8.com/activemq-hornetq-rabbitmq-apollo-qpid-comparison.htm
http://my.oschina.net/geecoodeer/blog/194829

