

The AutoCadet’s

Guide to

visual lisp

Optimize and customize

your AutoCAD design environment

Bill Kramer

CMP Books

Lawrence, Kansas

II

CMP Books
CMP Media LLC
1601 West 23rd Street, Suite 200
Lawrence, Kansas 66046
USA
www.cmpbooks.com

Designations used by companies to distinguish their products are often claimed as trademarks. In
all instances where CMP is aware of a trademark claim, the product name appears in initial capital
letters, in all capital letters, or in accordance with the vendor’s capitalization preference. Readers
should contact the appropriate companies for more complete information on trademarks and
trademark registrations. All trademarks and registered trademarks in this book are the property of
their respective holders.

Copyright © 2002 by CMP Books, except where noted otherwise. Published by CMP Books, CMP
Media LLC. All rights reserved. Printed in the United States of America. No part of this publica-
tion may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher; with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

The programs in this book are presented for instructional value. The programs have been carefully
tested, but are not guaranteed for any particular purpose. The publisher does not offer any war-
ranties and does not guarantee the accuracy, adequacy, or completeness of any information herein
and is not responsible for any errors or omissions. The publisher assumes no liability for damages
resulting from the use of the information in this book or for any infringement of the intellectual
property rights of third parties that would result from the use of this information.

Acquisitions Editor: Dorothy Cox
Editor: Susan Pink
Managing Editor: Michelle O’Neal
Layout Production: Justin Fulmer and Madeleine Reardon Dimond
Cover art: Damien Castaneda

Distributed in the U.S. and Canada by:
Publishers Group West
1700 Fourth Street
Berkeley, CA 94710
1-800-788-3123
www.pgw.com

ISBN 0-57820-089-X

III

Table of Contents
Introduction . xi

Acknowledgments .xii

Chapter 1 The Big Picture . 1
The History of Visual LISP .1

LISP versus other languages .1
LISP to Visual LISP .3

Programming Choices in AutoCAD. .4
Blocks and menus .4
Scripts and DIESEL .4
Visual LISP .5
ObjectARX .5
Visual Basic .5
Making a choice .6
Getting started .7

Chapter 2 The Visual LISP IDE. 9
Finding Your Way Around the IDE. .9

Starting the IDE .10
Exiting and reentering the IDE .11
Navigating the Console window .12
Navigating the text editor .13

Visual LISP Files .15
VLIDE Toolbars .16

The Standard toolbar .16
The Search toolbar .17
The Tools toolbar .17
The Debug toolbar .19
The View toolbar .20

Loading a Program into AutoCAD .20
Using the IDE to Debug Programs. .21

Finding parentheses imbalance .21
Using breakpoints and the Watch window .22

Summary .23

IV Table of Contents

Chapter 3 The Essence of Visual LISP . 25
The Evaluator . 25

Reading expressions . 26
Assigning values to symbols . 28
Physical versus logical code lines . 29
Reserved functions in LISP . 29
All expressions return an answer . 30
Evaluate now or later? . 30

Atoms and Lists . 30
Working with Symbols . 32

Defining symbols with SET . 32
Defining symbols with DEFUN . 33
Naming symbols . 34

Symbol Scope. 35
Symbol scope examples . 36
Naming scheme . 40

Returning Results . 40
Inspecting Symbols . 41
Recovering from Errors . 42
Example: Returning Current AutoCAD Settings . 45
Summary . 50

Chapter 4 Working with Strings. 53
Storing Strings . 53
Manipulating Strings . 54

Building larger strings . 55
Converting the case . 56
Finding the length of a string . 56
Substituting characters in a string . 56

Reducing Strings . 57
Returning a portion of a string . 57
Trimming strings . 57

Searching Strings . 58
Comparing Strings . 60
Converting between Strings and Symbols. 62
Example Functions . 63

The (PARSE-STRING) function . 63
The (STRING_TO_NUMBERS) function . 65

Summary . 68

Table of Contents V

Chapter 5 Working with Numbers . 69
Integers .69
Real Numbers .69
Manipulating Numbers as Numbers .71

Addition, subtraction, multiplication, and division .71
Logarithm and base e .71
Square root and exponent .73
Modulo .73
Greatest common denominator .74
Absolute value .75
Sine, cosine, and arctangent .75
Maximum and minimum .76
Unit conversion .77

Manipulating Numbers as Bit Patterns .77
Custom Boolean Logic .79
Summary .81

Chapter 6 Converting Numbers and Strings 83
Integers and Strings .83
Converting Strings to Real Numbers .84
Converting Real Numbers to Strings .85
Working with Angles. .87
Converting a String to a List of Numbers .89
Example: Importing and Using Point Data .89
Summary .91

Chapter 7 Using Conditionals and Loops . 93
Conditionals .93
Test Expressions .95

Testing numeric values .96
Testing data types .98
Testing string values .99
Combining tests .99

Differences between IF and COND .100
Loops .102
Example: Importing Text from a File .104
Summary .107

VI Table of Contents

Chapter 8 Working with Lists . 109
Creating a List . 109
Adding to a List . 110
Storing and Accessing Lists in LISP . 112

Accessing data using specialized subrs . 113
Accessing data using composite primitives . 114

Special List Types . 115
Dotted pair list structure . 116
Association list structure . 116

Looping through Lists . 118
Sorting Lists. 119
Point Lists . 120
Example: Getting Information from a Point List . 122
Coordinate Transformations . 123
Summary . 126

Chapter 9 Basic User Output . 127
Building AutoCAD Commands . 127
The Command Line and the Graphics Screen . 128
Command-Line Output . 129

String output . 130
Non-string output . 130

AutoCAD Command Output. 131
Command errors . 131
Finish what you started . 132

System Variables for Output . 133
Example: Reporting Dates and Times . 134
Summary . 137

Chapter 10 Basic User Input . 139
Building AutoCAD Commands . 139
Visual LISP Input. 140
Command-Line Input . 140
Graphics Input. 144
Example: Moving and Rotating an Entity . 145
Summary . 148

Table of Contents VII

Chapter 11 Introducing Dialog Boxes . 149
How Dialog Boxes Work .149
Creating a Dialog Box .151
Standard Tile Types. .155

Text tiles .157
The data entry tile .158
Toggles and radio buttons .158
List tiles .159

The Art of Dialog Box Design .159
Program Manipulation of Dialog Boxes .162
Programming Callback Functions .164
Using Lists in Dialog Boxes .165
Rules and Suggestions for Programming Dialog Boxes .166
Dialog Box to AutoCAD and Back .168
Example: Creating the Final Dialog Box .169
Summary .173

Chapter 12 Working with AutoCAD Drawings 175
Entities, Selections, and Tables .175
Defining Entities in AutoCAD .176
Accessing Entities .177
Entity Data Lists .178
Entity Objects .181
Examples: Accessing and Manipulating Entities .184
Summary .187

Chapter 13 Using Selection Sets and Tables 189
Using Selection Sets .189

Accessing a selection set .190
Getting a selection set .192

Using Tables .196
Example: Finding Points in a Block Definition .197
Example: Converting Block Points .199
Summary .201

VIII Table of Contents

Chapter 14 Saving and Sharing Data . 203
Application Exposure . 203
Saving Data in User Variables . 204
Saving Data in Attributes. 204
Examples: Handling Attributes . 205
Saving with Extended Data . 207
Saving Data in a Dictionary . 211
Summary . 213

Chapter 15 AutoCAD Interface Programming 215
Manipulating AutoCAD Menus. 215
Exploring AutoCAD Objects . 216
ActiveX Automation . 220
Summary . 222

Chapter 16 Event Programming. 225
What Are Events? . 225
Setting Up a Reactor . 227
Object-Level Reactors . 231
The Life of a Reactor . 235
Rules and Suggestions for Working with Reactors. 236
Summary . 238

Chapter 17 Working with the Computer. 239
Types of Data Files . 239
Disks, Files, and Directories. 240
Processing Files . 241
Writing Data . 243
Reading Data. 243
Visual LISP File Management Tools . 245
Summary . 248

Epilogue . 249

Index . 251

What’s on the CD-ROM? . 260

IX

Introduction

AutoCADet: A person who uses AutoCAD directly or indirectly to create or analyze graphic
images and is in possession of one or more of the following traits: wants to learn; has an
interest in improving the way AutoCAD works; is a visionary AutoCAD user; is willing to
try new approaches to solving problems; or just loves to play with computers.

With Visual LISP, AutoCADets can expand AutoCAD into new realms and create expert com-
mands that enhance the productivity and quality of their work.

This book provides a general introduction to Visual LISP. In each chapter, you learn several
concepts regarding a specific aspect of the language and then follow examples to reinforce those
concepts. The examples are taken from real working applications. The idea is to teach you how to
develop utilities that you can then use to create more complex programs. LISP is a building-block
language in that you construct blocks of working code and then use them to build even more.

You do not have to be a programmer to understand this book. However, if you do know
another computer language, some of the material will be familiar. In either case, list processing and
the techniques for manipulating lists of data will probably be new topics. I recommend that you
take your time reading each section and grasping the concepts. For more details, use AutoCAD’s
online help system, which provides even more examples.

The book begins with an introduction to the language and the environment. Then you dig into
the nuts and bolts of Visual LISP, such as data types, basic programs, and converting data to differ-
ent formats. Next, you learn about user interfaces and activities involving the operator. And
finally, you look at the interfaces available in Visual LISP, with an overview of using ActiveX
objects and files.

X

A CD with all the examples from the text plus some extras is provided with this book. The
examples in the book have fewer comments than the listings on the CD. In this way, you can con-
centrate on the code itself while reading the book, and then review and use the functions on the
CD without having to reference the text to find out how something is working.

As you embark into learning the Visual LISP, you will find out about its strong traditions and
long history in both AutoCAD and computer science as a whole. I have been programming
AutoCAD for a long time and enjoy the constant learning process that it involves. I hope you will
as well.

Acknowledgments

I would like to acknowledge the following people who played a part in this work. Some were
directly involved, such as my good friend Phil Kreiker of Looking Glass Microproducts, who pro-
vided the technical edits for the book, and Susan Pink of Techright, who converted my musings
into something you can actually read. These two played important roles in making this book a suc-
cess, and I thank them for their efforts. I would also like to thank the many programmers who
have contributed to AutoCAD and Visual LISP — you did a fantastic job producing an extraordi-
nary suite of products. Thanks to the technical support staff for the AutoCAD Developer’s Group,
especially for answering several questions that came up while writing this book. I can’t forget to
mention the wonderful people at CMP who provided me with another opportunity to write about
a subject I truly enjoy. And last but not least, I thank my family, who stand behind my sometimes
odd pursuits.

1

CHAPTER 1

The Big Picture

When using a tool, it can be helpful to know where it originated, so this chapter begins with a
brief history of Visual LISP. Next, you learn about the AutoCAD family of programming options
— blocks and menus; scripts and DIESEL; Visual LISP, ObjectARX, and Visual Basic — so that
you can understand why some think Visual LISP is the best choice for most AutoCAD customiza-
tions. The chapter concludes with some advice on getting started programming in Visual LISP.

The History of Visual LISP

Visual LISP is derived from the LISP language, which was defined back in the late 1950s at the
Massachusetts Institute of Technology (MIT). LISP was an experiment in reducing the time
required to define a problem to the computer. The underlying idea was that future computers
would be significantly faster and capable of handling vast amounts of data as well as processor
instructions. Therefore, longer processing time and increased resource usage would not matter, but
the cost of the people needed to define problems would. (This vision was extraordinary when you
consider that it was made during the 1950s, when the few computers that were in existence had lit-
tle processing power and disk space by today’s standards.) The experiment was a modest success.
Meanwhile, advances were being made with private industry tools such as FORTRAN from IBM.
Because LISP required a lot more computing power than most people had at their disposal and
because it was the result of university work with no company standing behind it, the language
remained an idle curiosity taught to computer scientists.

LISP versus other languages

LISP differed from other languages in several ways. First, most programming languages convert
source code to assembler or the machine language of the processor. LISP, however, is evaluated,
which means each line of a program is read and processed as it is supplied to the computer.
Although this approach is much slower during program execution, it gives a program the capabil-
ity to change itself during execution. That meant LISP programs could be adapted in ways other
programming languages could not.

2 CHAPTER 1: The Big Picture

The second way that LISP differed from other programming languages was in its syntax. Com-
puter languages had two basic formats: machine language or algebraic. Machine language formats
contained an operation followed by a single value or a memory reference to a value. Algebraic for-
mats appeared more like written formulas of numbers and variable values. LISP combined the two
formats by having an operation followed by any number of values, references, or other statements.
This syntax form is often called prefix, notation.

LISP’s prefix notation led to the use of another distinguishing feature of LISP: parentheses. The
various logical parts of a LISP program are separated by parentheses. Each statement in LISP starts
with an open parenthesis followed by the operation. If the operation includes arguments (variable
values and references), they follow the operation name, separated by spaces. A closing parenthesis
marks the end of the statement. The complete statement, including the parentheses, is called an
expression. A key item to keep in mind about expressions is that they always return a value.

The parentheses get interesting when you consider that you can have expressions inside expres-
sions. (This is why some people say that LISP means Lost In Stupid Parentheses.) For example, the
following expressions produce the same answer, but one takes a bit longer to read:

C = A * (B – 2.0) + B
(setq C (+ (* A (– B 2.0)) B))

The first example is how the expression might appear in Visual Basic, C++, or FORTRAN. The
second expression is how it appears in LISP. To read the second expression, go to the innermost
parentheses, (– B 2.0), which says, “B minus 2.” The operation is first, followed by the vari-
ables, values, and expressions. After computing the result, go out another level of parentheses to
where that value is multiplied by the value of A. Then go out another level to where B is added to
the result.

Although this approach is difficult to read, it makes good programming sense. When you pro-
vide a program expression, the computer does two things: evaluates the expression and then com-
putes the instructions. When evaluating, the computer reads the entire expression and checks to
make sure it can recognize the outermost components. All it checks at first is that you have a valid
expression — matching parentheses and an operation followed by values or expressions. Then it
looks at the first operation. This tells the evaluator (the program running in the computer that
accepts your program input in LISP) what to expect next in the way of parameters or operands.

For example, if the expression starts with (+, the evaluator expects to find at least one number
following the plus operation. The evaluator puts that operation request on the system stack and
examines the arguments. (A stack is a storage strategy that works like a stack of plates: the first
thing stored is the last thing used.) If an argument starts with a parenthesis character, it is evalu-
ated and the result is saved on the stack with the operation that started the process. If the next
input item is a value, it is used directly. This process continues until the closing parenthesis is
encountered. At this point, the data is available for the operation to take place.

Don’t worry if you didn’t follow all that; I discuss this concept again later in the book. For
now, note that the LISP syntax allowed the computer to quickly handle program code as an evalu-
ator.

The History of Visual LISP 3

LISP to Visual LISP

Because of LISP’s memory requirements, it was not a popular programming language for the
development of commercial products through the 1960s and 1970s. However, the fact that LISP
had an evaluator driving the execution of programs that could change as needed was useful in a
variety of application environments, including artificial intelligence, adaptive systems, and robot-
ics.

During the 1970s and 1980s, LISP was ported to smaller and smaller computers as they
became available at universities and colleges. One of these versions, written in C and called XLISP,
was posted on CompuServe in the High-Level Languages forum. (CompuServe was an extensive
computer network service where you could trade files and messages.) A systems programmer from
Autodesk retrieved the file, which was quickly integrated into AutoCAD.

Over the next year, Autodesk continued to refine LISP, producing a powerful language called
AutoLISP. The earliest releases of AutoLISP were simple versions of what is now Visual LISP. The
basics of LISP were provided along with a minimal capability to interface with the user and the
AutoCAD command processor. You could write a program that accepted input from the user and
then drew new geometry; this in itself was powerful.

In later releases of AutoLISP, programmers could read and write data to the current drawing.
This feature created a boom of new applications as engineers and architects learned the language
and began to exploit the programming powers of AutoCAD.

Autodesk then released the ADS (Autodesk Development System) library, which enabled C pro-
grams to communicate with AutoLISP. ADS was followed by ObjectARX, which could do every-
thing ADS did and more. Autodesk stated that in the future everything would be accomplished
with ObjectARX — and to many this appeared to be AutoLISP’s death call.

Shortly after ADS was first available, a group of European developers began using a new pro-
gramming tool: a replacement for AutoLISP that became known as the European Compiler. This
compiler created FAS files from LSP files, resulting in programs that were not only reported to run
four times faster but were also encrypted, which helped prevent piracy of AutoLISP-based applica-
tions. But the European Compiler didn’t catch on immediately, especially in the United States,
because it wasn’t from Autodesk and it didn’t appear that Autodesk would endorse it.

Undeterred, the developers of the AutoLISP compiler continued to improve it and came out
with a version called Vital LISP that was packaged more as a software utility product. Vital LISP
was a vast improvement over AutoLISP. Vital LISP took advantage of ObjectARX, opening the
way for expansion and improvement. Virtually all of the system-level utilities that developers
found lacking in AutoLISP were provided in Vital LISP. Plus Vital LISP came with a text editor
optimized for LISP program entry.

Autodesk purchased the Vital LISP technology, improved it with the introduction of more than
800 functions, and repackaged it as Visual LISP. At this time, Visual Basic for Applications (VBA)
was introduced into AutoCAD. This stifled the rumors that Autodesk was phasing out AutoLISP.

The result of this evolution is a powerful programming language that requires a long time to
master but also enables you to begin writing simple programs in a short time.

4 CHAPTER 1: The Big Picture

Programming Choices in AutoCAD

AutoCAD is expensive, and some may argue that it should not need customization. But AutoCAD
is powerful because it can be customized. Out of the box, AutoCAD is a great drawing tool.
Graphic design and editing are easy after you learn the basics.

If you create drawings that are variations of each other, you can save complete or partial draw-
ings and then reload and edit them. But consider the time-savings if you could automate that task.

For example, suppose that you frequently create drawings that contain circles representing
attachment points for a fixture. You want to show only the holes, not the fixture. You insert the
fixture, use the through-hole locations in that drawing to locate new circle centers, and then
remove the fixture block. Compared to drawing the circles one at a time from other parameters,
this is a great timesaver. Now consider what would happen if you wrote a program that accom-
plished the same task in just a few seconds. The time you’d save would quickly add up and easily
justify the time you would spend creating the program.

In your own work with AutoCAD, can you identify a repetitious task — something that is time
consuming but requires skill rather than a lot of thought? If so, you have identified the perfect can-
didate for automation.

For larger installations, automating AutoCAD can turn into a full-time job. For smaller places,
automation is a way to stay ahead of the competition as well as keep the job fresh and exciting.

AutoCAD can be customized in many ways to meet the needs of designers and engineers. Each
customization tool has strengths and weaknesses that are not easy to identify at a glance. Some
relate to you directly. Do you already know a programming language or two? Do you know how
to run AutoCAD? Do you have the time to program in addition to your other job-related tasks?
Following is a quick look at each of the programming options in AutoCAD.

Blocks and menus

Blocks and menus are easy to program and are often an AutoCAD operator’s first step in custom-
izing AutoCAD. Properly constructed, block libraries can save you a lot of time when you are cre-
ating drawings that have many similar components. When combined with a menu system, block
libraries can become extensive.

Menus are the primary interface for the AutoCAD operator and an important part of the user’s
computer environment. Menus are easy to manipulate, which is why they are one of the first pro-
gramming tasks that AutoCAD operators perform. If you haven’t yet customized the AutoCAD
menu and created blocks, give it a try. What you learn in this book will compliment that skill
nicely.

Scripts and DIESEL

Blocks are not the only tools AutoCAD operators use. A sequence of commands that you repeat
frequently can be scripted and placed in a menu. For example, if you frequently copy and then
rotate a sequence of geometry, you can turn those tasks into a script. A script file.

Scripting is available in two ways. You can create an SCR (script) file, which is a text file con-
taining AutoCAD commands that you can create using a text editor or AutoCAD’s scripting tools.

Programming Choices in AutoCAD 5

Scripts have been very useful for plotter operations, and you can still find them in many sites. As
AutoCAD’s user interface evolved, however, scripts because more difficult to maintain because dia-
log boxes sometimes changed the sequence of commands. (AutoCAD commands that contain a
dialog box often also have command-line versions as well. For example, the LAYER command dis-
plays a layer dialog box. To prevent the dialog box from appearing, you add a hyphen before the
command, as in -LAYER.

Using DIESEL (Direct Interpretively Evaluated String Expression Language), you can define
variables and use them in your menu design. This enables you to control more of the AutoCAD
environment and command execution sequence. Scripts and DIESEL are powerful tools when pro-
gramming menus.

Visual LISP

Visual LISP is a powerful programming language that you can use to automate complex sequences
of AutoCAD commands, perform calculations, and much more. Visual LISP, which was derived
from AutoLISP, is a full-featured programming language, supporting variables, expressions, loops,
conditionals, and more. You can use Visual LISP to communicate with other systems through
ActiveX as well as control almost all elements of the AutoCAD system.

Visual LISP persists today despite newer tools such as Visual Basic mainly because the legacy of
AutoLISP has provided a large library of useful programs and examples that can be used to create
even more powerful tools in AutoCAD.

ObjectARX

ObjectARX is a set of C++ libraries for building dynamic link libraries (DLLs) that you integrate
directly into AutoCAD. ObjectARX is useful for adding new commands and functions to
AutoCAD, but its complexity makes it difficult for beginning programmers to use.
ObjectARX provides a tool for adding functions (called external subroutines) to the Visual LISP
environment. That means you can expand Visual LISP with new commands suitable for your
application. For some applications, this is the best solution to follow.

For each new release of AutoCAD, ObjectARX applications must be rebuilt and ObjectARX
modules may have to be adapted. For example, AutoCAD 2000 introduced the addition of multi-
ple documents, which were not supported in AutoCAD Release 14. This meant that ObjectARX
applications had to be reprogrammed to take into account the existence of multiple open docu-
ments. The MDI (Multiple Document Interface) change also had an effect on Visual LISP and
Visual Basic, but not to the same degree that it did with ObjectARX-based applications.

Visual Basic

You can use Visual Basic to run AutoCAD. In addition, a variation of Visual Basic called VBA
(Visual Basic for Applications) is supplied with AutoCAD. VBA uses the same object interfaces as
Visual Basic but it starts in AutoCAD. VB and VBA are powerful programming environments that
rely on the ActiveX exposure (a method of accessing subroutines and variables) of other products
to allow you to tie together the various features of applications such as databases and word pro-
cessors with AutoCAD.

6 CHAPTER 1: The Big Picture

Visual Basic is an attractive solution for programming AutoCAD because it is easy to learn the
Visual Basic programming environment. A dialog box editor provided with the package makes the
creation of sophisticated dialog boxes a breeze. However, not all applications in AutoCAD revolve
around a dialog box, and Visual Basic is cumbersome as a command enhancement tool.

