

Container Networking Powered by

Agenda

- Background
- DPDK-powered techniques
 - Using SR-IOV + DPDK in Containers
 - Connect containers with user space vswitch
 - User space network stack
- DPDK-powered VNFs

Container networking status quo

Multi-host networking

But not ready for scenarios like...

- High-throughput networking functions like
 - LB, FW, IDS/IPS, DPI, VPN, pktgen, Proxy, AppFilter
- Latency-sensitive and jitteravoid applications
 - Game applications
 - E-commerce flash sales
 - Stock exchange trading
 - Video conference

Challenges of high perf. network

NIC	Time budget for 64B	Time budget for 1518B
10Gb	67.2 ns	1,230 ns
40Gb	N/A	307 ns
100Gb	N/A	120 ns

NIC	Time budget
System call	75 ns/42 ns
Atomic ops	8.25 ns
Spinlock lock/unlock	16+ ns
L3 miss	~80 ns

FWD 1~2 Mpps per core

Data from LWN article, 3GHz CPU

The Data Plane Development Kit (DPDK) is a set of software libraries for accelerating packet processing workloads on COTS hardware platforms.

How do we solve it in BM - DPDK

- CPU affinity
- Hugepages
- UIO
- Polling
- Lockless
- Batching
- SSE/AVX

- High-throughput
- Low-latency
- Deterministic

Can we leverage DPDK to accelerate Container Networking?

VM vs Container

Using SR-IOV + DPDK in Container

- Requires: device mapping (vfio)
- High-performance: small pkts line rate with 10 GbE
- but
 - # of VFs is limited (64 or 128)
 - Not flexible (by HW)

VM vs Container

Connect containers with user space vswitch

Performance Evaluation - throughput

Performance Evaluation - latency

- For native Linux, ms level
- For the other two, us level

More about determinacy

- Deterministic CPU env
 - Disable timer / task scheduler
 - Core-thread affinity
- Deterministic cache/memory env
 - Data Direct I/O (DDIO) technology
 - Cache Allocation Technology (CAT)
 - Software prefetch

Agenda

- Background
- DPDK-powered techniques
 - Using SR-IOV + DPDK in Containers
 - Connect containers with user space vswitch
 - User space network stack
- DPDK-powered VNFs

User space network stack

- Type I: DPI, FW ...
- Type II: Applications in need of TCP/UDP stack

User space network stack

- TCP/UDP stacks
 - From scratch: mTCP, LwIP, Light
 - Ported: libuinet, NUSE (libos), Linux Kernel Library
 - To choose a open source stack, consider
 - Integration effort
 - Performance
 - Compatibility

Agenda

- Background
- DPDK-powered techniques
 - Using SR-IOV + DPDK in Containers
 - Connect containers with user space vswitch
 - DPDK-powered vSwitch
 - Virtio for container
 - User space networking
- DPDK-powered VNFs

Transform middleboxes with DPDK-powered VNFs

Vortex from Ucloud

Scale-up L4 LB

PPS: 14M (64B line rates)

– CPS: 200K+

- CC: 30M+

Hardware

– CPU: Xeon E5-2670v2 (10 core 2.5G) * 2

– NIC: 82599ES 10GbE

LKL

pkt-gen - TRex

- Features
 - L4-7 traffic
 - Latency/Jitter measurements
 - Flow ordering checks
 - NAT, PAT dynamic translation learning
 - Cross flow support (e.g RTSP/SIP) using plugins
- Performance
 - 200Gb/sec with one Cisco UCS (Intel XL710)

Other promising workloads

- Webserver: nginx
- In-memory DB: redis
- Memory cashing system: memcached
- Distributed FS: Ceph
-

Summary

- Use DPDK to power container networking
 - SR-IOV (existing)
 - Virtio (will be available in DPDK 16.07)
- Compared to traditional ways, we provide a way to achieve
 - High throughput
 - Low latency
 - Deterministic networking