Making a choice

This section provides some factors you should consider when deciding how to program AutoCAD.
The foremost factor is what you already know about AutoCAD and computers.

If you know Visual Basic, that might be the logical place to start. But there are roadblocks if
you want to create commands that AutoCAD operators can use with ease. For example, getting
toolbar and tablet selections to blend with your Visual Basic applications can be challenging.

If you know AutoCAD, Visual LISP is the better solution. You probably have access to many
programs that work with older versions of AutoCAD. At the very least, a search of the Web will
turn up a lot of Visual LISP applications that you can adapt. (Note, however, that you might find
someone else’s style of programming confusing.)

Those who know C++ may find ObjectARX an interesting approach to customizing AutoCAD.
You may be able to successfully build an ObjectARX application due to the tightness it enjoys with
AutoCAD, but you will find that operators expect flexibility. Before digging into ObjectARX, you
should understand how AutoCAD users actually use the system and how drawings are structured.
Creating a few drawings under the watchful eye of an experienced AutoCAD operator can go a
long way towards learning the proper processes.

AutoCAD can be customized at multiple levels. And when you are selecting an interface lan-
guage, the level from which you are designing the integration of AutoCAD with another process is
important. A database system with an ActiveX interface can be tied to AutoCAD using the Visual
Basic options (VB or VBA). Visual LISP can also talk to the ActiveX system and includes other
database integration options using SQL. C++ supports ActiveX as well as many other database
tools that may be an important part of the application you are creating. The idea of database inte-
gration may be important to the application, but keep in mind that sometimes you can mix the
application environment as well. That is, you could use C++ for the portions of the application
that need to talk to the database and link them to Visual LISP as external functions.

Another issue is related to the level of operator integration. If the application is intended for
operators, it should be command based. The command can then be typed or placed in a menu for
selection by the operator. Only Visual LISP and ObjectARX provide this feature, although you can
write a Visual LISP command function that launches a VBA macro. As mentioned, they can be
intermixed.

I think Visual LISP provides the easiest way to develop user interfaces and presents the best
tools for the creation of operator-level commands. ObjectARX provides the tools needed to take
Visual LISP further or deeper into another environment.

Sometimes the integration of a task is controlled by a source outside AutoCAD. In those cases,
you can use an ActiveX solution (using Visual Basic) or a variation of ObjectARX called Object-
DBX. These types of integration are rare but can be powerful tools for using AutoCAD in an auto-
mated environment. For example, you can build an application that automatically reads drawings
and processes them into NC/CNC code for a machine tool. Visual Basic and ObjectARX (DBX)

Programming Choices in AutoCAD 7

provide tools to run AutoCAD automatically without an operator. Writing these types of pro-
grams can be a challenge, and you must anticipate all the places where AutoCAD can get fouled up
due to bad input.

Back to the question of which option is best. Because you are reading this book, you are prob-
ably an AutoCAD operator and are comfortable with the command system. You probably want to
know how to make your work with AutoCAD more productive. AutoLISP and Visual LISP were
written for AutoCAD operators to enhance their environment beyond just menus. Visual LISP is
not hard to learn, and before long you will be writing fantastic utilities that enhance your produc-
tivity.

Getting started

An application starts with an idea. Perhaps you want to improve your usage of AutoCAD by
transforming boring repetitive tasks into a few keystrokes. Maybe you want to link various tasks
that share graphical data to automatically draw something or perform a calculation. If you don’t
know what you want the computer to do for you, the examples in this book, which are taken from
real-world applications, might spark some ideas.

In the initial stages of learning to program AutoCAD, choose easy tasks to automate. I recom-
mend starting with a few simple AutoCAD command functions, such as COPY and ROTATE, com-
bined with other logic. In fact, you use just that example in the next chapter, where you explore
the Visual LISP Integrated Development Environment, or VLIDE.

8 CHAPTER 1: The Big Picture

This Page Intentionally Left Blank

9

CHAPTER 2

The Visual LISP IDE

The Visual in Visual LISP comes from its development environment. Before Visual LISP and its
IDE (Integrated Development Environment), AutoLISP developers had to use text editors or word
processors, which know nothing about LISP syntax and requirements. Testing involved loading
the files into AutoCAD to see whether they worked. Debugging tools were left to the invention of
the programmer. To improve this situation, independent developers created tools, one of which
evolved into Visual LISP.

The Visual LISP IDE (VLIDE) consists of a set of tools that exist in a window separate from
AutoCAD’s main window. This separate window contains multiple child windows that help you
manage source files and projects as well as test programs. The term visual is used because the win-
dows use colors and icons so that you can navigate quickly from one task to another.

A variety of tools are provided in the IDE, including parentheses matching, automatic indenta-
tion, color-coding of source text, dialog box previews, a function search utility, and symbol track-
ing. Programmers are the users in an IDE, so all its tools are designed to make their job more
productive.

Because you will be using the VLIDE to create new programs, it is important that you know the
basics of how to use it from the onset. You start by becoming familiar with the various windows,
toolbars, and terms in the VLIDE. Then you look into the basic operations involved when devel-
oping programs: creating files, editing files, testing programs, and hunting down syntax errors.
Note, however, that a single chapter cannot handle all the features in the VLIDE. This chapter
introduces the concepts and provides a foundation for using the tool. By the end of the chapter,
you will be able to start the VLIDE, load a program file into the editor, perform basic syntax
checks, and test the program.

Finding Your Way Around the IDE

The Visual LISP Integrated Development Environment consists of a group of windows in which
you enter, run, test, and debug programs. The IDE is a major step forward from the basic text edi-
tors used to enter and edit programs. Table 2.1 lists the various windows that can appear in the
Visual LISP IDE.

10 CHAPTER 2: The Visual LISP IDE

Starting the IDE

You can start the Visual LISP IDE in AutoCAD 2000 (or higher) in several ways. In the com-
mand-entry method, you type the following on the AutoCAD command line:

VLISP
or
VLIDE

The other way to start the IDE is using the AutoCAD menu; choose Tools > AutoLISP > Visual
LISP Editor.

When the IDE starts, the last project loaded is displayed, as if you had walked away from it for
a minute. You don’t have to reload the project and its associated files to begin working on the
code.

Table 2.1 VLIDE windows.

IDE Window Description

Apropos Finds matching keywords for internal symbols. With more than 800 internal
functions in Visual LISP, this search utility is helpful even for experts.

Console Loads and runs program files and functions from the $ prompt. When you
run a program in the Console window, it behaves similarly to one run from
the AutoCAD command line. You can minimize this window.

Error Trace Displays error-related information such as a failed expression. Use it with
the Trace Stack window to get a program working correctly.

LSP and DCL File
Editors

Appears when you create or load a text file. These color text editor windows
know about LISP and DCL formats, keywords, and structures. You will
spend most of the time in the VLIDE in the LSP or DCL window, entering
and editing program text.

Project Lists the various files included in a project. Double-click an entry in the list
to display the associated file in a text editor window. You can move this
window outside the main VLIDE window to leave more room for the code
windows.

Symbol Service Displays the current binding (value) of symbols. Use it to set the flags for
various symbols when debugging an application. You must close this win-
dow before using any other windows in the VLIDE.

Trace Traces the activity of the Visual LISP environment. Referenced only when
something is seriously wrong in the system. You can minimize this window.

Trace Stack Displays the basic contents of the stack while the evaluator is running. (The
stack is where the calling sequence of a program is stored during execution.)
You use this window when you are debugging a program.

Watch Displays the binding of symbols and other information while the program is
running. You view this window when you set a breakpoint to see the con-
tents of the symbol being watched.

Finding Your Way Around the IDE 11

If you are starting Visual LISP for the
first time, however, you see a screen con-
taining the Trace and Console windows, as
shown in Figure 2.1.

If the Visual LISP IDE did not load,
something is wrong with your installation
of AutoCAD. Visual LISP is installed as
part of the standard installation of
AutoCAD 2000. You may need to install
the program again, selecting the standard
options to enable Visual LISP. Note that
you must have the full AutoCAD 2000
implementation. Visual LISP is not avail-
able for the AutoCAD LT versions, and
only an initial version was available for
AutoCAD Release 14.

Exiting and reentering the IDE

In this section, you briefly explore how to
switch from the VLIDE to AutoCAD itself. When writing LISP programs for AutoCAD, it is not
uncommon to have to return to the AutoCAD drawing editor to review command sequences, test
a program that involves interactive graphics, or just load a drawing at someone’s request.

To exit the VLIDE, click the Close icon (labeled in Figure 2.1) or choose File > Exit. Either
method closes the current project, giving you the opportunity to save any files you have modified.
Control of the computer is then returned to the AutoCAD drawing editor. VLIDE is no longer run-
ning, but Visual LISP is still available from the AutoCAD command line for running your func-
tions and expressions. You typically exit the VLIDE when you have finished programming for a
while.

The usual way to use the VLIDE with AutoCAD is to switch between the two, without exiting
the VLIDE. You can jump into AutoCAD to do something, and then return to the VLIDE to con-
tinue programming. You can accomplish this in several ways: click the Activate AutoCAD icon on
the View toolbar, choose Window > Activate AutoCAD, or click the AutoCAD application in the
Windows taskbar (which is normally at the bottom of the Windows desktop).

Note that the taskbar also contains an entry titled Visual LISP for
AutoCAD. When started inside AutoCAD, the VLIDE becomes another
Window application that is running. You can switch between the
AutoCAD drawing window and Visual LISP at any time by simply click-
ing AutoCAD or Visual LISP in the Windows taskbar. When you start the
Visual LISP IDE, you should see the normal Windows cursor, which is an
arrow or a text-editing symbol. If you see an icon like the one in Figure
2.2, Visual LISP is busy running a function and the IDE is not available for text editing. To get
back to the normal Windows cursor, return to AutoCAD and cancel or finish running the Visual
LISP expression.

Minimize
Maximize

Close

Figure 2.1 The opening window in the VLIDE.

Figure 2.2 The Visual

LISP busy cursor.

12 CHAPTER 2: The Visual LISP IDE

Navigating the Console window

As stated, the Visual LISP IDE consists of a set of windows that are all related to the purpose of
writing applications in Visual LISP. The VLIDE is a multiple document interface (MDI), which
means it contains multiple windows inside a master window. The master window for the applica-
tion contains child windows in much the same way that the Windows desktop contains applica-
tion windows. To switch from one window to the other, just click inside the window.

When you select Visual
LISP from the Windows task-
bar, the master window is
reactivated, and the last child
window active when it was
closed or abandoned is the
active window. The Console
and Trace windows are always
present in the master window.
Other windows appear as
needed. Figure 2.3 shows the
VLIDE with the Console win-
dow and one source code win-
dow open. The Trace window
is minimized in this figure.

The primary child window
of the VLIDE is the Visual
LISP Console. The Console
cannot be destroyed or closed
but in can be minimized. Any
expressions you type in the
Console window are evaluated immediately.

The Console is most useful when testing or setting up variables as you run functions. Simply
type the name of the variable and press Enter, and its current value appears. You can also establish
the variable values before running a function using the (SETQ) expression. For example, type the
following LISP expression at the Console window’s _$ prompt.

(setq A 2)

Press the
Enter key, and
the value 2
appears on the
next line, as
shown in Figure
2.4. Now type

Figure 2.3 Child windows in the master window.

Figure 2.4 An expression in the Console window.

Finding Your Way Around the IDE 13

the letter A and press the Enter key. The value 2 appears again.
You can use the Console window to seed values in variables before running a test. You can use

it also to launch functions that you’re developing, allowing you to create small modules and then
glue them together into larger applications. When a function is evaluated, its results are posted in
the Console window.

The Console window is for the developer — not for the user of the LISP routines you write.
Ideally, the typical user never sees any part of the VLIDE.

Another window in the VLIDE that remains at all times is the Trace window. Basically, this
window is where you can see what is going on inside the VLIDE program. For the most part, this
information is about the version of Visual LISP and is not that important to application develop-
ment, so it’s usually minimized.

Navigating the text editor

In this section, you’ll move deeper in the
VLIDE by creating a simple program file.
Starting a new program in the IDE is simple
— after all, the IDE is primarily a text editor
for program source files. Choose File > New
file (or click the New file icon on the Stan-
dard toolbar). The text editor window
appears, as shown in Figure 2.5.

When a text editor window is active, you
can start typing Visual LISP code right into
the text file. Unlike in the Console window,
the text editor window has no prompt and
the text you type is not run or evaluated. However, the IDE does check the code as you enter it and
provides some features to assist you in programming.

Typing your first program

The first program presented in most programming book is the simple Hello program. Listing 2.1
shows the code required for the Hello program in Visual LISP.

To enter your first program in Visual LISP, follow these steps:

1. Start a new file in the VLIDE.

2. Type the program in Listing 2.1. Note how the parentheses and other items are colored as you
enter them.

Listing 2.1 The Hello program.

(defun HELLO ()

 (prompt "\nHello programmer!")

)

Figure 2.5 An empty text editor window.

14 CHAPTER 2: The Visual LISP IDE

3. Move the cursor to the start of the program and click. Now press Ctrl+right bracket (]). The
cursor should jump to the ending parenthesis. If it does not, check your typing against Listing
2.1 and make the necessary corrections.

4. Choose Tools > Load Text in Editor (or press Ctrl+Alt+E). This loads your program into Visual
LISP so that you can test it in the Console window.

5. Type HELLO at the $ prompt in the Console window. The system returns information about the
HELLO symbol, telling you that the HELLO symbol is a user subroutine or function (type USUBR).

6. Run the program by typing (HELLO), including the parentheses. The Console window displays
NIL, which is the result of the function.

Note that the program didn’t display "Hello programmer!" In Visual LISP, all functions
return a result. If there is nothing to return, as is the case in the (HELLO) example, NIL is the result.
You find out more about symbols in later chapters. For now, it is important to understand that you
have defined a symbol named HELLO that is of the type USUBR (user subroutine).

Now type the HELLO symbol at the AutoCAD command prompt. You’re told that it is an
unknown command and that you can find out about the commands by typing help. This differ-
ence demonstrates how the IDE talks to the programmer but the command system of AutoCAD
talks to the operator.

Now type (HELLO) at the AutoCAD command prompt. The string Hello programmer!
appears, followed by NIL. The result of running the subroutine is to print a message in the
AutoCAD text window and return nothing.

After typing and testing the program, you may want to save it. To do so, choose File > Save.
The default directory for saving a new Visual LISP file is the current directory. When first learning
to program, it is a good idea to create a temporary directory inside AutoCAD’s program directory
for files. In the File Open dialog box, click the New folder icon (it looks like a folder with a bright
spot at the top) and define one of your choice in which to save the HELLO function.

To load the HELLO program in Visual LISP, choose File > Open File and then select the source
(LSP) file. The file appears in a text window. Press Ctrl+Alt+E to load the contents of the text win-
dow into the Console for running and testing. (Later in the chapter, you learn two other ways to
load a program.)

Color coding and other formatting

As you enter code, note the color-coding applied to the various elements. By default, parentheses
are shown in red, reserved words are blue, comments have a gray background, and text constants
inside quotes are magenta. Color-coding helps you keep the components of a program straight and
aids in finding typographic errors during program entry.

The purpose of the IDE is to make you more productive, so you should use the color system to
your advantage. If you don’t like the default colors presented in the VLIDE, you can change them.
Choose Tools > Window Attributes > Configure Current. A dialog box appears, allowing you to

Visual LISP Files 15

change the colors of the various items in the Visual LISP editor. Following is what these items
mean:

When you type program text, the IDE indents it to create source files that are easier to read.
You can control how much the IDE will indent each new expression entry as well as where it will
place closing parentheses by default by choosing Tools > Environment options > Visual LISP For-
mat options. You can use these format options also to change existing source code to match you
own preferences. First define the format options desired. Next, choose Tools and then choose
either Format Code in Editor or Format Code in Selection. The selected code area is converted to
the format options defined. Having the capability to import code from other sources into your
own desired format makes building a library of useful tools easy.

Visual LISP Files

Visual LISP source files have the LSP extension. In addition to Visual LISP files, you will also be
working with Dialog Control Language (DCL) files, compiled programs (FAS), and packaged prod-
ucts (VLX). Most of the time, you will be editing LSP source files in the VLIDE. When you supply
program modules to your users, you can elect to compile them so that they load and run faster.
Another feature of compiling your programs is that no one but you can change the program’s
operation.

When you edit and save source files, the last file saved is backed up. That file has the same
name as the LSP source file but with the _LS extension. Should you make a horrible error, you can
restore to the previously saved version of the file by renaming the _LS file to LSP. The same is true
with DCL source files.

Loading and testing LSP source files allows you to create applications more quickly because
you do not have to compile them for testing. You can load a saved LSP file into memory in several
ways:

• Access the APPLOAD command in the Autocad menu (Tools > Load application).

• Use the (LOAD) expression at the AutoCAD command line, in a menu, or in the VLIDE Con-
sole window.

• Open the file in a text editor window and press Ctrl+Alt+E.

LSP files are the source code of your programs. When you are finished with the program and
want to share it with others, you compile the LSP source files into FAS files.

Like LSP files, FAS files can be loaded by using the (LOAD) expression in Visual LISP at the
command line or in the Console window or by using the APPLOAD command in AutoCAD. FAS
files are smaller than the original LSP source files and cannot be loaded into the text editor, but

:LEX-PAREN Parentheses

:LEX-SYM Reserved words

:LEX-COMM1 Comments

:LEX-STR ext inside quotes

16 CHAPTER 2: The Visual LISP IDE

they will load faster into the system. FAS files consist of a simplified language that is processed by
the computer more quickly than the longer source code, which is full of comments and extra
spaces for readability.

An application can use multiple FAS or LSP files. However, if you will be mixing compiled files,
it is a good idea to create a project. A project glues the various modules into one unit so that sym-
bol references are consistent between all FAS and LSP files. Projects are created by adding source
files or compiled FAS files to a named project list. Changes to the various components are tracked
and the project can be updated with a make operation, in which only those items that have
changed are compiled and linked. The output of a make operation is a VLX file. The VLX file com-
bines all FAS and LSP (and DCL) files into a single, larger file.

If you are building a complex application with many function names, link the FAS and DCL files
into a single VLX file. A VLX is a compiled project bundled or packaged into a single unit, making it
easier to supply to users. Distributing your application as a VLX file has several advantages. The
greatest advantage is that you have your own memory and symbol space for your application. This
means you can write a function that uses a simple name, such as (get_data), and know that
other programmers can also use that function name in their own applications without any effect to
your version of it. In this case, the function is private to your own memory. You can selectively
expose functions (make them available to users).

With Visual LISP, you should “think big but start small.” Start with LSP programming. It will
evolve on its own into FAS-style programming, which will in turn move you into VLX files. The
remainder of this book focuses on LSP-style programming and does not explore the FAS and VLX
aspects of Visual LISP.

VLIDE Toolbars

When you first start the VLIDE, you are presented with a series of icons, or tools, grouped in tool-
bars. To find out a bit more about an icon, move the mouse pointer over it. A small window
appears, identifying the icon. Many icons duplicate menu options.

You can turn the various toolbars on and off. This feature is helpful when you need more
screen space, such as when you are using the smaller screen of a laptop computer.

This section lists every icon on the Visual LISP toolbars and explains how you might make use
of them while working in Visual LISP. Several icons are also described in more detail later in the
chapter.

The Standard toolbar

The Standard toolbar, shown in Figure 2.6, contains many common icons found in other Windows
products. All but the Complete word icon are standard icons used in Windows.

VLIDE Toolbars 17

The Complete word icon is found in editor
environments that use a dictionary of reserve
words. This function helps you complete the
word you are typing. For example, if you type
(DE and then click the Complete word icon, the
word DEFUN is placed where you were typing.
Try it again, but this time do not include the let-
ter E. A long list of all reserve words beginning
with the letter D is displayed in an Apropos
window. You can then scroll through the list,
highlight a function, and click the Help button
(in the Tools toolbar) to learn more about that
function. Apropos is helpful when you are first
learning Visual LISP or when you are using an unfamiliar function.

The Search toolbar

The Search toolbar, shown in Figure 2.7, is another toolbar full
of standard features found in most Windows-based text editor
products. The Find and Replace features are the most frequently
used icons in this toolbar. There is also a quick search, in which
you type a string in the window area provided and then click the
Find toolbar string icon.

The remaining icons in the Search toolbar deal with book-
marks. You use bookmarks to mark your place in source code
when working with large files. As you jump from one section of
code to the next, comparing items such as symbol name spell-
ings and parameter lists, you can set a bookmark to make it
easy to return to a particular location. If you have a large vol-
ume of code in a single text file, the bookmark features are very
helpful. (However, I recommend that you split a large source file
into smaller, easier-to-manage chunks and use the project man-
ager in the VLIDE to help you keep track of everything.)

The Tools toolbar

The Tools toolbar, shown in Figure 2.8, contains powerful edit and testing features. For example,
when you are writing a program and want to test it, you can load the entire contents of the editor
window or just a selection of it into the Console window. The first two icons in the Tools toolbar
load the entire editor window or only the highlighted code, respectively.

P
a
s
te

C
o
p
y

C
u
t

R
e
d
o

U
n
d
o

C
o
m

p
le

te
 w

o
rd

P
rin

t

S
a
ve

 file

O
p
e
n
 file

N
e
w

 file

Figure 2.6 Standard toolbar icons.

C
le

a
r a

ll b
o
o
k
m

a
rk

P
re

v
io

u
s
 b

o
o
k
m

a
rk

N
e
x
t b

o
o
k
m

a
rk

To
g
g
le

 b
o
o
k
m

a
rk

F
in

d
 to

o
lb

a
r s

trin
g

R
e
p
la

c
e

F
in

d

Figure 2.7 Icons in the Search

toolbar.

18 CHAPTER 2: The Visual LISP IDE

By loading only a section of your code into the
Console window, you can test small elements of
your application. The normal procedure is to set up
some symbol values that are needed in the test
code. Follow these steps:

1. At the _$ prompt in the Console window, type
(SETQ) and the values you need to set.

2. Move to the text editor window and highlight
the code to test.

3. Click the Load selection icon, and then view the
results in the Console window.

You can use some other debugging tools at the
same time; you find out about them shortly.

You use the next two icons in the Tools toolbar when checking your code. Like the previous
two, these icons are for the entire active window or the highlighted code. You can use the Check
edit window icon to see whether the file will load into the Console window properly. In most
cases, you use the Check selection icon to find unbalanced parentheses in sections of code. These
tools assume you are an experienced LISP programmer and know what you are looking for and
what the messages mean. One cool feature is that when you check a file and there is a problem, all
you need to do is double-click the message in the Console window and the code section where the
problem was found is highlighted.

You use the next pair of tools to format the code. Formatting is helpful when you need to
debugsomeone else’s code. You can run the code through the format operation and standardize the
indentation and other aspects of the source code. In addition, when you see code at the wrong
level of indentation, is usually means the code has a missing parenthesis or unbalanced parenthe-
ses. Once again, you must know how to read code and work with Visual LISP to get the most of
this feature. It will make your code more presentable, but it will not correct it without your help.

You use the last pair of icons to comment your code. You can select a block of code and com-
ment it out do that it doesn’t run when loaded. Use the Uncomment block icon to turn the code
back on again when you have finished testing. The basic idea is to switch portions of your pro-
gram on and off while you are testing it.

The commenting feature is handy if you develop large-scale applications because you can dis-
able large sections of code quickly for testing. For example, suppose your application performs
many calculations and then draws something. You can test the drawing portion of the application
by commenting out the math section, setting variables to the results needed from the calculations,
and then running just the drawing component. Later, as you develop the math section, you can
keep the testing parameters handy should you ever decide to change the drawing portion and want
to quickly test just that part.

S
te

p
 o

u
t

S
te

p
 o

ve
r

S
te

p
 in

to

R
e

s
e

t

Q
u

it

C
o

n
tin

u
e

L
a

s
t B

re
a

k

A
d

d
 w

a
tc

h

To
g

g
le

 b
re

a
k
p

o
in

t

Figure 2.8 Icons in the Tools toolbar.

VLIDE Toolbars 19

The Debug toolbar

The icons in the Debug toolbar, shown in Figure
2.9, are tempting, but using them requires practice.
If you have used another visual-type editor, you
should have no problem learning the tools pro-
vided with Visual LISP.

The greatest debugging tool in Visual LISP is
the breakpoint, which stops the execution of your
program in mid-stride so that you can look at the
contents of the variables and watch the program
run one step at a time. When the system reaches a
breakpoint while evaluating your program, it
stops, displays the Watch window contents along
with your source code indicating where in the pro-
gram the execution is currently located, and waits
for your signal to continue. (For more on setting breakpoints, see the upcoming section, “Using
the IDE to Debug Programs.”)

You use the Debug toolbar icons to set breakpoints and to step through the program after you
are running in debugging mode. Note that most of these icons are turned off until you start to run
some code through the evaluator in Visual LISP’s Console window.

The first three icons in the Debug toolbar are for moving in and around expressions in the pro-
gram. You can step into the next expression, step over it, or step out of the current function alto-
gether. This allows you to watch the execution of your program from the breakpoint onward as
each expression is evaluated. And this is where the Watch window becomes a handy tool. Activate
the Watch window by selecting the Add watch icon. Type the name of any symbol in your pro-
gram, and the current value of that symbol is displayed in the Watch window while your program
runs.

The three arrow icons in the toolbar control what to do when the program reaches a break-
point. Use them to continue to the next designated breakpoint, exit the current test run, or reset
the run. Note that when you are stepping through a program using the first three icons in the
Debug toolbar, you are creating temporary breakpoints. The three arrows (green, yellow, and red)
are displayed while you are stepping through the parentheses.

The Last break icon shows you the last breakpoint in your program while it is running. When
at a breakpoint, you can set more breakpoints later in the program and then click this icon to
quickly return to the last breakpoint that was active when performing the test run.

The last icon cannot be selected. It simply indicates where in the code you have stopped for the
breakpoint, either before or after the expression. (You can set a breakpoint both before and after
an expression is evaluated so that you can check the values in the program.)

S
te

p
 o

u
t

S
te

p
 o

ve
r

S
te

p
 in

to

R
e

s
e

t

Q
u

it

C
o

n
tin

u
e

L
a

s
t B

re
a

k

A
d

d
 w

a
tc

h

To
g

g
le

 b
re

a
k
p

o
in

t

Figure 2.9 Icons in the Debug toolbar.

20 CHAPTER 2: The Visual LISP IDE

The View toolbar

The View toolbar, shown in Figure 2.10, displays the various window components of the VLIDE
and enables you to switch between AutoCAD and VLIDE. To activate one of the windows, just
click the appropriate icon. These icons allow you to quickly navigate your way around the various
features of the Visual LISP system.

Loading a Program into AutoCAD

As mentioned, programs are stored and edited as LSP files
and compiled into FAS or VLX files for distribution. No mat-
ter what format a program is in, you can load it into
AutoCAD for testing by using the (LOAD) expression at the
command line or in a menu entry.

Suppose that you create a simple program called (TEST)
and store it in a file named MYTEST.LSP using the VLIDE
text editor. At the AutoCAD command line, you could type
(LOAD "MYTEST"), parentheses and all, and the source file
will load into memory and be ready to run. Type (TEST) at
the command line and the function runs.

The (LOAD) expression can be used with a menu, as in
the following example.

[My Test]^C^C^C^P(IF (NULL TEST) (LOAD "MYTEST"))(TEST)

After the menu label, the menu command sequence starts by canceling any open command in
AutoCAD. The open parenthesis starts the Visual LISP evaluator in AutoCAD. The IF means the
expression is a conditional test. The TEST symbol is tested to see whether it has a null value.
Because the function is named TEST, the symbol will not have a null value after the function has
been loaded. If the test for null indicates that the function must be loaded, the (LOAD) expression
loads the MYTEST.LSP source file from the current search path. The closing parentheses terminate
the (LOAD) and (IF) expressions. The (TEST) function is started after the conditional expression
is finished.

Another way to load Visual LISP program is to use the APPLOAD command in AutoCAD.
APPLOAD allows you to build a list of LSP, FAS, VLX, ARX, and other AutoCAD customization files
to be loaded quickly each time you start AutoCAD. When developing and testing your applica-
tions, use APPLOAD to create a list of the function files to be loaded for the tests. This will allow
you to reload the file set quickly each time you start a fresh drawing for a clean test.

APPLOAD presents an imposing dialog box at first glance, as shown in Figure 2.11, but it is easy
to use. The primary component is the capability to add a function load to the Startup Suite, which
is the list of files to load each time you open or create an AutoCAD drawing.

S
e

le
c
t w

in
d

o
w

A
c
tiva

te
 A

u
to

C
A

D

W
a

tc
h

 w
in

d
o
w

A
p

ro
p

o
s

S
y
m

b
o

l s
e

rv
ic

e

Tra
c
e

In
s
p

e
c
t

V
is

u
a

l L
IS

P
 C

o
n

s
o

le

Figure 2.10 Icons in the View toolbar.

Using the IDE to Debug Programs 21

Using the IDE to Debug Programs

After you get your programs loaded and begin to run them, you may encounter problems. Visual
LISP provides a variety of tools to assist you in tracking down and correcting these problems. Pro-
grammers call this tracking and correction process debugging.

The two most com-
mon areas where begin-
ning and experienced
programmers alike run
afoul in Visual LISP
involve parentheses imbal-
ance and unanticipated
changes in symbols or
variables. Visual LISP pro-
vides excellent tools for
tracking down both prob-
lems, as you find out in
this section.

Finding parentheses
imbalance

One of the most common
problem when program-
ming Visual LISP is paren-
theses imbalance. VLIDE
provides several tools to
help prevent your logic
from getting Lost In Sev-
eral Parentheses. The first
tool is available when you
type code in the text edi-
tor. Each time you enter a
closing parenthesis, the balancing open parenthesis is briefly shown and then the cursor returns to
the entry point following the close. (At first I found this feature disturbing because I type relatively
fast. But after working with the VLIDE for a few hours, I found it to be a useful feature because it
showed the structure of my program while I was typing the code.) The automatic display of the
balancing open parenthesis might indicate missing or extra parentheses that need to be corrected
in the program source code.

The VLIDE has a second way to help you find parentheses imbalance. You can quickly locate
missing or extra parentheses in the editor using the Ctrl and bracket keys. Press Ctrl+left bracket
([) to move the cursor to the start of the nearest expression. Press Ctrl+right bracket (]) to move
the cursor to the end of the nearest expression. By jumping back and forth through a series of
expressions, you can locate a missing or extra parenthesis quickly.

Figure 2.11 APPLOAD command dialog box.

22 CHAPTER 2: The Visual LISP IDE

You can use the parentheses balance feature also to cut-and-paste sections of code. Press
Ctrl+left brace ({) to move forward or Ctrl+right brace (}) to move backwards in the source file,
selecting the text in between. You can then use the standard Windows-style cut, copy, and paste
commands (Ctrl+X, Ctrl+C, and Ctrl+V, respectively) as desired.

Using breakpoints and the Watch window

A breakpoint is a point in program code where you want to stop execution so that you can see the
values of variables or check to see how your program is progressing. When your program reaches
a breakpoint, execution stops and you can enter the VLIDE to see the contents of the Watch win-
dow.

Breakpoints are turned on and off in the source code. To set a breakpoint, you first need some
code to work with in the editor. Follow these steps:

1. Load the "Hello" function in the editor by typing it in a new window in the IDE or by opening
the on the CD.

2. Move the cursor near the open parenthesis in the (PROMPT) expression.

3. Click the Toggle breakpoint icon (labeled in Figure 2.9). The parenthesis is highlighted in red.
(You can set as many breakpoints in your program as you want.)

4. Click the Load active edit window icon in the Tools toolbar (labeled in Figure 2.8).

5. In the Console window, type (HELLO). The function’s source code is displayed with the cursor
blinking at the toggle location. In addition, all icons in the Debug toolbar are now available.

6. To remove the breakpoint, simply position the cursor at the breakpoint and click the Toggle
breakpoint icon again.

The second step in using a bookmark is to run your program and add symbol names to the
Watch window. Symbol names are Visual LISP variables that can represent different data while
your program is running. Symbols representing functions are not normally viewed in the Watch
window.

To add a symbol to the Watch window, click the Add watch icon (labeled in Figure 2.9). A
small dialog box asks you what symbol you want to watch. Type the name of the variable you
want to track. Alternatively, you can highlight the name of a variable in the source code, and then
click the Add watch icon. (You can add more symbols to the Watch window by clicking the Add
watch icon again and supplying the symbol names.) At each breakpoint, the values of the selected
symbols are shown in the window. You can show all symbols, including program and data lists.

Breakpoints and the Watch window are a powerful combination for finding errant steps in your
programs. You can watch your programs run in the computer by using several other tools in the
VLIDE, such as stepping through code in debug mode. As you work with the IDE, you will find
more treasures that can improve your programming productivity.

Summary 23

Summary

This chapter introduced the VLIDE, or Visual LISP Integrated Development Environment. More
than just a pretty text editor, the VLIDE is a powerful tool for creating advanced applications
using Visual LISP. Combining multiple text editor windows, a Watch window, breakpoints, trac-
ing, parentheses balancing, print formatting, and more in a single environment for programmers is
the greatest step forward that the AutoCAD-based LISP system has ever taken.

The chapter introduced also the various files that are manipulated in Visual LISP: LSP (source)
files, FAS (compiled) files, VLX (project) files, and DCL (dialog control language) files. You saw how
to load and test these programs in both AutoCAD and the VLIDE.

A lot of information was presented about the VLIDE so that you will have a basic understand-
ing of this tool before you begin writing anything significant in Visual LISP. The usefulness of some
features may not become clear until later in the book. Visual LISP is a deep and complex language,
yet it is easy to learn and use productively. Years of enjoyment and accomplishment are awaiting
you as you master this wonderful component of the AutoCAD system.

24 CHAPTER 2: The Visual LISP IDE

This Page Intentionally Left Blank

25

CHAPTER 3

The Essence of Visual LISP

The LISP programming language appeared on computers in the 1950s and has undergone many
changes in its lifetime. Visual LISP is an adaptation of the original LISP and is one of the most
widely used versions in the world. Some basic concepts underlying Visual LISP make it unique in
the world of programming. These concepts range from powerful ones that can be exploited by tal-
ented programmers to those that are simply odd in relation to other languages

This chapter looks at the concepts underlying the LISP language. Of key importance is the eval-
uator and how it works. The discussion continues with a look at how symbols are used in a pro-
gram. You finish the chapter by looking at special symbol treatments such as the creation of
commands and how to recover from errors in your program.

Although some information in this chapter is advanced, it is presented early in the book to pro-
vide an overview of the environment. You might want to review this chapter from time to time just
to make sure you are getting the most out of Visual LISP.

The Evaluator

Your exploration of the essence of Visual LISP starts with the evaluator. All program code is writ-
ten with the evaluator in mind. This is partly why the syntax appears odd, especially for program-
mers who know other computer languages.

The evaluator follows some basic rules:

• If you give the evaluator a number, it returns the number. In fact, if you give the evaluator any
single item, such as a quoted string of characters, that item is returned as a result.

• If you give the evaluator a symbol name, it returns the content, or binding, of the symbol. For
example, if you are using the TMP symbol to represent a temporary result in a computation
and you give the evaluator the TMP symbol name, the value that TMP points to is returned.

• If you give the evaluator a list (an ordered set of symbols and lists), the first element of the list
is checked to see whether it is a recognized function name. If the first member is a function, that
function is evaluated, with the remainder of the list considered the parameters to the function.
If the first member is not a function, the contents of the list are evaluated and returned.

26 CHAPTER 3: The Essence of Visual LISP

The two basic types of functions are those that exist in Visual LISP and those you can define.
The functions that exist in Visual LISP are called subrs (pronounced “sub-ers”). You can add more
subrs through the ObjectARX system. Some Visual LISP functions are loaded as ObjectARX mod-
ules when you need them. (Not all are loaded initially because some are called only when pro-
gramming specific types of interfaces, such as ActiveX.)

Reading expressions

A list in which the first member is a subr or a function recognized by the evaluator is considered a
form in traditional LISP lingo and an expression in Visual LISP. This is different than most other
computer programming languages, in which program and data formats are clearly delineated, and
can be a stumbling block for people learning LISP after mastering another language such as
BASIC, FORTRAN, or PASCAL. In LISP, functions are defined as expressions that contain expres-
sions. That is, a function is a list that contains sublists. Thus, every function is a list but not every
list is a function.

In LISP, lists are represented with surrounding parentheses. When you read a LISP program,
you look for open parentheses. An open parenthesis character signifies the beginning of a list. If
you encounter another open parenthesis before a matching closing parenthesis, the list is nested.
That is, one or more lists are inside the list. When programming in LISP, programs are structured
as nested lists, where each nested list is an expression.

This might seem to be an odd way to represent a problem to the computer but it is a simple
structure that the computer can anticipate and work with to solve problems. It does, however,
require that you think a bit differently than you do when using other languages.

Immediately following the open parentheses are the names of the functions or subrs to be run.
Following the name of the function is another function, a constant value, or a symbol reference to
be evaluated and passed to the function. The values of the symbol reference, constant, or function
result are passed to the function as arguments.

To see how this scheme works, we’ll perform a basic operation. Suppose that you want the
computer to solve a numeric expression, computing the sum of 1 plus 2. In the algebraic form
most of us were taught in school, this problem is expressed as 1+2. The plus sign (+) stands for
addition; in this statement, you are asking for the addition of the numbers on either side of the
plus sign. A human reading this expression has no problem understanding the statement. A com-
puter, however, reads only one character at a time and is expected to react accordingly.

Think about the 1+2 statement from a computer’s standpoint. The first character encountered
is 1. What is the computer expected to do? The logical solution is to tell it to read ahead until it
finds something telling it what to do with this number. In the meantime, the computer needs to
store the value 1 until it is used in some way.

When LISP was first created, computer memory was at a premium, so it didn’t make sense to
store a number until the computer could determine what to do with it. One alternative was to use
prefix, or Polish, notation. In prefix notation, you state what you are going to do first, and then
you state what you will use for the desired operation. For example, the expression to sum 1 and 2
in prefix notation is + 1 2. The primary advantage of prefix notation is that the computer can be
prepared to perform the necessary work. Then it needs only to accept the values to produce the

The Evaluator 27

result. It’s not quite like that, but you can see the simplification clearly if you consider program-
ming something more complex, such as a quadratic equation.

The (+ 1 2) expression is a valid Visual LISP expression that you can type at the AutoCAD
command prompt or the _$ prompt in the Visual LISP Console window.

For example, suppose you are drawing something that involves a right triangle. You know that
the longest distance along the triangle (the hypotenuse) is 6.75 and the angle from the X-axis rela-
tive to some other point is 15 degrees. If you start a line at 1.5, 1.75, you can use Visual LISP to
find the location of the next point.

(POLAR (LIST 1.5 1.75 0.0) (/ Pi 12.0) 6.75)

This may look like gibberish now, but after you become accustomed to working with Visual
LISP, you will be able to read it easily. This code tells the system to create a new point calculated as
a polar expression from point (1.5, 1.75) at an angle of Pi (3.14159...) radians divided by 12 for a
distance of 6.75. Pi equals 180 degrees, and the Pi over 12 value is 15 degrees.

To accomplish the same thing using only AutoCAD commands, you would have to draw a con-
struction line from the known point (1.5, 175) using the notation @6.75<15 for the to point. Then
you would draw a line from 10,15 to the end point. Last, you would erase the construction line.

The (POLAR) example just shown demonstrates several things about LISP. Look closely at the
expression and go to the innermost parentheses pairs. There are two nested lists. The first defines a
list of numbers. In Visual LISP, a list of two or three numbers can denote a point. The first number
(1.5) is the X-ordinate, the second (1.75) is the Y-ordinate, and the third (0.0) is the Z-ordinate.
Lists are easy to manipulate, as you will learn later in this book, and point lists are the easiest of
all. Plus, several functions are designed just for points (such as the POLAR function).

Another thing you can learn from this example is that Visual LISP uses radians and not degrees
for angles. Radians work better in computer calculations. In the example, you must make an
adjustment in the presentation of the problem to Visual LISP and convert the angle values in
degrees to radians. To convert degrees to radians, multiple the degrees value by Pi and divide the
result by 180. The final result is the angle in radians. Pi is stored in Visual LISP as a constant avail-
able for applications immediately. This value is precise and should not be replaced with some other
value because that will affect the precision of the overall system.

The last thing this example shows us is that Visual LISP is ready at all times in AutoCAD.
Visual LISP comes to action when you type an open parenthesis. In the example, an open paren-
thesis is followed by the POLAR function (an internal function in Visual LISP). This function returns
the result from a polar coordinate point shift given a base point in X, Y format along with an
angle (in radians) and a distance. The result was returned to the LINE command, which had been
waiting for a point. AutoCAD and Visual LISP work well together.

An open parenthesis starts the evaluator in Visual LISP. The evaluator waits until it has a close
parenthesis before running the code. Therefore, in the example function, the value of Pi divided by
12 was calculated first because there is an open and close pair of parentheses. The computation
happens before the POLAR function runs so that values are available to POLAR.

28 CHAPTER 3: The Essence of Visual LISP

Assigning values to symbols

Symbols are the names by which you reference various components of a program. Some symbols
are already defined in Visual LISP, such as Pi and POLAR.

In the context of Visual LISP, everything is a symbol. When a symbol is used to hold a value, it
is called a variable symbol or just a variable. When a symbol is used to hold a function definition
list, it is called a function. Symbols that reference internal functions in Visual LISP are called subrs.

You can set symbols (names you created) to numbers and other values in a program by using
the (SETQ) function, which is a combination of the (SET) and (QUOTE) functions. (SETQ) accepts
pairs of symbols with expressions. After a symbol has been set to a value as the result of a
SETQ-based expression, you can use the symbol name to get that value instead of repeating the
entire expression again. (Again, when used in this way, a symbol is often called a variable because
it represents a variable value for your program.) For example, suppose that you want to use the
value of Pi divided by 12 in several computations. You would start by devising a symbol name for
15 degrees, such as D15. The (SETQ D15 (/ Pi 12.0)) expression sets the value of Pi divided by
12 to the D15 symbol. You can then use that value in another expression by just referencing the
symbol (variable) name.

The POLAR command used previously can be revised as (POLAR (LIST 1.5 1.75 0.0) D15
6.75), as long as you set D15 before its use.

(SETQ) works with pairs, allowing you to set up more than one symbol (variable) reference at
one time. Suppose that the point (1.5, 1.75) will be used in your program, and you want to create
a point list variable to hold this value. Any value may be assigned to any symbol. Unlike other pro-
gramming languages that require you to define the data type and then set the value, in LISP you
accomplish everything by setting the value directly. The following expression establishes two sym-
bols, PT and D15, to have the values of a point list (1.5, 1.75, 0.0) and a constant (Pi divided by
12), respectively.

(SETQ PT (LIST 1.5 1.75 0.0) D15 (/ Pi 12.0))

At first, LISP is difficult to read because of the parentheses and prefix notation, which are also
what make it succinct. To see just how succinct the LISP language is, consider the same code writ-
ten in BASIC.

Visual BASIC and Visual Basic for Applications do not contain a value of Pi. One trick you can
use is to multiple 4 by the arctangent of 1. This will yield an accurate value for Pi in BASIC. Visual
LISP, on the other hand, already has the Pi constant computed to the maximum accuracy of the
machine. Visual LISP also does not require that you declare the type of data you will be using
ahead of time. Space is allocated on an as-needed basis, so you need fewer lines of code.

Brevity of coding, however, comes with a price: readability suffers. As a result, make sure that
you include comments in your code. (Comments are notes explaining what you are doing.) In

Dim PT(0 to 2) As Double

Dim D15 As Double

D15 = 3.14159254 / 12#

PT(0) = 1.5: PT(1) = 1.75: PT(2) = 0#

The Evaluator 29

Visual LISP, a comment is any text that follows a semicolon (unless that semicolon is inside a
string) out to the end of the physical line. In addition, any text appearing between the character
sequences ;| and |; is an inline or multiple-line comment.

Physical versus logical code lines

Visual LISP has two types of code lines: logical lines and physical lines. A logical line of code is a
complete expression — that is, something enclosed in parentheses, such as the statement (+ 1 2).
Logical lines of code may contain other logical lines of code. A function is a logical line of code
that contains one or more logical lines of code. Think of logical lines of code as the components or
steps in a program.

Logical lines of code are entered as physical lines of code in the text editor. You can use any
number of physical lines of code to represent a logical line. Physical lines end with a carriage
return (the Enter key). Logical lines end with the balancing parenthesis to the open parenthesis at
the start of the logical line.

The logical line of code (+ 1 2) could be entered over four physical lines, as in the following.

You can add a comment to any physical line of code by entering text between a semicolon (;)
and the end of the physical line. All text after the semicolon is considered a comment and is
ignored by the evaluator when it runs. When you view code in the VLIDE, the comments appear as
highlighted text.

Reserved functions in LISP

LISP’s evaluator accepts expressions and returns a result. The primary tools for this are subrs or
reserved functions in LISP. A subr is a function that is known by Visual LISP when it first starts.
You can think of subrs as symbols that are already assigned and should not be changed.

When a subr appears at the front of a list, that list is considered a form and can be evaluated.
The values following the subr are arguments. The (+ 1 2) expression has the + subr and two
arguments, 1. and 2. When you type the closing parenthesis and a white space, the expression is
evaluated, resulting in the answer, 3. A white space is the Enter key, the spacebar, the Tab key, or a
comment.

If you type the (1 2 3) expression in LISP, it returns the list (1 2 3). If you type the expres-
sion in the evaluator at the AutoCAD command prompt, you get an error because the first member
of the list is 1, it should be a function or subr name.

(+

 1

 2

)

30 CHAPTER 3: The Essence of Visual LISP

All expressions return an answer

A key factor in programming LISP applications is that all expressions, including functions and
subrs, return an answer. Where a particular answer goes is up to you, the programmer. In most
cases, the result of a function or subr is used as an argument to another function or subr. The fact
that everything is expected to return an answer is a key feature to the brevity of coding in LISP.
This feature can be used to nest expressions inside other expressions, making the code brief but
also difficult to read.

The fact that all functions and subrs return an answer is an important feature in the program-
ming of Visual LISP applications. If you have never programmed before, you will find the tech-
nique straightforward. Each element of a problem is broken down into steps, and those steps are
further broken down to form a program. Each element inside a single step returns its answer to the
step it is a part of, and this continues throughout the application. After you become familiar with
the thinking process, it is easy to create advanced programs. Experienced programmers might be
accustomed to breaking things down into modules, only some of which return answers. The
remaining modules simply use or establish values in variables and do not return a result.

In programming Visual LISP, the result of a function is called the direct result, or effect. A
well-behaved function uses only the values supplied to it as parameters and returns data as a direct
effect. For many applications, it is difficult to write functions that always behave well. Later in the
chapter, you look at how Visual LISP stores variables and functions in the computer.

Evaluate now or later?

In most cases, a program is evaluated to produce a result. But sometimes you do not want some-
thing evaluated right away. You might be building a complex list of data and need to keep that
data from being interpreted as program code.

The QUOTE subr is used to inform the evaluator that you do not want to evaluate the expression
or symbol; you merely want to use it as-is. For example, the expression (QUOTE (1 2 3)) returns
a list of data (1 2 3). It does not try to evaluate the list; doing so would result in an error because
1 is not a function or subr name. The QUOTE subr results in the data being passed back directly
from the evaluator. Thus, the (QUOTE (+ 1 2)) expression results in the list (+ 1 2).

If you want to force the evaluation of a symbolic expression, use the EVAL subr. The (EVAL
(QUOTE (+ 1 2))) expression results in the value 3. That is a silly example, because you could
just enter (+ 1 2) to get the same result with a lot less typing. But it does illustrate how you can
take a list of data returned by the QUOTE subr and treat it like a program by supplying it to the
EVAL subr. It is unlikely you will need to write code that uses this advanced capability of LISP, but
it is handy every so often, and some of examples later in this book make use of this dynamic power
in the system.

Atoms and Lists

Before you go too much deeper into LISP subrs and functions, you need to understand the types of
data you may be manipulating. LISP data is either an atom or a list. Making this definition even
simpler is the notion that an atom is anything that does not have parentheses, except the NIL

Atoms and Lists 31

symbol or value. NIL is an empty list and is usually not shown with parentheses. NIL is the atomic
value nothing, or empty. You use NIL also to represent the value false when working with
true-false logic in a LISP program. Anything that is not NIL is true.

Visual LISP contains several atomic data types, such as number and text atoms. You perform
arithmetic-type operations on numbers, but not with text. The atomic types help keep your vari-
ables in order. Plus, you can test the types during program execution, giving you tremendous con-
trol over the environment your program runs in.

Table 3.1 describes the specific atomic types in Visual LISP. Because Visual LISP is intended for
use in the AutoCAD environment, some elements are specific to AutoCAD and do not exist in
other LISP environments.

The data types in Table 3.1 are the basic data elements you will encounter in Visual LISP. The
last remaining data type is the list, which from a programming point of view is anything between

Table 3.1 Data types.

Data type Description

INT Integer. A whole number ranging from –2,147,483,648 to 2,147,483,647.
Integers are useful in counting and in controlling loops. An integer cannot con-
tain a decimal point.

REAL Real; also known as a double-precision real number. A number with a decimal
point. Real numbers can be quite large or quite small, with up to 14 significant
digits. If you need to count very large numbers or perform numerical work
that may involve fractions or decimals, you use reals.

STR String. Text characters stored together form a string. Strings can be from zero
characters up to as many characters as can fit in memory. Strings are always
are surrounded by double quotation marks.

ENAME Entity name. An entity reference in AutoCAD. The entity name of an object is
a direct pointer to the entity object in memory. Entity names change from one
drawing edit session to the next.

PICKSET Pick set; also known as a selection set. A group of entity names. Pick sets are
commonly used in programs when working with a group of objects, such as all
the lines in a drawing or all entity objects on a particular layer.

FILE File handle. An integer used to represent an open file.

SYM Symbol. A reference name that can be used to denote data of any type, includ-
ing lists. By itself, a symbol is a set of characters.

SUBR, USUBR,
EXRXSUBR

Subr, user-defined subr, and ObjectARX-defined subr. A reference name to a
function, either internal to Visual LISP or the result of a load or FAS compile.

VLA-object VLA object. An ActiveX object.

VARIANT,
SAFEARRAY

Variant and safe array. ActiveX data elements typically intended for VBA. A
variant is a general-purpose data container. A safe array is a fixed collection of
data.

32 CHAPTER 3: The Essence of Visual LISP

parentheses. In Visual LISP, the list data type holds both data and programs. Programs are defined
using a list structure, in which each element in the list is a logical line of code (expression).

Working with Symbols

You can create or define symbols in Visual LISP in two ways. One method defines a symbol that
will hold data to be used by your program. The other method references your program function
definition. Note that most LISP programmers use the term variable name instead of symbol.

Defining symbols with SET

To define a data-oriented symbol, you use the SET subr, which has two arguments: a symbol refer-
ence and a value. The SET subr stores the value in the computer, where it can be retrieved at a later
time by using the symbol name. For example, the following LISP code sets the A symbol, or vari-
able, to the value of integer 100.

(SET (QUOTE A) 100)

The QUOTE subr causes the evaluator to not evaluate the A symbol. This is what you want
because you are putting data into A, not retrieving it. Instead of evaluating A, the expression uses
the A symbol as an argument to the SET subr. The value 100, on the other hand, is evaluated and
results in the value 100. This value is stored in the system using a reference symbol A.

Before you go any deeper into how symbols are stored and retrieved, you should learn a short-
hand way of telling the evaluator, “Don’t evaluate the symbol, use it.” Instead of typing the QUOTE
expression inside the SET expression, you can use the single quote mark, as in the following.

(SET ‘A 100)

When you type the single quote mark, the evaluator expands the expression to include the
parentheses and QUOTE subr. Thus, do not be surprised if QUOTE appears when you step through
your code at runtime using the debugging tools.

Although the single quote mark is fine in most circumstances, when evaluated it expands the
code by adding the QUOTE expression. This adds to the time required to service the code in the
evaluator and takes up more space in the computer’s memory. When LISP was developed, neither
of these traits was desirable. As a result, a new SUBR called SETQ was created to reduce the simple
expression even further to (SETQ A 100).

SETQ is a combination of SET and QUOTE. In most cases, you use SETQ to establish variable val-
ues to be used later in your program. The following sequence of expressions shows how variable
symbols are used in programming. First, the A symbol is set to integer value 1, which is also
returned as the result of the expression.

(SETQ A 1)

Then the B symbol is set to integer value 10, which is also returned as the result of the expres-
sion.

(SETQ B 10)

Working with Symbols 33

Finally, the C symbol is set to the value resulting from adding the values in A and B. If the previ-
ous expressions had been evaluated just before this expression, the result returned from the expres-
sion would be 11.

(SETQ C (+ A B))

If you look at the last expression more closely, you can see that it is actually two expressions.
The first expression is (+ A B). When the evaluator is given this expression, it evaluates A first.
The A symbol has been set to a value of 1 in a previous expression. That value is tucked away and
the evaluator continues by getting the value in B, which is 10. The result, 11, is stored using the C
symbol reference.

SETQ expressions that appear in a sequence one after another can be combined into a single
expression. This results in slightly faster execution because the evaluator does not have to work
with each individual expression. It also results in less typing when defining an expression or a com-
plex series of expressions. You could present the previous sequence to the evaluator as the follow-
ing single expression.

(SETQ A 1 B 10 C (+ A B))

Symbols and values must appear in pairs. The preceding expression pairs A with 1, B with 10,
and C with the result of adding A and B. And because the last assignment made was the result of
adding A and B, 11 is the result.

SETQ creates symbols that are associated with values. You could use SETQ also to create sym-
bols related to symbols and other expressions. This is where LISP is powerful compared to other
languages. Suppose that you want to set up a variable symbol that references another symbol, such
as the A symbol.

(SETQ D ‘A)

The quote mark before A tells the evaluator to only return the symbol, not evaluate it. At the
completion of this expression, the D symbol contains the A symbol. If you check D, it returns a
value of A — not the value of A, just the symbol. To get the value, you would have to further eval-
uate the symbol, as in (EVAL D). This sort of programming is not used for most applications and
is mentioned simply to let you know that it is available.

Defining symbols with DEFUN

The second subr for defining symbols is DEFUN. Symbols defined using DEFUN are user-defined func-
tions and can be used just like internal subrs. Plus, you can define functions that act like com-
mands for AutoCAD operators.

When defining a function, you must supply three components, as shown in the syntax of the
DEFUN expression.

(DEFUN <name> (<parameter list>) <expressions>)

The first component is the symbol name by which your function will be referenced. The name
should be unique because if you use the name of another function, the original function is no
longer available, its symbol having been replaced with your new definition. Sometimes, however,
you want to replace the definition of a given function (one of your own functions or, rarely, a

34 CHAPTER 3: The Essence of Visual LISP

function internal to Visual LISP), such as when testing new developments. When you want to
replace an earlier test version, just use DEFUN and define it again.

The second part of the DEFUN expression is the parameter list. The symbols in the parameter list
house values that you need to supply to the function from the calling routine. Any changes made
to these symbol values remain inside the function. I get back to this shortly. If there are no param-
eters, you must provide an empty list, represented by an open and closing pair of parentheses.

The third component of a function definition consists of the expressions that make up the func-
tion.

Throughout the remainder of this book, you will be creating functions of various types that
will be used to create even more functions. With this building-block approach, you can build com-
plex applications. Next, you take a closer look at naming a function.

Naming symbols

A function name is a symbol, so function names follow the rules for all symbol names in the Visual
LISP environment. A symbol name can consist of characters or a combination of characters and
numbers, but it cannot consist of only numbers. The following are valid symbol names: ABC, ABC1,
1A2, 2Pi, *PiR2, and Pi*R2. You can use any characters except the space, tab, apostrophe (single
quote), double quote, period, semicolon, and parentheses characters. (These characters are used
for other purposes in Visual LISP.)

Symbol names are not case sensitive. For example, the following symbols are the same: abc,
aBc, and ABC. The evaluator convert the input into uppercase. In addition, symbol names can be of
any length.

Symbol names should convey a meaning that is useful to those reading the program. For exam-
ple, if you have a function that calculates the area of a circle, you might name your symbols
RADIUS and AREA. Using mixed uppercase and lowercase for symbol names might make the code
easier to read. The following expressions are the same.

Symbol names can aid in a program’s legibility as much as comments.
When defining a function name, you can create a new command by adding C: at the front of

the symbol. For example, suppose that you want to create a command for AutoCAD named
FIDGIT. The symbol name used for the function in Visual LISP would be C:FIDGIT. (The C:
stands for command function; it has nothing to do with a drive letter on your hard disk.)

If you want the symbol name to replace an AutoCAD standard command, you should undefine
the command before defining the symbol name. To undefine a command name, you use the
UNDEFINE command in AutoCAD. When undefined, the local language version of that command is
no longer available. The global name must be used to invoke the original command. This feature is

(SETQ Area (* 2.0 Pi Radius))

(SETQ AREA (* 2.0 Pi RADIUS))

(SETQ area (* 2.0 Pi radius))

(SETQ AREA (* 2.0 Pi RADIUS))

Symbol Scope 35

provided so that you can disable components of AutoCAD or replace its commands with your
function definitions.

To illustrate, the expressions in Listing 3.1 undefine the LINE command and replace it with a
bogus command.

When the two expressions in Listing 3.1 are evaluated at the AutoCAD command prompt and
you are using the English version of AutoCAD, the LINE command is replaced with the prompt
message. Note that to use the LINE command, you must prefix it with an underscore, as seen in the
"_UNDEFINE" command. The underscore at the start of a command allows the English-language
version of the command name to be recognized in localized (non-English) versions of AutoCAD.

To run the original command, even if it is undefined, you include a period at the start of the
command. For example, if you wanted to draw lines after the expressions in Listing 3.1 are evalu-
ated, you could type .LINE and the normal LINE command would begin.

In Listing 3.1, the LINE command remains undefined until you either redefine it or start
another drawing, at which time the expressions must be run again to disable the command. The
redefinition is lost because the C:LINE symbol is known only in the drawing space in which it was
created. I talk about spaces as they apply to symbols and functions in several places in this book.
Here, however, you learn the concepts behind the scope of symbols within a single space.

Symbol Scope

The scope of a symbol, or variable, is where it can be seen. If you change a given symbol, you most
likely expect to retrieve it at a later time. Should that symbol no longer be available or have a value
that has been changed due to another routine running, your program is suffering from a
scope-related error.

Tracking the scope of a symbol in Visual LISP is simple. Symbols are defined as either local or
global in relation to a function. A symbol is local if it appears in the parameter list of the function.
If the symbol appears before a slash in the parameter list, it has an initial value supplied by the
calling function. When the symbol appears after the slash, its initial value is NIL. A symbol is con-
sidered global otherwise.

A local symbol can be seen only inside the function and by functions called inside that function.
After the function is finished, the symbol is no longer set to the value inside the function and
reverts to the value it had before the function was called.

Table 3.2 summarizes the differences between global and local symbols as well as bound sym-
bols.

Note that a symbol can be local to a given function in which another function is invoked or
called. If the symbol in the called function is also local (it is found in the parameter list) and that

Listing 3.1 Replacing the LINE command.

(COMMAND "_UNDEFINE" "LINE")

(DEFUN C:LINE ()

 (PROMPT "\nLINE command not available!"))

36 CHAPTER 3: The Essence of Visual LISP

symbol is set or changed to some value, two versions of the symbol exist at once: the current value
in the internal function and the saved value in the calling function. When the called function is fin-
ished, the symbol once again has the saved value, and the reference created when the called func-
tion was evaluated is gone.

Symbol scope is managed through the use of the stack,
an important component in LISP that is responsible for
many things. For now, I will simplify the stack and describe
it only as it relates to symbols. Figure 3.1 shows a simple
stack diagram. Items are placed on the stack from the top
and removed in reverse order. That is, the first one on is the
last one off. (And the last one on is the first one off.)

Each stack element contains two pieces of information:
the symbol name and the value associated with that symbol.
Symbols and values are stacked in memory as they are used
or defined. This allows two different entries to exist in the
memory of the computer with the same name. When you
access the stack to look for the value associated with a given
name, you get the value of the entry most recently placed on the stack.

Symbol scope examples

The simple example in Listing 3.2 will help illustrate symbol scope. The A1 function in the listing
does four things. First, it sets the value 1 into the A symbol. A appears in the parameter list of the
A1 function after the slash character (/), meaning that it starts with an initial value of nothing, or
NIL. Second, the A1 function prints the value stored in the A symbol. This results in the number
appearing at the command prompt or console in Visual LISP.

Third, the A1 function calls the A10 function. (The function definition for A10 is shown in List-
ing 3.3.) Note that to call a function that has no parameters (arguments), you use the symbol name

Table 3.2 Symbols in a function.

Variable type Scope Usage Description

Global
variable

Available every-
where in an appli-
cation

Holds calculated values
that might be useful else-
where.

A symbol is global with respect
to a function if it does not
appear in the parameter list of
the function.

Local
variable

Available only in
a function

Holds temporary vari-
ables or null variable sym-
bols. The value is NIL
when the function starts.

A symbol is local with respect to
a function if it appears in the
parameter list of the function
following the slash character.

Bound
variable

Available only in
a function

Holds passed parameter
values. Only the value is
passed, not the reference.

A symbol is bound to a function
if it appears in the parameter list
of the function before the slash
character.

Stack

Push On Pop Off

Figure 3.1 Stack storage.

Symbol Scope 37

surrounded by parentheses. The (A10) expression starts the A10 function and waits for it to return
a result. (This nesting of functions is how you develop complex programs, as you will explore in
the next chapter.) After the A10 function is finished and returns control to A1, the A1 function per-
forms the fourth operation, which is printing the value of A.

The A10 function in Listing 3.3 is essentially the same as the A1 function. The A symbol is
defined as a parameter to the function following the slash, which means that it has a NIL value at
the start of this function. As the A10 function begins to evaluate the first occurrence of the (print
A) expression, after being called from A1 function, the LISP stack of symbols contains two entries
that are both named A. The lower entry (the first one on the stack) has a value of 1. The upper
entry has a value of 10. Using the “last in, first out” rule, the (print A) expression uses the value
associated with the last entry on the stack, 10.

The next step in the A10 function is to call the A100 function, which is shown in Listing 3.4.

The definition of A100 follows the same lines as the definitions of A1 and A10. A symbol named

Listing 3.2 Defining the A1 function.

(DEFUN A1 (/ A)

 (SETQ A 1)

 (PRINT A)

 (A10)

 (PRINT A)

)

Listing 3.3 Defining the A10 function.

(DEFUN A10 (/ A)

 (SETQ A 10)

 (print A)

 (A100)

 (PRINT A)

)

Listing 3.4 Defining the A100 function.

(defun A100 (/ A)

 (setq A 100)

 (print A)

)

38 CHAPTER 3: The Essence of Visual LISP

A is defined in the parameter list following a slash. As the (print) expression is evaluated, three
entries are on the stack with the value A.

Now, if you typed all three of these functions in an editor window of the VLIDE, loaded the
three into the console for testing, and typed the (A1) expression, the following output would
appear.

Of special note is the value of A printed in the second (print A) expression inside the A1 and
A10 functions. After calling the A100 function, the value of A inside the A10 function remains 10.
The same situation is observed in the A1 function, where A has a value of 1.

After the (A1) expression has been evaluated, check the value of the A symbol. It should be NIL
or whatever other value you may have set it to earlier.

The example just shown is plain and simple. The A symbol is used over and over in each of the
functions. But what happens if the parameter list is changed so that A is not present? Listing 3.5
revises the function definitions for A1, A10, and A100 without A as a member of the parameter list.

If these functions are typed and evaluated by entering the (A1) expression, the resulting output is
different.

The A symbol was changed to 100 at the deepest level of the nested functions, inside A100.
Because A was not in the parameter list, the change was reflected to the next higher level. A was not
in the parameter list of any of the functions; if you check its value, you will find that it is now 100.

$ (A1)

1

10

100

10

1

Listing 3.5 Defining A1, A10, and A100 without local variables.

(defun A1 () (setq A 1) (print A) (A10) (print A))

(defun A10 () (setq A 10) (print A) (A100) (print A))

(defun A100 () (setq A 100) (print A))

$ (A1)

1

10

100

100

100

Symbol Scope 39

If a symbol name appears in the parameter list, it will be found on the stack. If the symbol name
does not appear in a parameter list, as in the preceding example, it is stored in another memory
location known as the heap. The heap is where you place symbols that can be accessed by all other
functions in your application. In the preceding example, the A symbol was not defined in the
parameter list of any function. As a result, whenever the symbol is accessed, the value and location
from the heap are retrieved.

In Listing 3.6, I change the sample functions one last time, putting the A symbol back in the
parameter list of the A1 and A10 functions, but not in A100.

Load and run this set of expressions.

Trace down to the deepest nesting inside the A100 function. The A symbol is set to the value of
100. The evaluator searches for the A symbol to see whether it had a location already set aside for
it, starting with the stack. At that instant, two members on the stack answer by the name of A. The
last one in is retrieved (it has the value of 10), and the value is replaced.

A100 then prints the value in A (which is 100) and returns to A10. The A symbol is retrieved
from the stack, where there are still two values. The most recent, from the parameter list declara-
tion of A10, is retrieved with the value 100, which is printed.

A10 then finishes and control is returned to A1. As A10 finishes, it clears the stack of the A
parameter it had defined. Now the stack has only one member for A, the original value of 1 set ear-
lier in the A1 function evaluation.

These basic examples show how the parameter list keeps your symbols in order. When you pro-
gram applications, it is important to keep in mind where your symbols are stored and what value
they might contain. Symbols used for variables can change in value during the evaluation of a
series of nested expressions, and it is easy to lose track of the details.

You should use a standard naming scheme to help differentiate between temporary variable
names and those needed elsewhere in the application. (For example, I use the name TMP for a tem-
porary variable. If I need more than one, I call the next one TMP2, and so on.)

Listing 3.6 Local scope example.

(defun A1 (/ A) (setq A 1) (print A) (A10) (print A))

(defun A10 (/ A) (setq A 10) (print A) (A100) (print A))

(defun A100 () (setq A 100) (print A))

$ (A1)

1

10

100

100

1

40 CHAPTER 3: The Essence of Visual LISP

If your program shares the memory of Visual LISP with other programs, your variables might
change during the evaluation of those other routines. At the same time, you might end up changing
a variable used by another program, rendering it useless. For now, suffice it to say that you should
avoid putting variables on the global heap and should store them on the stack during execution.
That means putting them in a parameter list somewhere in your application.

Naming scheme

All my programs follow a naming strategy that Autodesk recommends for developers wanting to
publish their work as part of the Developer Network. The first part of the strategy involves defin-
ing a set of five or so unique characters. All global symbols, both variables and function names,
use these same symbols as a prefix.

Suppose that you are creating an application for designing widgets, so you use WIDGT as the
prefix. Your function names follow the prefix with an underscore character, and your variables fol-
low the prefix with a colon. You then complete the name with a meaningful string, following the
rules for naming variables. As long as no one else has written an application named WIDGT, your
application should not interfere with any others.

The naming standard for symbols applies to symbols stored on the heap. For variables stored
on the stack during runtime, names can be anything you want in your application. This shortens
the coding requirements and makes for more elegant error-recovery options.

My applications typically start by retrieving global heap values stored using the prefix charac-
ters. These variables are then moved into local variables for easier manipulation and easier recov-
ery from any problems. The application then runs using the local variable references. Before the
application ends, the local variables are placed back in the global variables for later reference.
Another place to store variables is in an AutoCAD entity using extended data or attributes. Yet
another option is to define an Xrecord object. As you can see, the topic of using variables is an
important topic to get a handle on.

Returning Results

I have one last thing to note about functions and variables. Remember that all functions return a
value. For example, in the A1, A10, and A100 example function set, (PRINT A) returns a value to
the console, printing the result of 1 twice at the command prompt. You can avoid the direct return
to the command prompt in Visual LISP by adding a (PRIN1) or (PRINC) expression at the end of
the function. Most of the examples in this book take advantage of the “silent exit” provided by
(PRIN1) when a command function is involved.

Sometimes a function returns more than just a single result or returns a result that is difficult to
express as a data list or single value. In these cases, you can program the function to change global
values. This is what happened in Listing 3.6, where the A100 function changed the A symbol,
which was global with respect to A100 but local with respect to the parent function, A10. When a
function changes the value of a variable that is global with respect to the function, the function is
said to have a side effect.

Inspecting Symbols 41

Side effects can be desirable. For example, suppose you have a function that handles all input
from the operator and sets a series of variables from that input. The function then returns a true or
false result indicating whether or not valid input was received. In this case, the desirable side effect
is the setting of variables when the input is valid. Side effects in applications can also be the source
of problems that are difficult to trace. Unintended side effects occur whenever a variable assigned a
value in a function is not included in the function’s parameter list.

Inspecting Symbols

When creating applications, you will often find yourself needing to check the values, or binding, of
various symbols. There are two times when you will need to do this the most: to check global vari-
ables after running a program and to check local variables while the program is running. After
running the application, you may want to check the global variable bindings to see whether they
are what you expect them to be. This is accomplished by typing the name of the symbol at the con-
sole (at the _$ prompt in Visual LISP) or by typing an exclamation point (!) followed by the sym-
bol name at the AutoCAD command prompt.

At the console in Visual LISP, the sequence appears as follows.

At the AutoCAD command line, the same result is obtained by typing the following.

The only difference is the addition of the exclamation point at the AutoCAD command prompt.
The result is the same. The value for the symbol stored in the Visual LISP heap is displayed.

When using local variables or when you want to watch the value of a symbol while the pro-
gram is running, you must use the Watch window in Visual LISP and run the application from
inside the console. The Watch window works with breakpoints you set. This requires that you pre-
pare the program and environment before the test run. (For details on setting breakpoints, refer to
Chapter 2.)

The first step is to set the breakpoints where you want to stop evaluation and check the values
of the symbols in question. Locate the cursor at the open or close parenthesis of the expression

_$ (setq A 100)

100

_$ A

100

_$

Command: (setq A 100)

100

Command: !A

100

Command:

42 CHAPTER 3: The Essence of Visual LISP

where you want to stop. Then select the Toggle breakpoint icon (labeled in Figure 2.9 in Chapter
2). The parenthesis changes color to indicate that a breakpoint has been established at that loca-
tion. You can set as many breakpoints as you want in your program code.

To add a symbol to the Watch window, click the Add watch icon (labeled in Figure 2.9). A
small dialog box asks you what symbol you want to watch. This is a powerful tool when debug-
ging an application of virtually any size.

You can add symbols names while at a breakpoint when running the function. The Watch win-
dow updates at each breakpoint with the current bindings of the symbols you have requested for
display. You can add and remove symbols from the Watch window during runtime as well. This
feature is especially useful when trying to track down problems in advanced applications.

Another debugging tactic available when at a breakpoint is to enter expressions in the Console
window. This feature enables you to test various expressions using the data available, right then,
from the stack and the heap, and then break out of the program to adjust the code and run the test
again. The debug facilities in Visual LISP are several quantum leaps ahead of the original
AutoLISP as well as other program editor systems for LISP development with AutoCAD.

When you load and evaluate a program with breakpoints, the Visual LISP source code is shown
where the break is taking place. The Watch window is also displayed if you have activated it previ-
ously. If it is not active, choose the View menu in the Visual LISP window and then choose Watch
window.

Move to the next breakpoint by clicking the green arrow icon on the Debug toolbar. To exit the
evaluation and return to the editor to make changes, click the red arrow icon. A little practice with
the Watch window and breakpoints will reveal the power they give you when testing your applica-
tions.

Recovering from Errors

While talking about debugging, it is a good time to bring up the subject of how a program can
gracefully recover from an error. Even though you may have tested your program thoroughly,
errors will occur. You need to set up a path for the system to follow when a problem occurs in the
evaluation of your application. To do this, you use the *ERROR* symbol as a function in your pro-
gram code.

Visual LISP starts the *ERROR* function when an error occurs in the evaluation of the code.
The type of error is supplied as a string argument to the function. You have the opportunity to
save your global variables from the local variables because the function is running within the scope
of the function that caused the error. To save values stored in local variables, simply use SETQ to
move them to global variable names. When doing this, use great care because the error trap has
been tripped once and won’t be tripped again even if an error occurs in your recovery operations.

When programming an error-recovery trap, do not try to communicate with the operator using
input statements. Instead, save the variables you want to save, restore any system variables you
may have changed, and return control to the system. You may want to send a message on exit tell-
ing the operator what went wrong or how to restart your application.

An example of an error trap is presented in Listing 3.7. This error trap resets a few AutoCAD
system variables and, if the error was not the result of a function cancel request, updates some

Recovering from Errors 43

global variables. The error trap is related to a fictional function where many of the variables are
established.

The line containing the Line 1 comment is an expression that shows the SETVAR subr in
action. SETVAR is used in Visual LISP just like the SETVAR command in AutoCAD. The function
has two arguments: the name of the system variable as a string and the value to be used. The type
of data presented as the value will vary depending on the system variable being changed. Line 1
sets an integer flag for the CMDECHO system variable. CMDECHO is frequently turned off (value of 0)
while Visual LISP programs are running. This function turns CMDECHO back on again.

SETVAR appears again in Line 3, but this time with a real number argument for the value to be
set into the text height system variable. Before using the value supplied as a variable in Line 3, it is
tested in Line 2 to see that it is proper. Line 2 is a combination of two tests and starts with the IF
subr. Following the IF subr is a test or predicate expression. A predicate expression checks to see
whether something is true or false. In LISP, anything that is false is NIL, and anything that is not
NIL is considered to be true. The predicate in Line 2 is an AND combination.

The combination in Line 2 is an AND expression, so both tests must evaluate to true for the
combination to be considered true. The first test is whether the SAVED_TEXTSIZE symbol evaluates
to a non-NIL value, and the second test is whether SAVED_TEXTSIZE is a real number. In this
example, the SAVED_TEXTSIZE, USER_USERNAME, and INPUTNAME symbols are assumed to have
come from the parent function that is making use of the *ERROR* function.

Presenting the evaluator with just the symbol name is a way to test the symbol to see whether it
has a value. The evaluator returns the current value, or binding, of that symbol when used in this
context. If the binding is NIL, the test is false. If the binding is not NIL, the test is true and the sec-
ond test in the AND expression takes place. By nesting predicates in this way, you can define com-
plex problems with a few lines of code.

Skipping to line 4, you can see another test expression. In this expression, MSG, which is the
message string parameter supplied to the function when the error handler was tripped, is tested to
see whether it contains the "CANCEL" string. When “CANCEL” is found in the string, it means that
the operator pressed the Escape key to end the current activities. Beginning at the innermost paren-

Listing 3.7 Error trapping.

(DEFUN *error* (MSG)

 (SETVAR "CMDECHO" 1) ;Line 1

 (IF (AND SAVED_TEXTSIZE ;Line 2

 (= (TYPE SAVED_TEXTSIZE) ‘REAL))

 (SETVAR "TEXTSIZE" SAVED_TEXTSIZE)) ;Line 3

 (IF (NOT (WCMATCH (STRCASE MSG) ;Line 4

 "*CANCEL*"))

 (SETQ USER_USERNAME INPUTNAME)) ;Line 5

)

44 CHAPTER 3: The Essence of Visual LISP

thesis pair, the (STRCASE MSG) expression converts to uppercase every character in the MSG string.
The resulting string is returned to the (WCMATCH <result string> "*CANCEL*") expression.
The WCMATCH subr is a powerful tool for comparing strings, a frequent task when your application
involves user input or dimensions. WCMATCH (for wildcard match) is similar to many wild-
card-based comparisons. The asterisk character (*) is a wildcard character that matches any char-
acter or set of characters. This function returns true if the characters CANCEL are found in the
message string.

In this error trap, you want to check whether the user pressed the Escape key to cancel the pro-
cess. In this case, you should not save your temporary variables in global memory. But if the user
did not press Escape, you could save the input value in the global variable. Thus, line 4 contains a
NOT expression that reverses the answer for the WCMATCH expression. In other words, you are inter-
ested in knowing whether the message string does not contain the word CANCEL.

If the message does not indicate a cancel, the INPUTNAME variable is saved in the
USER_USERNAME global variable in line 5. The INPUTNAME variable is assumed to exist as part of
the fictional application. If INPUTNAME does not have a binding, the USER_USERNAME variable is set
to NIL.

This function restores system variables and saves global variables for your application. That is
all is it is expected to do under most circumstances. However, sometimes an error trap function
must work with other error trap functions. After all, they all use the same *ERROR* symbol name
(if they share the document variable space). One way to avoid serious conflicts is to preserve the
ERROR symbol before defining your own in an application. Another way is to define the *ERROR*
symbol as a local variable at the onset of your program, and then run the DEFUN expression inside
your program module, as shown in Listing 3.8.

The (SETQ *ERROR* ERRORSAVE) expression must appear also at the end of the application
because it will most likely not always terminate through the error trap. If you are careful in the
usage of the symbol and the preservation of preexisting error traps, your program should get along
fine with others in the system.

There are better ways to work with the *ERROR* trapping system in Visual LISP if your goal is
to distribute software or provide for a larger user base. One of the best ways is to use the
namespace aspect of a compiled Visual LISP application. That way, you know the *ERROR* trap
routing was through your program and only your program. You can learn more about compiled
Visual LISP applications in the online help system in the Visual LISP IDE.

Listing 3.8 Replacing the *ERROR* function.

(SETQ ERRORSAVE *ERROR*)

(DEFUN *ERROR* (Msg)

 ... your error trap function …

 ... end error trap by setting *ERROR* to ErrorSave

 (SETQ *ERROR* ERRORSAVE)

)

Example: Returning Current AutoCAD Settings 45

Example: Returning Current AutoCAD Settings

Thus far in this chapter, I have discussed in general terms the essential power that lies in Visual
LISP. In this section, you run an application that shows the power of Visual LISP in terms of defin-
ing problems to the computer. That is, you see an example that actually does something that might
be considered useful.

The (C:HELLO) function, starting with Listing 3.9, demonstrates many of the concepts you
have explored in this chapter. This version of (C:HELLO), which is more useful than the one pre-
sented in Chapter 2, displays the settings of the current AutoCAD session. The user or the pro-
grammer control these settings in a list of items. The list contains system variable names as well as
the symbol names of functions to run to obtain an answer about the drawing or system environ-
ment.

This is a complex example, involving features of Visual LISP that might be unfamiliar to those
just learning the language, such as list processing and the use of programs as data. The report gen-
erated by the next function is driven by the contents of the SETTINGSQUERY data list, which is a
nested list. The SETQ expression assigns the entire list to the SETTINGSQUERY symbol. The single
quote mark at the beginning of the nested list definition means that nothing in the list is evaluated
as the assignment is made.

Each sublist in SettingsQuery contains two pieces of data: the first piece of data is either a
string or a list, and the second is always a string. Each list entry represents an element of data that
you want to extract from the AutoCAD system. If the first data piece is a string, it is expected to be
the name of an AutoCAD system variable. If the first data piece is a list, the list is evaluated. The
result of the list evaluation or the system variable retrieval is displayed following the string value,
which is the second piece of data in each list item.

Listing 3.9 Defining a data list.

(SETQ SETTINGSQUERY

 '(("CLAYER" "Current layer")

 ("TEXTSTYLE" "Current text style")

 ("DIMSTYLE" "Current dim style")

 ("TEXTSIZE" "Current Text Size")

 ((E_COUNTER NIL) "Number of entities")

 ((E_Counter "LINE") "Number of Lines")

 ((E_COUNTER "INSERT") "Number of block inserts")

 ("TDINDWG" "Time in Drawing")))

46 CHAPTER 3: The Essence of Visual LISP

Sample output from a simple test drawing follows. After the function set is loaded into mem-
ory, the(C:HELLO) command function runs. Changing the data list modifies the output.

Listing 3.10 shows the (C:HELLO) function definition. (Note that the listing on the CD contains
more comments and additional prompts to the operator at the beginning of the function.) The
(FOREACH) expression is the heart of the routine. Given a list of data, an expression based on
(FOREACH) takes each element out of the list and moves it to another symbol reference. Within the
(FOREACH) expression are more expressions to be evaluated using the list member data.

Look towards the bottom of the listing for the closing parenthesis on the same line as the END
FOREACH comment. This is the closing parenthesis for the entire FOREACH expression. As you can
see, FOREACH makes up most of the function. What that means is that inside this function, you are
working with each individual list element in the SETTINGSQUERY data list. The first time the func-
tion runs, the ITEM symbol contains the first element in the data list. The second time, the ITEM
symbol contains the second element in the data list. The FOREACH expression sequence repeats for
each element in the data list.

The FOREACH expression is called a loop. The program loops through the expressions in the
FOREACH expression for each member of the list argument. Loops and iterations are important
parts of programming logic, repeating tasks over and over until a solution is reached.

Inside the FOREACH loop expression, the ITEM and SETTINGSQUERY symbols are presented as
arguments. ITEM is a local symbol that will house each of the elements in SETTINGSQUERY one at a
time. Because each element of SETTINGSQUERY is a list, ITEM will be a list. SETTINGSQUERY is a
nested list, and thus each element is expected to be a list itself.

The next expression in the program is a conditional (COND). The COND and IF statements are
both conditionals and provide the tools by which LISP can make decisions. They are used in a pro-
gram when you want to test the condition or setting of something. Based on the condition, the
program executes specific code and skips other sections of code. The IF conditional expression is
used when there is one test with up to two possible branches to follow. COND is used when more
tests are needed, as in the example program.

This program is testing to see whether the first element in ITEM is a string or a list. The element
could also be a number or some other atomic data type that the program does not support. Thus,
the program could take one of three possible branches.

Command: HELLO

Current layer = 0

Current text style = Standard

Current dim style = Standard

Current Text Size = 0.200

Number of entities = 12

Number of Lines = 4

Number of block inserts = 2

Time in Drawing = 0.012

Example: Returning Current AutoCAD Settings 47

Listing 3.10 Defining the HELLO function.

(DEFUN C:HELLO (/ TMP ITEM)

 ; Loop through the SettingsQuery data list

 (FOREACH ITEM SETTINGSQUERY

 (COND ;Test first element in Item

 ; Is it a string?

 ((= (TYPE (CAR ITEM)) 'STR)

 (SETQ TMP (GETVAR (CAR ITEM))))

 ;Is it a list (expression)?

 ((LISTP (CAR ITEM))

 (SETQ TMP (EVAL (CAR ITEM))))

 ;Otherwise we don't know what it is.

 (T

 (PROMPT "\nInvalid object in Item - ")

 (PRINC ITEM) ;show user what it was

 (SETQ TMP NIL) ;no further output

)

) ;END COND

 ; Check to see whether TMP has a binding

 (IF TMP

 (PROGN

 (PROMPT

 (STRCAT

 "\n" ;New line of output

 (CADR ITEM) ;Descriptive text

 " = " ;Equal sign and spaces

))

 (PRINC TMP)))

) ;END FOREACH

 (PRINC) ;Quiet exit from function

)

48 CHAPTER 3: The Essence of Visual LISP

The first test is to see whether the type of data in the first element of the ITEM list is a string.
The test expression contains several nested expressions that manipulate the data. Starting at the
innermost parenthesis pair, the (CAR ITEM) expression extracts the first data element in the ITEM
list. The result of the expression is passed up to the next level, which is (TYPE (...)), where
(...) is the expression just evaluated. The TYPE expression returns a symbol representing the
type of data provided as an argument. TYPE returns ‘STR for a string, ‘INT for an integer, NIL for
nil, and so on. In this example, you are retrieving the type of data for comparison. If the value is a
string, you want to act accordingly.

The result of the (TYPE (...)) expression is returned to (= (...) ‘STR), which is a test
expression. A test expression returns one of two values. If the test fails, the result is NIL. If the test
passes, the result is the T symbol, which stands for true. In LISP, anything that equals NIL is false,
and all other things are true. Thus, this test returns T if the type of data found in the first element
of the ITEM list is a string.

When a true result is found, the expressions in the parentheses for the test are evaluated. Note
that the = expression has two open parentheses. The expressions that are found before the match-
ing close are associated with the test expression inside the COND expression. When a string is found
as the first element in the ITEM list, the program is supposed to retrieve the AutoCAD system vari-
able related to the name. (Visual LISP excels at accessing the AutoCAD environment.) GETVAR
returns the value of an AutoCAD system variable given the name. The result of the GETVAR func-
tion is placed in the TMP symbol.

GETVAR returns a variety of data types, ranging from strings to numbers to data lists. SETQ does
not care about the type of data and simply puts it in the TMP symbol for later reference. GETVAR
provides access to all system variables in AutoCAD, including many that are not normally seen by
operators, such as the serial number of the AutoCAD package ("_PKSER").

The SETQ expression is the only expression associated with the string data type comparison. A
closing parenthesis mates with the open parenthesis found at the start of the equality test.
Following the closing parenthesis is another test expression, which checks to see whether the first
element in ITEM is a list.

You can test to see whether a variable references a list in two ways. You can use the LISTP
expression to see whether an item is of type LIST. The only problem is that something with a value
of NIL also evaluates as being a LIST. (This has to do with the nature of lists, which you explore in
later chapters.) The other way to test whether a symbol has a binding to a list is to use the TYPE
expression. TYPE returns LIST if the item in question is a list. If the item is NIL, the value returned
from TYPE is NIL as well.

The second test in the COND expression checks whether the first member of the ITEM sublist is a
list. If it is, it is assumed to be a form. That is, it can be evaluated to produce a result. In LISP, the
evaluator can be invoked inside a program and presented with an expression or symbol to produce
a result. This is accomplished using the EVAL subr. When given a symbol, EVAL returns the value,
or binding, of that symbol. When given a list, EVAL tries to evaluate it as an expression. This
means the first element in the list must be a function name or an internal subr from Visual LISP;
otherwise, there will be a problem.

In the example function, the EVAL expression argument is the value of the first element in the
ITEM list. The result is stored in the TMP symbol using SETQ. The data in ITEM is the name (and any

Example: Returning Current AutoCAD Settings 49

required arguments) to a function call you have defined. Refer back to Listing 3.9, to the
SETTINGSQUERY values that contain the name E_COUNTER. This is the name of your own function,
which is shown in Listing 3.11.

The call to E_COUNTER has been stored as a list that has yet to be evaluated, in other words, a
part of a program stored as data. This is perfectly normal in LISP, unlike in many other program-
ming languages. (This feature in LISP brings up some interesting possibilities, such as programs
that change themselves as they run.)

Returning to the example function, you reach the last test for the COND expression. A T is
located in place of a test expression. T is true and thus the test is always true. When used at the end
of a COND expression like this, the T is sometimes called “otherwise” because of the way you read
the program to yourself. The example function logical could be read as:

On the condition that the first element in the list is a string, get the system vari-
able. If the first element in the list is a list, evaluate it. Otherwise, post an error
message to the operator and do not output anything.

At the completion of the COND expression, the function tests the TMP symbol to see whether it
has a binding. The (IF TMP ...) expression simply checks the TMP symbol; if it is not NIL, the
expression following the test is evaluated. Remember that the difference between IF and COND is
that IF offers one or two branches. The COND expression offers any number of optional branches.
There is another subtle difference that you will explore next.

The IF expression consists of a test followed by a single expression that is evaluated when the
test is true. Following that expression is space for an optional expression that is evaluated if the
test is false. If the optional expression does not exist, program control skips the expression follow-
ing the IF test. The IF expression appears in one of the following two forms.

The <test> can be a symbol name or an expression. When the value is NIL, the test is false. When
the value is non-NIL, the test is true.

When you need more than one expression in an IF statement clause, use the PROGN expression.
PROGN allows you to group a set of expressions into one expression, satisfying the single expression
requirement. Another alternative is to define a function and simply use the function call in the
statement. I discuss test expressions (called predicates) and the use of conditions in Chapter 7. For
now, note that the example function uses an IF statement that contains one expression for the
THEN case using the PROGN subr.

In the THEN expression of the example, a string is output showing the descriptive text and the
value in TMP. Two expressions are contained in PROGN. The first is a PROMPT in which the string in
the second element of the ITEM list is displayed followed by an equal sign. The second expression is
another type of print statement called PRINC. PRINC outputs the value of an expression and, if
given a symbol, outputs the value associated with that symbol. Thus, PRINC can handle any data
type, whether it is a real number, an integer, a string, or a list. PROMPT can work with only strings,
which is why you could not simply add the TMP value to the PROMPT string.

(IF <test> (then-expression))

(IF <test> (then-expression) (else-expression))

50 CHAPTER 3: The Essence of Visual LISP

Inside the PROMPT expression is the STRCAT string concatenation subr. STRCAT takes any num-
ber of strings and runs them into a single, larger string. In this example, three strings are com-
bined. The first is the character combination \n, which is a new line character constant in Visual
LISP. (When used in a prompt statement, the output begins on a new line. Without it, PROMPT out-
puts the string immediately following the previous output, with no space or new line inserted.)

The second string combined in the STRCAT expression is the result of another expression, CADR.
CADR similar to the CAR subr except it returns the second element of the data list. CAR and CADR
type statements in Visual LISP will make more sense after you explore the composite primitives.
For now, just remember that CAR gets the first member of a list and CADR gets the second member.

The last string added in the STRCAT expression is the = constant, which is added to separate the
descriptive text from the output of the data in the TMP symbol. These three strings are combined in
STRCAT and returned to the PROMPT expression, which sends the characters to the command win-
dow in AutoCAD.

This concludes the example function, with the exception of the E_COUNTER utility function that
was used as part of the example data list. E_COUNTER is shown in Listing 3.11 for reference. I
describe how functions like it work later (in Chapter 13), after you explore the entity-handling fea-
tures in Visual LISP.

Summary

You covered a lot of ground in this chapter. Starting with an overview of how Visual LISP works,
you found out the concepts behind the evaluator, what symbols are all about, and how to define
functions. The example demonstrated list processing and the use of program code as data while
showing off the power inherent in the language.

Visual LISP is unlike most other computer programming languages. If you work with other lan-
guages, you will know that you have mastered Visual LISP when in your other code, everything is
a function and returns a value to be used by a calling function that in turn sends a value back. Per-
haps the only drawback to Visual LISP is the enormous library of functions that are available for a
variety of application-related tasks. With more than 800 functions, many of which remain to be
documented, it is easy to overlook one or two that may be important for your current work.

Listing 3.11 Counting entities of a particular type in a drawing.

(DEFUN E_COUNTER (ETYPE / SS1)

 (IF (OR (NULL ETYPE)

 (= ETYPE ""))

 (SETQ ETYPE "*"))

 (SETQ SS1 (SSGET "X" (LIST (CONS 0 ETYPE))))

 (IF SS1 (RTOS (SSLENGTH SS1) 2 0) "0")

)

Summary 51

If the concepts behind list processing unnerved you, do not worry. Lots of Visual LISP pro-
grams are written with a distinctive accent from other languages. The program in this chapter, for
example, could have been written more quickly as a series of outputs for a small list of items.
FORTRAN, C, Basic, or Pascal programmers might be more comfortable avoiding lists until some
basic concepts are understood, such as the fact that lists are a lot like arrays and structures, two
powerful storage strategies design to optimize the repeating nature of the computer. You cannot
avoid data lists, however, when it comes to geometry, because points are stored as lists of three
numbers.

52 CHAPTER 3: The Essence of Visual LISP

This Page Intentionally Left Blank

53

CHAPTER 4

Working with Strings

The most common type of data you will use when writing programs is the string type, which con-
sists of a string of characters. Strings can carry an assortment of data, most of which is coming in
from or going out to the user. Input and output is a key element of any program. In this chapter,
you explore how strings are stored, created, joined, torn apart, and converted.

Storing Strings

Visual LISP treats all strings as equals. Whether a string is empty or many characters long, the
operations remain the same.

To create a string constant, you simply supply a string between quotation marks (") in the
appropriate place in the program. Your string can be any length, although you might want to keep
it within reasonable limits for printing. Strings are created also by when they are read from a file,
input by the operator, obtained from dialog boxes, or the result of a conversion from another data
type.

To save a string, you use a SETQ expression and giving the string a symbol name. Strings are
stored on the stack or the heap, depending on where the symbol is defined. It is a good idea to keep
strings from growing too large to minimize the amount of stack or heap space used. If your pro-
gram is running out of memory, you probably have too many strings in use. There are two recur-
ring themes to memory problems and strings.

It may be that the stack is overflowing (a stack overflow error is produced in Visual LISP), in
which case you are most likely using large strings in a function that is being called frequently or
recursively. Those strings should be moved to the heap or to a function that is higher in scope so
that they are not stored on the stack each time the function is called.

Another issue often related to poor string management is a significant slowdown in perfor-
mance after running a process for a while. If this occurs, the heap is probably storing strings that
are not being used anymore and are just taking up space. You should free up the symbols by set-
ting them to NIL. The next time Visual LISP manages heap memory, it will make use of the
recently freed space.

54 CHAPTER 4: Working with Strings

A last item to consider when working with string data is also performance based. Strings usu-
ally take up more space than numbers. Thus, when storing numeric values input by the user, con-
vert them to an integer or a real number. Do not save them as strings after the input or output
phase of your program is finished. When you need to manipulate these values as numbers, it is
more efficient to have converted them only once and not multiple times. For example, suppose an
input item is an angle value. Instead of converting the string to a real number angle for manipula-
tion in the program, convert it to an angle value after the input process is finished. But note that it
is best to keep everything stored as strings when working with dialog box contents. After the user
clicks the OK button, convert the strings to numbers.

The example expressions in Listing 4.1 create strings using a variety of functions. In the first
part of the SETQ, the GR symbol is set to the constant string "Greetings "(note the space). Next,
the NM symbol is set to the result of the user typing his or her name. The OUT symbol is set to the
result of combining the values in GR and NM. Then the operator is asked to supply an integer num-
ber. That number is stored in the NUM symbol, converted to a string using ITOA, and stored in SNUM.
Next, the OUT symbol is used again to add the number input along with more constant strings. The
OUT symbol is then printed.

This nonsense example shows that most of the time, you will be using strings as variables and
with a SETQ expression. Strings are then used as arguments to other functions to build more com-
plex strings. Because variable names and the amount of space they consume does not need to be
defined in Visual LISP, working with and manipulating strings in this language is easy.

Manipulating Strings

Visual LISP provides a nice collection of string manipulation functions. You engage in only a few
activities related to the string values themselves: putting strings together, taking strings apart, con-
verting strings, and searching strings for matches with other strings. When building strings for out-
put reports, annotations on drawings, prompting the operator, and any other basic activity, you
will probably be using some of the subrs described in this chapter.

Listing 4.1 Creating a string.

(SETQ GR "Greetings "

 NM (GETSTRING 1 "\nEnter your name: ")

 OUT (STRCAT GR NM)

 NUM (GETINT "\nEnter an integer: ")

 SNUM (ITOA NUM)

 OUT (STRCAT OUT ", you chose " SNUM " today. ")

)

(PRINT OUT)

Manipulating Strings 55

This section describes common string manipulation functions: STRCAT, STRLEN, STRCASE,
VL-STRING-SUBST, and VL-STRING-TRANSLATE. Simple examples of these functions are shown in
Table 4.1. Note that the results of an entry in this table are carried forward to the next row. When
SETQ is used to save a value associated with a symbol, that symbol will be used in one or more of
the expressions that follow.

Building larger strings

The string concatenation function, STRCAT, combines strings into a larger string. All the arguments
to STRCAT must be strings, and the result is a string that combines the various items. Any spaces,

Table 4.1 Examples of string manipulations.

Expression Result

(STRCAT "A" "B" "C" "D" "E" "F"
"G" "H")

"ABCDEFGH"

(STRCAT "123" "," "456") "123,456"

(SETQ A (STRCAT "1" " & " "2")) "1 & 2"; the A symbol references the string

(SETQ B (STRCAT A " & " "3")) "1 & 2 & 3"; the B symbol references the string

(STRLEN A) 5

(STRLEN B) 9

(SETQ C "AbCdEfGhIj") "AbCdEfGhIj"; the C symbol references the
string

(STRLEN C) 10

(STRCASE C) "ABCDEFGHIJ"

(STRCASE C 1) "abcdefghij"

(SETQ D (STRCAT (STRCASE C)
(STRCASE C 1)))

"ABCDEFGHIJabcdefghij"; the D symbol refer-
ences the string

(STRLEN D) 20

(STRLEN (STRCAT A B C D)) 34

(VL-STRING-SUBST "and-uh" "&" B) "1 and-uh 2 & 3"

(VL-STRING-SUBST "and-uh" "&" B 5) "1 & 2 and-uh 3"

(SETQ CC "123,456.789") "123,456.789"; the CC symbol references the
string

(VL-STRING-TRANSLATE ",." " ," CC) "123 456,789"

(VL-STRING-TRANSLATE "AB" "12" C) "1bCdEfGhIj"

(VL-STRING-TRANSLATE "AB" "12"
(STRCASE C))

"12CDEFGHIJ"

56 CHAPTER 4: Working with Strings

commas, or other delimiters you may need to use in the output must be inserted using STRCAT. The
STRCAT function can accept from zero to as many arguments as you need to supply.

Converting the case

To convert characters to uppercase or lowercase, you use the STRCASE subr in an expression.
STRCASE accepts a single string as an argument followed by an optional flag. If the flag is present
and not NIL, the string is converted to lowercase. If the flag is not provided or is NIL, the string is
converted to uppercase.

The STRCASE subr changes only the alphabetic characters in a string. Numbers and special
characters are unchanged because there is no logical conversion between uppercase and lowercase
for these items.

Finding the length of a string

Given zero or more strings as its argument, the STRLEN subr returns the total length of the strings
as an integer. The length of the string is the count of the number of characters in the string, includ-
ing spaces and special characters. The string length is a helpful value when you want to loop
through a string and pull out specific information. It can also serve as an indicator as to whether or
not input is correct.

Substituting characters in a string

Sometimes you might need to change certain characters in a string. For example, if you are
expressing numbers in the various standards around the world, you might need to substitute the
decimal character with a comma and visa versa. You might also need to change the spaces and
commas separating each order of thousands. For example, the number 45,123.5 in one standard is
45 123,5 in other standard.

To substitute characters in a string, you use the VL-STRING-SUBST subr, which has four argu-
ments. The first and second arguments are the new string and old string, respectively. The third
argument is the source string in which to do the substituting. The last argument, which is optional,
is an integer indicating where to start making substitutions. One nuance to keep in mind is that the
position of the first character in this case is 0, not 1. One way to figure out which number to use
with different Visual LISP functions is to remember that all newer functions use 0 as the base, but
older functions use 1. You can easily recognize most functions added when Visual LISP made its
appearance by their VL prefix.

VL-STRING-SUBST changes only the first occurrence of the pattern string it finds in the source
string. If you need to make many changes to the source string, call VL-STRING-SUBST as many
times as needed or use the VL-STRING-TRANSLATE subr.

VL-STRING-TRANSLATE replaces characters in a source string. It replaces only characters, not
substrings. Given the set to match, the replacement set, and the source string, this function returns
a new string. The function matches exact characters, so it is case specific.

Reducing Strings 57

Reducing Strings

Many times, you need to take strings apart to form substrings. Visual LISP provides a variety of
tools to facilitate this activity, including SUBSTR and the three related functions VL-STRING-TRIM,
VL-STRING-RIGHT-TRIM, and VL-STRING-LEFT-TRIM . These functions are introduced in this sec-
tion. Table 4.2 provides some simple examples.

Returning a portion of a string

The SUBSTR subr returns a portion of a string given a starting location and an optional number of
characters to retrieve. SUBSTR is useful because you can strip one character or a small group of
characters at a time. SUBSTR has three arguments. The first argument is the string from which you
want to extract a portion. The second argument is the starting position in the string, with the first
character considered 1. The last argument, which is optional, is the length of the string to be
returned.

A common use of SUBSTR is to reduce a string one character at a time to look for delimiters,
such as a comma or a space. The basic concept behind analyzing, or parsing, a string is to remove
the first character from the string, reduce the string by one character, and then continue until every
character in the source string has been analyzed. For example, the series of expressions in Listing
4.2 reduce a string referenced by the ISS symbol by taking one character at a time out of the
string, placing it in CH, and doing something with the character just read.

At the end of the chapter are several parsing examples that read a source string and return a list
of data extracted from the string. This is a common activity when reading data files created by
other programs or devices.

Trimming strings

The VL-STRING-TRIM subr removes characters from the beginning and end of a string. This is use-
ful when processing strings from a file or some other device that pads data with extra spaces or
other characters. The arguments to VL-STRING-TRIM are the pattern character set and the string to

Table 4.2 Examples of string reductions.

Expression Result

(SETQ A "123A123B123") "123A123B123"; the A symbol references the
string

(SUBSTR A 1 1) "1"

(SUBSTR A 2) "23A123B123"

(SUBSTR A 2 3) "23A"

(VL-STRING-TRIM "1234567890" A) "A123B"

(VL-STRING-LEFT-TRIM "1234567890" A) "A123B123"

(VL-STRING-RIGHT-TRIM "432" A) "123A123B1"

58 CHAPTER 4: Working with Strings

trim. The pattern character set is supplied as a string of one to many characters. The result of the
function is the trimmed string.

Two related functions are VL-STRING-RIGHT-TRIM and VL-STRING-LEFT-TRIM. These two
functions behave in the same manner and with the same arguments as VL-STRING-TRIM. The only
difference is that one trims the right side of the source string and the other trims the left side. As in
the VL-STRING-TRIM function, any characters matching the pattern characters are removed.

You cannot use wildcards or groups as pattern characters. If you have a large selection of char-
acters to remove from either end of a string, consider a more specialized string parsing system of
your own design.

Searching Strings

String searching is important in many applications. For example, you may have to read the title
block of a drawing (where the drawing and project information is typically drawn) and determine
whether a part number or other critical data is valid. You can use legacy search utility routines to
search strings a character at a time, or you can use Visual LISP search routines, which are much
faster because they are compiled routines and not evaluated LISP code. This section describes the
VL-STRING-SEARCH, VL-STRING-POSITION, ASCII, CHR, and VL-STRING->LIST subrs. See Table
4.3 for some simple examples.

You will want to do a few tasks when searching strings. The first is to simply determine
whether a source string has a matching pattern; this is a string comparison function. For example,
you might see whether a string representing a filename has a file extension by detecting a period
near the end of the string. Another activity related to searching strings is finding where in a string
something is located. Following along with the same example, if you want to remove that file
extension, knowing where the period is located makes the task easy.

Visual LISP’s string searching utility, VL-STRING-SEARCH, accepts a pattern string, a source
string to search, and an optional starting position to begin the search. The result is NIL if no match
is found or an integer indicating the position in the source string where the match starts. Because
this is a VL function, the positions in the string are zero-based, which means the first character is
at position 0.

VL-STRING-SEARCH is used to search for string comparisons of any length. If you are searching
for a single character, use the VL-STRING-POSITION subr, which is optimized to search for a single
character. The VL-STRING-POSITION subr has four arguments. The first argument is an integer

Listing 4.2 Reducing a string.

(WHILE (> (STRLEN ISS) 0)

 (SETQ CH (SUBSTR ISS 1 1)

 ISS (SUBSTR ISS 2)

)

 ... ; Do something with CH

)

Searching Strings 59

containing the ASCII (American Standard Code for Information Interchange) number for the char-
acter to be located. The second argument is the string to search. The last two arguments, which are
optional, are an integer to indicate where in the string to start the search (zero-based) and a flag to

Table 4.3 Examples of strings searches.

Expression Result

(SETQ A "AbCdEfGhIj")Ô "AbCdEfGhIj"; the A symbol references
the string value

(VL-STRING-SEARCH "CdE" A) 2; the location is zero-based

(VL-STRING-SEARCH "cde" A) NIL; the search is case sensitive

(SETQ F "C:\\My
Documents\\MyFile.Txt")

"C:\My Documents\MyFile.Txt"; the
F symbol references the string

(VL-STRING-POSITION (ASCII ".") F) 22; the location is zero-based

(SETQ SLASH (ASCII "\\")) 92, the ASCII code for the backslash charac-
ter

(VL-STRING-POSITION SLASH F) 2, the zero-based location of the first back-
slash in the string as seen from the front of
the string

(VL-STRING-POSITION SLASH F 3) 15, the zero-based location of the second
backslash as seen from the front of the
string; the location of the first slash is incre-
mented by 1 to start the search

(VL-STRING-POSITION SLASH F 0 ‘T) 15, the zero-based location of the first back-
slash as seen from the back of the string

(SETQ DQUOTE (CHR 34)) "\"", creates a symbol to reference the
double quote character.

(STRCAT "12" DQUOTE " equals a foot.") "12\" equals a foot."

(SETQ Slash (CHR 92)) "\\", creates a symbol to reference the
backslash character

(STRCAT "C:" SLASH "My Documents"
Slash "MyFile.TXT")

"C:\\My Documents\\MyFile.TXT"

(SETQ B "123+100") "123+100"; the B symbol references the
string

(SETQ BLIST (VL-STRING->LIST B)) (49 50 51 43 49 48 48); the Blist
symbol references the list; the numbers are
ASCII character codes for values in the B
string

(SETQ BLIST (SUBST 32 43 BLIST)) (49 50 51 32 49 48 48); SUBST sub-
stitutes 32 for 43

(SETQ B (VL-LIST->STRING BLIST)) "123 100"; character 32 is a space

60 CHAPTER 4: Working with Strings

indicate whether the string should be searched from the back. Searching from the back can be
handy, for example, when looking for a period that may mark the beginning of an extension in a
filename.

Two subrs are used when converting to and from ASCII character codes: ASCII and CHR.
(ASCII is a character coding system used by computers. When you create a string, you are actually
creating a sequence of ASCII character codes.) The ASCII subr returns an integer representing the
ASCII code of the first character in a string provided as an argument to the subr. CHR is the oppo-
site. Given an integer, CHR returns the character as a string containing the one character.

The ASCII subr is often used to make code readable. For example, integer 65 is the ASCII num-
ber for A. Instead of inserting the integer 65 in the code as part of a search pattern, it is more read-
able to have (ASCII "A"). Also, you don’t have to memorize the ASCII table for characters such
as the period, equal sign, double quote mark, and so forth.

The CHR subr is used more in the construction of strings. This is how you can handle “unprint-
able” characters or override special characters such as the backslash and double quote. When
defining a string, the double quote is typically used to mark the beginning and end of a string. But
what if you want a double quote in the string itself? The CHR subr can take number 34, the ASCII
equivalent for a double quote, and convert it to a double quote mark or simply use the backslash,
as in \".

One last function related to ASCII codes in strings is VL-STRING->LIST. This subr takes a
string as its sole argument and returns a list of integers. The list contains one number for each
character in the string. ASCII codes as numbers can be handy tools. You can use them to encrypt
information using an input string and converting that to numbers. Another application is to write
data to a file or external device so that you can monitor the output and make sure no special char-
acters get through and cause a problem at the other end of the transaction. Before writing the
string, you convert it to a list of numbers, check to see whether the numbers are within an accept-
able range, change any that are not, and then convert the list of numbers back to a string. The
VL-LIST->STRING subr performs the reversing process, making such conversions easy to manage.

Comparing Strings

String comparison is when you compare two strings to see whether they are the same or where
they differ. Visual LISP provides two powerful functions for finding string matches: WCMATCH and
VL-STRING-MISMATCH. WCMATCH is a wildcard match, which means that you specify the search or
comparison pattern string using wildcards. Wildcards allow you to specify ambiguous or nonrele-
vant areas of a string. If you want to know if the value "23" is anywhere in a string, for example,
use the wildcard search pattern string "*23*". The asterisks indicate that anything can appear on
either side of the digits 23. Table 4.4 lists the wildcard characters you can use in a search pattern.

The WCMATCH subr searches a string to see whether a pattern is matched. It returns a NIL result
if the pattern is not matched, and a T (true) result if there is a match. After finding a match, you
may use VL-STRING-SEARCH to pull out specific elements. WCMATCH accepts two argument values:
the string to search followed by the pattern to match.

In most cases, you use WCMATCH as a test in a conditional expression looking for specific pat-
terns. For example, you may have a program that reads a data file containing variable record data,

Comparing Strings 61

such an INI file, which is a common Windows file. An INI file has two types of records: heading
records, which have square brackets around them, and data records, which have a name followed
by an equal sign followed by some value. The WCMATCH patterns that would recognize these record
types are "`[*`]" and "*=*", respectively. Thus, the expression (WCMATCH S "`[*`]") returns T
for true if the S string has a header type structure and NIL for false if the S string does not.

Note the use of the single backward quote mark in front of each square bracket. These are
required so that the bracket character is used directly. Otherwise, the brackets would be inter-
preted by the search system as meaning “match any character in between.” A search pattern of
"[*]" returns true only if the input is an asterisk all by itself. By including the backward single
quote, the bracket characters become part of the search pattern. (You may find it difficult at first to
create complicated search patterns. If so, spend some time experimenting.)

You can use WCMATCH to check input just read from a data file or some other device (even the
keyboard) to assist a parsing system. As such, it is a powerful tool when integrating various appli-
cations and devices with AutoCAD.

A related subr is VL-STRING-MISMATCH, which compares two strings and returns the character
position offset where they no longer match. You can specify the starting location of the search
independently for each of the two strings (as zero-based offsets); these are optional parameters.
VL-STRING-MISMATCH is handy when comparing two strings containing directory paths or filena-
mes, product number systems, or drawing information with standard templates.

In many cases where WCMATCH might be used, VL-STRING-MISMATCH will execute faster. For
example, suppose you need to compare a part number prefix with a title block or BOM (bill of
material) record entry. You might be doing this to navigate to a related drawing or to provide addi-
tional information about a reference. If you know the starting locations of the part number in the
strings, VL-STRING-MISMATCH tells you whether there is a match faster than WCMATCH.

Table 4.4 Wildcard characters for WCMATCH.

Pattern Description

Matches any numeric digit, 0 to 9

@ Matches any alphabetic character, A to Z

. Matches any non-alphanumeric character

* Matches any string pattern

? Matches any single character

~ Used as the first character in a pattern to reverse logic, as in NOT

[...] Matches any characters between the brackets

[~...] Matches any character not between the brackets

- Specifies a range (such as A–Z); used inside brackets

, Separates two patterns

` Indicates that the next character should be used as is (allows the use of wildcard charac-
ters as part of the pattern itself)

62 CHAPTER 4: Working with Strings

If the part number string can be referenced using the PN symbol, and the pattern string can be
referenced by the PTTN symbol, and each comparison starts at the first character in the string, the
following functions are the same. Each returns a NIL result if the pattern string does not match the
part number string or true (T) otherwise:

Now, which of these three executes faster? And why would anyone care? The second question
is easy to answer. No matter how fast you make a function, you will want to make it faster. Either
you want to keep improving your work or users will harass you to make something faster.

Back to the first question, which can Visual LISP evaluate the fastest? To understand the
answer, you need to examine each expression. In the first expression, you ask Visual LISP to search
through a string and see whether anything inside matches the supplied pattern.

In the second expression, you extract a set of characters from the part number string and
directly compare those with the pattern string. This results in fewer operations in the computer,
because the entire string is not searched for a pattern match. Instead, two strings of equal length
are compared directly.

In the third option, the same thing is taking place, but slightly faster. The comparison and sub-
string extraction happen at once in the supporting object code for the function. The result is sim-
ply compared (using integer comparison) to the length of the pattern string. As a result, the third
option, VL-STRING-MISMATCH, evaluates slightly faster. This can be important when many itera-
tions of the same operation are involved, as is often the case in file handling.

Converting between Strings and Symbols

Visual LISP has two conversion subrs for changing strings into symbols and symbols into strings.
The conversion between the two is typically performed when reading symbol names from an exter-
nal device or file. The read process takes place as a string, and you must then convert the string to
a symbol to be used in your program. The reverse process takes place when you want to send a
symbol name to an external device or file.

The READ subr converts a string to a symbol name if the string represents a valid symbol name.
READ is powerful and can convert strings to other data types, such as numbers. The (READ
“TEST”) expression returns the TEST symbol name. You take a closer look at the READ subr in a
later chapter about converting strings and numbers. The second conversion function is
VL-SYMBOL-NAME, which takes a symbol as an argument and returns a string. For example,
(VL-SYMBOL-NAME ‘Test) returns "TEST" as a string. You must put the single quote in front of
the symbol name; otherwise, the function evaluates the symbol and sends the result to the
VL-SYMBOL-NAME subr.

(WCMATCH PN (STRCAT PTTN "*"))

(= (SUBSTR PN 1 (STRLEN PTTN)) PTTN)

(= (VL-STRING-MISMATCH PN PTTN) (STRLEN PTTN))

Example Functions 63

Example Functions

This section describes two useful functions for working with string input. A common task in many
applications is reading a data file of formatted information, such as X,Y,Z coordinates or a survey
instrument download in which each record may be different. Both example functions accept a
string and break it into a list of strings. The first example looks for a particular delimiter in the
string, such as a comma or a space. The second looks for numbers amongst variable text data and
returns a list of just the numbers found.

Note that these example functions are complex for beginners. You might want to revisit them
after you learn about other programming concepts such as loops, conditionals, and predicates.

The (PARSE-STRING) function

The (PARSE-STRING) function, shown in Listing 4.3, takes a string and a delimiter character and
returns a list containing the string elements bounded by the delimiter. For example, the input string
"X,Y,Z" returns the list ("X" "Y" "Z"). If these data items were numbers, you could convert
them to something more appropriate to your application. Another example is breaking a sentence
into words, as in "The quick brown fox" returning ("The" "quick" "brown" "fox"). One
place where you would break input like this into pieces for processing is in a natural-lan-
guage-based solution.

The(PARSE-STRING) function has two arguments: the input string(INSTR) and the delimiter
character (DELIM). The input string must be a string type, but the data supplied by DELIM may be
a string or an integer. If it is a string, only the first character is used. If it is an integer, the value is
assumed to be an ASCII character code.

(PARSE_IT) has three local variables: RES, INX, and INXP, which all start with a value of NIL.
RES will contain the result list of words you create from the input string. INX and INXP are integers
that tell you where in the input string the parser is currently looking. INX is the current location
and INXP is the previous location, or index.

(PARSE_IT) starts by checking the data type of the argument symbol, DELIM. If DELIM is a
string, the ASCII subr converts the first character of the string to an ASCII integer code. If DELIM is
not a string, it is checked to see whether it is an integer. If DELIM is neither a string nor an integer,
the function uses the value 32, which is the ASCII character code for the space character, " ". This
serves as the default delimiter if nothing legitimate is provided. The last check of DELIM is to see
whether the integer value is between 1 and 255, inclusive. This is the valid character-code range
for the ASCII set. After that expression has completed, we know that DELIM is a valid data type
and value.

The INX and INXP symbols are initialized in the same SETQ as DELIM. INXP, the previous loca-
tion, is set to an initial value of –1. INX is set to the location of the first occurrence of the DELIM
character. The values for INX and INXP are zero-based offsets into the input string. It is important
to remember which method you are using when writing an application. Are your string index val-
ues zero-based or one-based? The answer is up to you, the programmer. In this example, I stored
everything using a zero-based index into the string because I was relying on the
VL-STRING-POSITION subr to perform the searches for the delimiter characters, and that subr is
zero based.

64 CHAPTER 4: Working with Strings

A WHILE loop then begins to go through the entire string. The loop iterates, or repeats, as long
as the value in INX is not NIL and as long as the value in INX is less than the length of the INSTR
string. WHILE loops and testing expressions are covered in Chapter 7. For now, understand that the
next sequence of expressions is repeated as long as both conditions remain true.

In the loop, you are building RES, the return list. CONS, the list construction subr, is used to
attach a substring to the RES list. The key component of this expression is the substring extraction.
The SUBSTR subr extracts pieces of INSTR. The pieces are defined by the starting character position
(one-based) and the number of characters you want. To compute the starting position from the
zero-based INX value, you need to add 1. However, the code indicates that you are adding 2 to the
value. Why? You are skipping the delimiter. Walk through an example string to see how this
works.

Suppose you have the string “123 56 8”; the fourth and seventh positions are spaces, and you
are parsing on the space (breaking the string apart at the spaces). At the start of the loop, INX is set
to a value of 3 by using VL-STRING-POSITION to find the first space character, which is at an offset
of 3 (zero-based).

Listing 4.3 Parsing a string to a list.

(DEFUN PARSE_It (INSTR DELIM / RES INX INXP)

 (SETQ DELIM

 (IF (= (TYPE DELIM) 'STR)

 (ASCII DELIM)

 (IF (/= (TYPE DELIM) 'INT)

 32

 (IF (> 0 DELIM 256) DELIM 32)))

 INX (VL-STRING-POSITION DELIM INSTR 0)

 INXP -1)

 (WHILE (AND INX

 (< INX (STRLEN INSTR)))

 (SETQ RES

 (CONS (SUBSTR INSTR (+ 2 INXP) (- INX INXP 1))

 RES)

 INXP INX

 INX (VL-STRING-POSITION

 DELIM INSTR (1+ INXP))))

 (SETQ RES (CONS (SUBSTR INSTR (+ 2 INXP)) RES))

 (REVERSE RES))

Example Functions 65

INXP is set to –1. So adding 2 to INXP provides the starting position of the substring, which is 1
in the first iteration. The length of the substring is computed by subtracting 1 from the difference of
INX and INXP. (As you will see in the next chapter, you can combine arithmetic expressions in this
manner.) The expression (– INX INXP 1) can be expressed algebraically as (INX – INXP) – 1.

After the substring is extracted, the value of INXP is set to INX. INX is then set to the value from
VL-STRING-POSITION for the location of the next delimiter. In the example string, ("123 56 8"),
the next space is found at an offset position of 6 (zero-based). To tell VL-STRING-POSITION to
search beyond the last space encountered, 1 is added to the value of INXP, the previous location
found. If the starting position had not been supplied, the same space would have been located at
offset 3.

So in the second iteration of the loop, the INX and INXP symbols have values of 6 and 3, respec-
tively. The substring extraction starts at (INXP + 2), or 5, and proceeds for (INX – INXP – 1),
or 2, characters. If this is not clear, write symbol names on a piece of paper and walk though it
again to see how it works. After you clear this conceptual hurdle, you will be comfortable manip-
ulating strings using the variety of powerful tools provided in Visual LISP.

When VL-STRING-POSITION can no longer find a matching character, it returns NIL. This ter-
minates the WHILE loop because it repeats only as long as INX has a non-NIL value and is less than
the length of the input string.

After the WHILE loop is finished, the last part of the string remains to be pulled out and added
to the RES result list. SUBSTR is used again but with only the starting position, (INXP + 2), and no
length. When the length is not supplied, the remainder of the string is supplied, which is what you
want to get.

The last step of the function is to reverse the RES list. (CONS builds a list by putting new mem-
bers at the front of the list, so you must reverse the list to return it to its “natural”state.) Because
REVERSE is the last expression in the function, the result of REVERSE is returned as the result of the
function.

Running PARSE_IT is simple. After loading it, just send it a string, as in the following exam-
ples:

The (STRING_TO_NUMBERS) function

You can use the preceding parsing example in a variety of applications, but it will not work with
data that does not contain delimiters. An example of this type of data comes from surveying:
"N40:23:50E150.0", which means a bearing at 40 degrees, 23 minutes, 50 seconds from the north
in the east direction with a distance of 150. For with this type of data, you need a specialized pars-
ing routine. Listing 4.4 has the answer, the STRING_TO_NUMBERS function. Note that the source
code, which is provided on the CD, contains many comments and appears different than the list-
ings presented.

STRING_TO_NUMBERS takes a string and returns a list consisting of just the numbers from the
string. For example, a string such as "N40:23:50E150.0" is returned as ("40" "23" "50"

(PARSE_IT "123 56 8" " ") returns ("123" "56" "8")

(PARSE_IT "10,20,0" ",") returns ("10" "20" "0")

(PARSE_IT "100.0 200.0 300.0" 32) returns ("100.0" "200.0" "300.0")

66 CHAPTER 4: Working with Strings

"150.0"). This list can be quickly converted to a list of numbers by passing it to the READ subr, as
in (mapcar 'read string-list). The values are returned as strings to allow for subsequent
string searches back into the source string to find other critical data, such as the letter following
the third number, which indicates east (E) or west (W).

The STRING_TO_NUMBERS function represents another way to parse strings. Because you don’t
know what delimiters you will be using, faster search tools such as VL-STRING-POSITION cannot
be used. Instead, this function takes each character from the string one at a time and determines
what to do with it.

A conditional expression tests the value of each character in the input string. The first option in
the COND expression checks to see whether the CH character matches any of the digits 0 through 9

Listing 4.4 Converting a string to numbers.

(DEFUN STRING_TO_NUMBERS (INSTR / RES BUF INX CH)

 (SETQ INX 1 BUF "")

 (WHILE (<= INX (STRLEN INSTR))

 (SETQ CH (SUBSTR INSTR INX 1)

 INX (1+ INX))

 (COND

 ((WCMATCH CH "[0-9.]")

 (IF (= CH ".")

 (IF (NOT (WCMATCH BUF "*`.*"))

 (SETQ BUF (STRCAT BUF CH))

 (FLUSH_BUF))

 (SETQ BUF (STRCAT BUF CH))))

 ((= BUF "")

 (IF (= CH "-")

 (SETQ BUF CH)))

 ('T

 (FLUSH_BUF)

 (IF (= CH "-")

 (SETQ BUF CH)))))

 (IF (AND (/= BUF "")

 (NOT (WCMATCH BUF "[+-.]")))

 (FLUSH_BUF))

 (REVERSE RES))

Example Functions 67

or the decimal point. Digits are concatenated to the BUF variable as encountered. The second
option of the COND expression checks to see whether the BUF variable is an empty string. If the
character in the CH variable is a minus sign, it is added to the BUF string. The third option in the
COND expression is the default condition (which is always true). In this case, the character in CH is
not a digit and BUF contains something. The buffer is flushed and CH is tested for a minus sign as
before.

The actions inside this loop continue until the end of the input string is reached, which occurs
when INX is greater than the length of the string. At the end of the WHILE loop, the buffer contents
are checked to see whether they contain anything worth putting in the RES list. WCMATCH is used
again, only this time with a pattern of "[+-.]" to see whether the string in BUF contains just one
of these characters. If so, the BUF value is disregarded as if it were empty. If BUF is not empty, the
value is flushed to RES in the FLUSH_BUF function. The function is now finished and the result list
can be sent back to the calling function. Because CONS was used in the construction of this list, the
REVERSE subr prepares the list for direct return from the parsing function.

FLUSH_BUF uses CONS to build the list. Looking at Listing 4.5, FLUSH_BUF is a short routine.
But it does a lot thanks to the power of the string handling in Visual LISP. The first thing the rou-
tine does is check to see whether the contents of BUF are a single character, such as a plus sign,
minus sign, or period. If so, the flush routine empties the contents of BUF by setting it to an empty
string and then returns. If not, PROGN signals the beginning of a grouping of expressions.

The first test in the PROGN grouping is to see whether the first character of BUF equals a period
(decimal point). If you intend to convert these strings containing digits to real numbers, the deci-
mal point should not appear as the first character in the string. The FLUSH_BUF function adds a
zero character to the front to the string if the first character is a decimal point. The second test
checks the end of the string to see whether it ends in a decimal point. (SUBSTR BUF (STRLEN
BUF)) returns the last character in the string. Instead of simply appending a zero character, you
remove the last character, making the return value an integer if nothing follows the decimal point.

Listing 4.5 Flushing the buffer.

(DEFUN FLUSH_BUF ()

 (IF (NOT (WCMATCH BUF "[+-.]"))

 (PROGN

 (IF (= (SUBSTR BUF 1 1) ".")

 (SETQ BUF (STRCAT "0" BUF)))

 (IF (= (SUBSTR BUF (STRLEN BUF)) ".")

 (SETQ BUF (SUBSTR BUF 1 (1- (STRLEN BUF)))))

 (SETQ RES (CONS BUF RES))))

 (SETQ BUF "")

)

68 CHAPTER 4: Working with Strings

The last character is removed through the expression (SUBSTR BUF 1 (1– (STRLEN BUF))),
in which the buffer substring from position one is taken with a character count of 1 less than cur-
rently found in the string. (1– (STRLEN BUF)) gets the length of the BUF string and reduces that
value by 1. Removing the ending character is one case in which the unary functions (1+ and 1–)
are applied. Another is when switching between zero-based and one-based subrs for string manip-
ulation in Visual LISP.

Summary

Strings are an important part of data processing because they often represent the user’s input or
output. Strings are used in reports, for input data, and for annotations on drawings. This chapter
looked at how strings are stored and manipulated. You also explored the subrs related to strings.
The primary operations you will perform on strings involve building them from constants or from
pieces of strings to form larger strings. Two other common tasks are retrieving parts of strings, or
substrings, as well as searching strings for matching characters. The conversion of strings to other
data types was briefly mentioned in this chapter; the topic is covered in detail in Chapter 6.

69

CHAPTER 5

Working with Numbers

Engineering and architectural applications typically involve computations on a grand scale, and
the programmer must understand the nature of the numbers used. For this reason, this chapter
explores the basic numeric types in Visual LISP and introduces the subrs provided for working
with numbers.

Because of the environment in which Visual LISP is typically used, it provides many tools for
manipulating numeric data. For more detailed information as well as additional examples involv-
ing numeric data types, consult the Visual LISP online help file system.

Integers

The most basic type of number in the computer is the integer. Integers are whole numbers; they
have no decimal point and no fractional component. Many computer languages support a variety
of integer types, with each a different size (often counted in terms of bytes of memory). Visual
LISP, however, provides only one type: a 4-byte (32-bit) integer. This type can hold integers rang-
ing from 2,147,483,647 to –2,147,483,648, which is sufficient for most applications.

Note that the GETINT function, which is used for integer input from the operator, accepts only
16-bit integers. This is an artifact from an older version of AutoLISP.

Integers are commonly used for counting and specifying the byte position in a file. The primary
advantage of using integers is that they can be manipulated faster than real numbers.

The primary disadvantage of using integers is that they cannot represent fractions or numbers
containing digits to the right of the decimal point. For example, if you divide the integer 1 by the
integer 2, the result is 0 — not 1/2. Integers may also not be big enough to hold a result (although
it is difficult to think of a computation that requires larger numbers for an intermediate result).
When larger numbers or fractional numbers are needed, real numbers are the answer.

Real Numbers

A real number contains a fractional component or a decimal point. Real numbers in Visual LISP
can be quite large, with up to 14 digits of precision, which is sufficient for all but the most extreme

70 CHAPTER 5: Working with Numbers

equations. (In those cases, you may be able to sequence the computation in such a way as to mini-
mize the precision imbalances that may result.) Large real numbers are expressed using exponen-
tial notation, such as 6.5e5 for 650,000.

You use real numbers to store not only computer numbers containing decimal points but also
angle values. Angle values are stored using the unit of measure known as a radian. A circle con-
tains 2π (two times pi) radians. Pi (π) is an irrational number, so you never get an exact amount.
Thus, when angles are involved, you might see numbers that seem odd. For example, you may be
expecting a variable to equal 0 but find that it equals 1e–10 (.0000000001). Data extracted from
points may also exhibit this behavior because angles are often involved in that type of computa-
tion.

The precision of real numbers won’t cause a serious error in your computations as long as you
take appropriate measures in your coding. You can follow several approaches.

One approach is to use the EQUAL expression instead of the = expression. EQUAL allows you to
define an optional “fuzz factor” for equality testing, in which you specify how many digits of
accuracy you want. For example, (EQUAL R1 R2 0.01) tests to see whether R1 and R2 are equal
to within 0.01. Applications vary widely in the degree of precision they require in the equality
test. For example, a steel beam application that compares equal sizes of steel may have a tolerance
of +/– 5 mm. If the units of measurement were in millimeters, the EQUAL fuzz factor would be 5
when comparing lengths of steel beam that are also measured in millimeters.

Another approach when dealing with the precision of real numbers is to multiply the value by
the precision desired, truncate the portion of the number to the right of the decimal point, and
then divide by the precision multiplier. For example, if you want to use numbers accurate to three
digits of precision to the right of the decimal, you would multiply the number by 1,000, remove all
digits to the right of the decimal, and then divide by 1,000. In this case, 1,000 is the precision mul-
tiplier. Converting the number to an integer and then back to a floating-point number truncates the
digits to the right of the decimal point. This type of conversion is the topic of the next section.

Converting between Reals and Integers
Programs can force one type of data to become another type of data through the use of conversion
routines. Visual LISP has many conversion routines. The two pertaining to numbers are FIX and
FLOAT. (For details on other conversion routines, see Chapter 6.)

FIX converts a real number to an integer by chopping off the numbers after the decimal point
and returning the whole number. The value 2.999, for example, is returned from FIX as 2, not 3.
The value is not rounded. To round a number, add 0.5 to it before using FIX. Using 2.999 again,
adding 0.5 gives you 3.499; apply FIX and the result is 3. If, instead, the source number is 2.499
and you add 0.5, the result is 2.999; apply FIX and it returns 2. This approach is presented as an
example function named ROUND in Listing 5.1.

Listing 5.1 Rounding.

(DEFUN ROUND (RN)

 (FIX ((IF (MINUSP RN) - +) RN 0.5)))

Manipulating Numbers as Numbers 71

If a number is too large to become an integer (integers can have up to 10 digits or precision, but
reals can have up to 14), FIX still removes the fractional component of the number but returns a
real number to hold the result.

The FLOAT subr promotes an integer to a real number. An integer manipulated by an integer
results in an integer. In Visual LISP, a real number manipulated by any other number always pro-
duces a real number result. Therefore, by promoting an integer in a mathematical expression to a
real, FLOAT ensures that the result is a real.

Suppose the symbol A has a value of integer 1 and B has a value of integer 2. The expression
(/ A B) produces the answer 0. However, the expressions (/ (FLOAT A) B) and (/ A (FLOAT
B)) both result in 0.5, a real number. This is because the FLOAT subr promotes A (in the first
expression) or B (in the second) to a real number for the division.

Manipulating Numbers as Numbers

Next, you turn your attention to the set of numeric manipulators provided in Visual LISP. From
this basic set, you can construct more advanced numeric manipulators. Numeric manipulators
work on two types of numbers: numbers as numbers and numbers as bit patterns. This section
describes the various subrs available for manipulating numbers as numbers. The second group is
described later in the chapter.

When a number is manipulated as a number, rather than as a bit pattern, the number is a value
to be used in a computation to produce another number. Table 5.1 shows the various Visual LISP
subrs for manipulating numbers as numbers. If you require other subrs, such as arcsine, arc cosine,
or tangent, you can simply add them yourself — remember, Visual LISP is a programming lan-
guage that thrives on expansion through function definitions. An even simpler option is to see
whether the function you need is provided on the CD that accompanies this book.

Addition, subtraction, multiplication, and division

The basic math subrs for addition, subtraction, multiplication, and division can accept more than
two arguments. Additional arguments are handled like nested functions. For example, the expres-
sion (– A B C) is the same as (– (– A B) C), although the nested expression takes slightly
longer to evaluate. Likewise, (+ A B C) is the same as (+ (+ A B) C).

The result returned from a math operation is based on the type of data presented. If everything
is an integer, the result is an integer. If one or more arguments are real numbers, the result is a real.
In Listing 5.2, the value supplied as a parameter in symbol A is converted from degrees to radians.
(Note that all trig functions in Visual LISP use radians.) The value supplied in symbol A is divided
by 180 (a real number) and then multiplied by Pi (the internal constant). The result of the multi-
plication is returned as the result of the function.

Logarithm and base e

The LOG and EXP subrs are based on the natural logarithm and the mathematical constant e,
respectively. LOG is the inverse of EXP. If you take the LOG of a number and apply that value to EXP,

72 CHAPTER 5: Working with Numbers

the result is the original number. The natural log and anti-log are used in many equations involving
forces and in graphing results.

To compute log base 10, divide the log of the number by the log of 10. You can use the exam-
ple function in Listing 5.3 to compute base 10 logs, which are useful in developing charts and
graphs.

Table 5.1 Manipulation subrs for numbers as numbers.

Subr Operation Syntax

1+ Increment by 1, same as adding 1 (1+ <number>)

1- Decrement by 1, same as subtracting 1 (1- <number>)

+ Addition (+ <number> <number> [<number>
...])

- Subtraction (- <number> <number> [<number>
...])

* Multiplication (* <number> <number> [<number>
...])

/ Division (/ <number> <number> [<number>
...])

LOG Natural log of a number (LOG <number>)

EXP e raised to the number; the natural antilog
of a number

(EXP <number>)

SQR Square root (SQR <number>)

EXPT Exponent of a number raised to another
number

(EXPT <number> <number>)

REM Modulus; the remainder of one number
divided by another

(REM <number> <number>)

GCD Greatest common denominator (GCD <number> <number>)

ABS Absolute value of a number (ABS <number>)

SIN Sine of an angle in radians (SIN <number>)

COS Cosine of an angle in radians (COS <number>)

ATAN Arctangent; returns angle in radians (ATAN <number>)

MIN Minimum number in a set of numbers (MIN <number> <number> ...)

MAX Maximum number in a set of numbers (MAX <number> <number> ...)

CVUNIT Conversion from one unit of measurement
to another

(CVUNIT <number> <from> <to>)

Manipulating Numbers as Numbers 73

Square root and exponent

Raising a number to another number and computing the root of a number are common operations
in the type of advanced math performed in engineering. SQR computes the square root, one of the
most common roots required in computations. If you need another number root, use the EXPT
subr. For example, the expression (EXPT 2 3) returns 8, the result of 2 cubed. The expression
(EXPT 8 (/ 1 3.0)) returns 2, the cube root of 8.

To compute the specific root of a number, use the inverse (1 over the number) for the exponent.
For example, computing 8 raised to the 1/3 power is the same as computing the cube root of 8.

Using EXPT, you can solve all types of exponents and roots, including the square root (raise a
number to the 1/2 power). If you need to use a particular exponent over and over, create a small
function for it, such as those in Listing 5.4. When used in your program code, such functions make
the equations more readable.

Modulo

The REM subr returns the remainder, or modulo, of a number. REM is helpful when you are convert-
ing a number to a fraction, such as inches to feet plus fractions of a foot. To convert inches to feet,
divide the inches number by 12 to get the integer number of feet, and then use REM to compute the
remainder, which is the number of inches left over.

The FT-IN function in Listing 5.5 returns a list in which the first member of the list is the num-
ber of feet and the second member is the number of inches remaining given the total number of
inches. If TOTAL_INCHES is supplied as 57, for example, the FT-IN function returns the list (4 9),
representing 4 feet, 9 inches.

You can determine whether a number is odd or even by applying REM against the number with
a divisor of 2, as follows: (REM <number> 2). If the result of the REM expression is 1, the number
is odd. If the result is 0, the number is even.

Listing 5.2 Converting degrees to radians.

(DEFUN D2R (A)

 (*

 Pi

 (/ A 180.0)))

Listing 5.3 Computing log base 10.

(DEFUN LOG10 (L)

 (/

 (LOG L) (/ LOG 10.0)))

74 CHAPTER 5: Working with Numbers

Greatest common denominator

The greatest common denominator is the greatest number by which you can divide two numbers
and have a whole number result. For example, the greatest common denominator of 15 and 20 is
5 (5 divides into 15 three times and into 20 four times). The greatest common denominator of 21
and 35 is 7.

The Visual LISP subr for finding the greatest common denominator is GCD. You can use the GCD
subr to reduce fractions. Suppose that the result of a computation is 132 over 209. If you apply
GCD to 132 and 209, it returns 11. Then divide each value by 11 to reduce the fraction to a value of
12 over 19.

The REDUCEFRACT function in Listing 5.6 demonstrates the use of GCD to reduce two numbers
representing the numerator (NUM) and denominator (DEN). For example, the (REDUCEFRACT 10
16) expression returns (5 8), which means you can reduce the fraction 10/16 to 5/8.

GCD works with integers and whole numbers. If you need to work with decimal values, multiply
them by 10 raised to the precision you want and then use FIX to reduce the value to an integer. For
example, to use a number with a precision of three digits to the right of the decimal, multiply the

Listing 5.4 Finding the cube root and square root.

(DEFUN CUBEROOT (N)

 (EXPT N (/ 1.0 3)))

;

(DEFUN SQUARE (N)

 (* N N))

 ; Or (EXPT N 2)), which is much slower

;

(DEFUN CUBE (N)

 (EXPT N 3))

;

(DEFUN HYPOT (A B)

 (SQRT

 (+ (* A A) (* B B))))

Listing 5.5 Computing feet and inches.

(DEFUN FT-IN (TOTAL_INCHES)

 (LIST

 (FIX (/ TOTAL_INCHES 12))

 (REM TOTAL_INCHES 12)))

Manipulating Numbers as Numbers 75

number by 10 to the third power (1,000), apply FIX to the number, and then use the result with
GCD. Remember to divide the answer by 1,000 before you finish.

Absolute value

The absolute value of a number is always greater than or equal to 0. When ABS is given a negative
number, it returns the positive value. When given a positive value, it returns the value unchanged.
The primary reason for getting the absolute value of a number is to avoid negative numbers in
equations. A classic application of the ABS subr is computing the differences of coordinates. If you
want to know the distance along the x-axis between two points, you can subtract one X value
from the other X value and then take the absolute value of the result. No matter which X value
you select first, the answer is the same.

Sometimes, however, you need to make sure a number is negative. If you subtract the absolute
value of a number from 0, you get the negative number every time.

The expression (– <number>) negates the number. A negative number becomes positive, and a
positive number becomes negative. The expression (– (ABS <number>)) always returns the nega-
tive value of the number. This is the opposite of (ABS <number>), which always returns the posi-
tive value of a number.

In Listing 5.7, CHS changes the sign of a number by switching it from negative to positive or
vice versa. NEGATE returns the negative of the number, even if the number is already negative.

Sine, cosine, and arctangent

Visual LISP comes equipped with three elementary trig functions: SIN (sine), COS (cosine), and
ATAN (arctangent). These functions work with angles in radians. (As mentioned, a circle has 2π

radians.)
Radians are a better unit of measure than degrees for computations involving angles because

the size of a circle is directly proportional to the value of pi. The circumference of a circle is pi
times the diameter. The area of a circle is pi times the radius squared. Fortunately, Visual LISP pro-
vides Pi, a constant for pi that you can use in your computations. The Pi symbol is preset in

Listing 5.6 Reducing fractions.

(DEFUN REDUCEFRACT (NUM DEN / DD)

 (SETQ DD (GCD NUM DEN))

 (LIST (/ NUM DD) (/ DEN DD)))

Listing 5.7 Changing the sign and negating.

(DEFUN CHS (NUM)

 (- NUM))

(DEFUN NEGATE (NUM)

 (- (ABS NUM)))

76 CHAPTER 5: Working with Numbers

Visual LISP to the internal system value of pi as referenced in the math processor unit of the com-
puter.

Working with radians is simple if you follow two simple rules: Use radians whenever angles are
involved, and convert from or to degrees when performing user input and output operations.

You can use the basic functions to create additional functions that perform other computa-
tions. For example, the tangent of an angle is equal to the cosine of the angle divided by the sine of
the angle, as shown in Listing 5.8. As long as the sine of the angle is not 0, the tangent can be com-
puted. The other function, ASIN, computes the arc sine of a number, which is often useful when
working with triangles that have unknown angles or sides. Note that a better version of these func-
tions that includes error checking is on the CD, along with several other functions.

Maximum and minimum

The MAX and MIN subrs return the maximum value or minimum value (respectively) of a group.
Note that these functions do not take a list of numbers. Instead, they take a group of numbers pre-
sented as individual parameters, such as (MAX 20 25 21 15), which returns 25. The numbers can
be symbols but cannot be lists, unless you use the APPLY subr.

To apply MAX and MIN to a list of numbers, you use the APPLY subr, which attaches the subr to
the front of the list and then evaluates the result. For example, the expression (APPLY ’MAX ’(20
15 10 5)) results in the answer 20. The MAX subr was placed at the front of the list, creating a
proper expression that APPLY then passed to the evaluator.

The MAX and MIN functions are handy also in finding the maximum and minimum corners of
some geometry, such as a rectangle. For example, the following expression finds the maximum X
value in a list of points referenced by the POINT_LIST symbol. A list of points is a data list in
which each member is a point list (contains two or three numbers for the X,Y[,Z] ordinate values).

(APPLY ‘MAX (MAPCAR ‘CAR POINT_LIST))

APPLY and MAPCAR are list-iteration tools and are covered in Chapter 8. In the preceding exam-
ple, the MAPCAR expression applies the CAR subr to each member of POINT_LIST. CAR returns the X
ordinate value from a point list, and MAPCAR saves the results of each CAR for each member in

Listing 5.8 Trig functions.

(DEFUN TAN (A)

 (/ (COS A) (SIN A)))

(DEFUN ASIN (A)

 (ATAN

 (/ A

 (SQRT

 (- 1

 (* A A))))))

Manipulating Numbers as Bit Patterns 77

POINT_LIST. The resulting list is then supplied to APPLY, which applies the MAX subr to the front of
the list to find the maximum number in the group. If this seems confusing, don’t worry. The exam-
ple uses several features you have not learned yet.

Unit conversion

The CVUNIT function allows you to quickly convert numbers in one unit of measure to another,
such as millimeters to inches. The function has many conversion formulas, which are stored in a
text file that you can manipulate to add new conversions and units of measure. (See ACAD.UNT in
the Support directory of AutoCAD for a list of all the unit conversions supported by CVUNIT.)

CVUNIT has three arguments. The first is either a number or a list of numbers. The second and
third arguments are the names of the units of measurement to convert from and to, respectively.
The measurement names you use in an expression are common names or abbreviations, such as M,
Metres, Meter, or Meters for meters and in, inches, or inch for inches.

When converting multiple numbers, it is much faster to use the unit conversion factor. To get
the unit conversion factor, apply the CVUNIT function to the value 1.0. For example, given a set of
numbers to convert from meters to inches, get the result of (CVUNIT 1.0 "METER" "IN"), which
is 39.3701, and then multiply that number by all the values in metes to get the values in inches.

Manipulating Numbers as Bit Patterns

Now that you’ve read about the different ways to manipulate numbers as numbers, it’s time to
look at the other group of numeric manipulators: those used with numbers as bit patterns. A bit it
represented using a 0 or a 1. Bits are base 2 (0 and 1), whereas most counting systems are base 10
(0 through 9).

The combination of bits makes a number. For example, the bits 00, 01, 10, and 11 represent
the numbers 0, 1, 2, and 3, respectively. Table 5.2 shows the primary base-2 placement equivalen-
cies. These numbers show the value in decimal for the primary bit locations in an eight-bit number.
Each time you shift the bit one to the left, the decimal value is increased by 2 to the next power, as

in 20 = 1, 21=2, 22=4, 23=16, and so on.

Table 5.2 Decimal to binary conversion.

Decimal Binary

1 0000 0001

2 0000 0010

4 0000 0100

8 0000 1000

16 0001 0000

32 0010 0000

64 0100 0000

128 1000 0000

78 CHAPTER 5: Working with Numbers

When working with binary bit patterns, each place is often referenced in terms of its decimal
equivalent because we use integers to store combined binary values. Thus, if you need to set the
one bit and the four bit, you add 1 and 4 to get 5. The value 5 has two bits set to on.

Programmers often use integers to store a group of flags or bits indicating a yes or no status.
When the bit is on, the flag indicates a true, or yes, status. AutoCAD has several bit-encoded num-
bers in entity data lists. For example, each layer table entry has a bit-encoded integer. It is set to 1
if the layer is frozen, 2 if the layer is to be frozen by default in new viewports, 4 if the layer is
locked, 16 if an XREF object is involved, and so on. The layer table object can have more than one
bit setting at a time. For example, the layer can be both frozen and locked (bits one and four).

Table 5.3 lists the Visual LISP subrs available for the bitwise manipulation of numbers. Integer
data types should be used as arguments and expected as results. Although bit-encoded values

rarely exceed sixteen bits (216 = 65,536), plenty of room is available if necessary (up to 32 bits
worth).

When grouped, 8 bits form a byte. One or more bytes (depending on the computer and the
application language) form a word. In Visual LISP, each word is 4 bytes (32 bits) long.

Two operations are typically employed on a single word: one’s complement and bit shifting. In
one’s complement, each bit is flipped: 1 becomes 0 and 0 becomes 1. In a shift operation, each bit
is moved to the left or the right. As new bits are added, they are set to 0. As bits move beyond the
end of the word, they are lost. (Another operation called rotating the bits moves bits off one end
and onto the other end. Visual LISP supports only logical shifting, not rotating.)

Shift operations are rarely used to set flags. Instead, shift operations are typically used in build-
ing encryption or password verification systems. Bit shifting is also a fast way to multiply or divide
by 2. Each shift to the left is the same as multiplying by 2, and each shift to the right is the same as
dividing by 2, as shown in Table 5.4.

You can perform logical operations in which the two words, or bit patterns, are combined to
produce to a result. The two most common operations performed on words are AND and OR (also
called an inclusive OR). AND is true if all conditions are true; OR is true if either condition or both
conditions are true. The LOGAND and LOGIOR subrs perform these two operations.

Table 5.3 Manipulation subrs for numbers as bit patterns.

Subr Operation Syntax

LOGAND Logical AND (LOGAND <number> <number>)

LOGIOR Logical inclusive OR (LOGIOR <number> <number>)

LSH Logical bitwise shift (LSH <number> <# of bits>)

BOOLE General-purpose Boolean logic test (BOOLE <operator> <number>
<number>)

~ One’s complement, a bitwise “not”
operation

(~ <number>)

Custom Boolean Logic 79

LOGAND compares two integers on a bit-by-bit basis and returns an integer that is the result of a
logical AND operation. Only bits that are the same in both patterns are returned. For example, if
you AND the bit patterns 0011 and 0010, the result is 0010.

LOGIOR compares two integers on a bit-by-bit basis and returns an integer that is the result of a
logical inclusive OR operation. An inclusive OR means that the resulting bit is true (on, or 1) if
either or both test bits are true. For example, if you OR the bit patterns 0011 and 0010, the result is
0111.

LOGAND is frequently used to isolate an individual bit in a bit-encoded integer. For example, the
expression (LOGAND <bit-coded-integer> 12) results in 0 if neither bits four nor eight are set
(4 plus 8 equals 12). If bit four is set, the result is 4. If bit eight is set, 8. If both are set, the result
is 12.

LOGIOR is used to update a bit-encoded integer. You can force the setting of a particular bit (or
group of bits) while leaving the others unchanged. For example, the expression (LOGIOR
<bit-coded-integer> 12) forces bits four and eight to be set in the result. The other bits in the
original bit-encoded integer remain untouched in the result.

You will see more of the LOGIOR and LOGAND subrs as you explore entity data lists (beginning in
Chapter 12), where it is common to encounter bit-encoded integers. The logical OR and AND opera-
tions just described are part of what is commonly referred to as Boolean logic. You can create the
other operations typically found in Boolean logic by using the BOOLE subr.

Custom Boolean Logic

The BOOLE subr allows you to build a custom Boolean logic test using a binary-coded operation
description. The operation description tells the BOOLE subr what to do with bits encountered in the
two integers that follow the operation description in the parameter list. Using BOOLE you can con-
struct any logical operation based on comparing two bits. The custom logical test can be applied
to two integers in your programs. Although logical OR and AND testing is provided in Visual LISP,
you might need other types of Boolean operations. The BOOLE function allows you to define any
type of logical operation for use in your applications.

In the operation description, you provide a mapping of the results you want by describing what
to do if the bits are certain values, as shown in Table 5.5. If you wanted the test to return true

Table 5.4 Bit shifting.

Operation Binary Decimal

Original bit pattern 0010 2

Shift left 1 0100 4

Shift left 2 1000 8

New bit pattern 0101 5

Shift left 1 1010 10

Shift right 1 0010 2

80 CHAPTER 5: Working with Numbers

when both bits are 1, you need the first entry. The bits in each integer are compared based on the
operation bit mask.

A bit mask is a collection of bits used for testing. For example, if you need to test the first and
third bits to see whether they are on, you would use a bit mask of 0101 (value of 5). In the BOOLE
function, the bit positions in the mask indicate which tests will result in true. A bit mask of 2 + 4 =
6 (binary 1010) results in tests that are true when the bits compared in two integers are opposites
or complements of each other.

Adding the proper bits from column one in Table 5.5 allows BOOLE to form the standard Bool-
ean logic operators AND, OR, and XOR (logical exclusive OR). Bit mask 1 by itself is a logical AND, bit
masks 1 and 4 combine to form the XOR. The result is true if either bit but not both bits are true.
Bit masks 1, 2, and 4 together make IOR (inclusive OR). You can create other bit tests, such as test-
ing to see whether the bit in integer 1 is set regardless of integer 2. That test would combine bit
masks 1 and 2 only.

When using bit masks and integer flags as AutoCAD does, you may find it useful to use the
BOOLE function to extract information from the bit-encoded flag. In most cases, the LOGIOR and
LOGAND functions suffice, but XOR and NOR are sometimes handy when working with a series of bit
patterns or when encrypting data to be stored in a hidden place in a drawing. (NOR is defined by
using bit mask 8.)

Listing 5.9 shows the BOOLE subr in action. In this function, a string is supplied as the ST
parameter and is encrypted using the integer value in KEY. The encrypted string is returned as the
result of the function. You can use encrypted strings in extended data to protect it from prying
eyes. (Extended data is string data attached to AutoCAD entities; you learn more about extended
data in Chapter 14.) The encryption function uses some of the string utilities covered in Chapter 4
as well as a WHILE loop, which has not yet been discussed in detail.

The logic of the function is easy to follow. The function starts by setting the RES symbol to an
empty string. RES will be the resulting encrypted string. A WHILE loop then starts and repeats as
long as the ST symbol points to a string that contains more than zero characters.

In the WHILE loop, the first character in ST is extracted and stored in CH. SUBSTR then shortens
ST, starting at the second character to the end of the string. Note that all this is still inside the same
SETQ expression. As long as you supply a symbol and an expression that evaluates, you can put as
many items in a single SETQ as necessary.

Still in the same SETQ, the ASCII subr converts the value saved with the CH symbol (the first
character in the ST string at the start of the loop) to an integer. ASCII takes a character string and
returns the integer code for that character. Next, the BOOLE subr is used to XOR the ASCII character

Table 5.5 BOOLE operation bits.

Bit mask Integer 1 Integer 2

1 1 1

2 1 0

4 0 1

8 0 0

Summary 81

code of the current character and the value supplied as KEY in the parameter list. Then CHR con-
verts the now-encrypted integer in CH back to a string with a single character. That character is
then appended to the RES string and the loop is finished.

Each character in the ST parameter string is converted using the same KEY number. To decrypt
the string, apply the same function again with the same key. Thus, to get at your data, you must
know the key number as well the location of the key; a casual hacker will not find it. You can
increase the complexity of the encryption by increasing or decreasing KEY after each iteration so
that each character is XOR’d with a different value. With some experimenting, you can find clever
ways to lock your data so that only your application can make sense of it.

Summary

Working with numbers is an important part of programming, and selecting the right type of num-
ber for the application at hand is just as important. Integers are good for loop counters, for keep-
ing track of places in strings and such, and for counting. Real numbers, which contain fractional
or decimal components, can have up to 14 digits of precision, making them suitable for most engi-
neering and scientific calculations.

The Visual LISP language is rich in operators for manipulating numbers. Moreover, program-
mers can use these operators as the foundation for creating additional operators.

This chapter also introduced the use of integers for storing binary flags as bit-encoded num-
bers. (Bit-encoded numbers are encountered in entity data lists, which are covered in a later chap-
ter.) The Boolean logic system was described as a way to test bit settings in a bit-encoded value.

Listing 5.9 Encrypting using BOOLE.

(DEFUN ENCRYPTSTRING (ST KEY / CH RES)

 (SETQ RES "")

 (WHILE (> (STRLEN ST) 0)

 (SETQ CH (SUBSTR ST 1 1)

 ST (SUBSTR ST 2)

 CH (ASCII CH)

 CH (BOOLE 6 CH KEY)

 CH (CHR CH)

 RES (STRCAT RES CH)

))

 RES)

82 CHAPTER 5: Working with Numbers

This Page Intentionally Left Blank

83

CHAPTER 6

Converting Numbers and
Strings

In programming, the primary data elements you work with are numbers and strings (sequences of
characters). In AutoCAD, you work with dimensions, which are strings containing numbers repre-
senting parameter data, and applications often must report the results of computations in string
format to users, files, and drawings.

This chapter explores the Visual LISP subrs for converting between strings and numbers. Inte-
ger and real numbers are covered as well as two uses of real numbers, scalars and angles. In addi-
tion, radians and how you use them in Visual LISP are also described in this chapter.

Integers and Strings

Two simple subrs convert data between integer format and string format. The ATOI (ASCII TO
Integer) subr takes a string containing digits and returns the value they represent as an integer. For
example, (ATOI "100") returns the integer 100.

If ATOI is presented with a string that contains both characters and numbers, it converts as
many numbers as it can until it encounters a non-numeric character. For example, the expression
(ATOI "12AB34") returns the integer value 12.

When presented with something it cannot translate to an integer, ATOI returns a value of 0.
For example, (ATOI "AB12") returns 0 because the first characters are non-numeric and cannot
be converted. Therefore, it is important to remove any formatting characters or other non-numeric
characters from the string before trying to convert it to an integer.

The opposite of ATOI is ITOA (Integer TO ASCII). ITOA converts an integer value to a string of
digits. For example, (ITOA 100) returns the string "100". If the value is negative, a negative sign
is inserted in front of the string. For example, (ITOA -23) returns "-23".

If you need to pad leading or trailing zeros, do so after converting the numbers to strings. List-
ing 6.1 shows a function that you can use for the formatted conversion of a positive integer to a
string. The expression (INTSTRING 17 4) returns "0017".

84 CHAPTER 6: Converting Numbers and Strings

Converting Strings to Real Numbers

Two subrs are available for converting strings to numbers representing scalar values. A scalar is a
distance or value other than a point, vector, or angle.

The ATOF (ASCII TO Float) subr converts a string to a real, or floating-point, number. Note
that ASCII and string are often used interchangeably. Technically, when dealing with normal
strings, you should use the term ASCII string. Other types of strings based on code pages and dif-
ferent strategies of data storage are outside the scope of Visual LISP.

The ATOF subr is similar to the ATOI subr. ATOF can translate most strings starting with a
numeric character to a numeric data type that can be used in expressions calling for numbers.
Given a string such as "0.12ab", ATOF returns the real number 0.12. ATOF does not require a
leading zero, so the string ".12ab" is translated to the same value.

ATOF accepts exponential notation. Given the string "0.12e2" (which is 0.12 times 102), ATOF
returns the real number 12.0. Listing 6.2 contains a utility that you can use with both ATOI and
ATOF to convert numbers. The utility removes characters from the front of a string until it encoun-
ters a numeric character. The expression (NUMBERONLY "ab12de") returns "12de", which passes
to ATOF or ATOI and returns 12.

Sometimes strings representing numbers are in a special format, such as feet and inches. The
ATOF subr will not work well with these strings because it stops at the first non-numeric character
in the translation. In those instances, use the DISTOF subr instead.

DISTOF (DIStance TO Float) was provided to convert strings in standard AutoCAD formats to
floating-point numbers. DISTOF uses the current number-generation system variables in AutoCAD
to determine how to translate the string provided. For example, if you type (DISTOF
"17’-10\"") at the command prompt and the LUNITS system variable is set to 3 (engineering) or

Listing 6.1 Converting an integer to a string with padded digits.

(DEFUN INTSTRING (NUM DIGS)

 (SETQ NUM (ITOA NUM))

 (WHILE (< (STRLEN NUM) DIGS)

 (SETQ NUM (STRCAT "0" NUM)))

 NUM)

Listing 6.2 Removing non-numeric characters from the front of a string.

(DEFUN NUMBERONLY (ST)

 (WHILE (AND (> (STRLEN ST) 0)

 (WCMATCH ST "[~0-9.-]*"))

 (SETQ ST (SUBSTR ST 2)))

 ST)

Converting Real Numbers to Strings 85

4 (architectural), the result is 214.0, the correct conversion of 17 feet, 10 inches to total inches
((17 * 12)+10). When LUNITS is not set to 3 or 4, you get NIL as an answer

You can control the units for conversion with DISTOF in two ways. One, you can use the
SETVAR subr to establish the unit setting. The expression (SETVAR "LUNITS" 3) sets the units to
engineering style. Two, you can override the LUNITS setting in the DISTOF expression by supplying
the units mode after the string to be converted.

If you want to try every LUNITS setting in a program to see whether you get a conversion, use a
utility like CONVERTDISTANCE in Listing 6.3. This utility loops through all five unit settings, using
the units override to change the current setting to try a conversion. When the utility gets a non-NIL
result, it is saved using the local RES symbol for return at the end of the function.

Almost every application must convert strings to numbers. For example, all user input and out-
put related to dialog boxes is performed using strings. Thus, it is important to be able to convert
strings to numbers you can use in the program. But it is equally important to be able to convert
numbers to strings.

Converting Real Numbers to Strings

To use a number in a dialog box, as a component in a dimension, or as an annotation in a draw-
ing, you must first convert the number to a string. When dealing with file output, it may be neces-
sary to convert numbers to specific string formats as well. Visual LISP contains a powerful subr
named RTOS that converts real numbers to strings. This conversion utility is for scalar values. You
look at how to convert angles in the next section.

Experienced AutoCAD operators already know the UNITS command and how to use it to cre-
ate dimensions or to get more detailed information about objects in the CAD system. The RTOS
subr has the same capabilities as the UNITS command but does not require you to set any system
variables. If given just a number to convert, RTOS does use the system variables to see which for-
mat options to use. But when using alternative units of measure or precision, it is not necessary to
adjust the LUNITS and LUPREC system variables. Instead, the values are supplied as optional
parameters to RTOS.

Listing 6.3 Converting distance by testing all unit types.

(DEFUN CONVERTDISTANCE (S / LU RES TMP)

 (SETQ LU 1)

 (REPEAT 5 ;Five types to test

 (SETQ TMP (DISTOF S LU)

 LU (1+ LU))

 (IF TMP (SETQ RES TMP)))

 RES)

86 CHAPTER 6: Converting Numbers and Strings

The LUNITS settings are shown in Table 6.1. RTOS accepts one of these values as the second
parameter. The precision is supplied as a third parameter. RTOS takes the number and applies the
conversion rules inside AutoCAD.

When you use a LUNITS setting of 3 or 4, the input real number is assumed to be in inches. The
number of feet is computed by dividing twelve into the input value. The remainder is the number
of inches. Any fractions of an inch are displayed based on the setting of LUPREC.

When LUNITS is set to 3, the fractional part of an inch is returned in decimal notation. With a
unit setting of 4, a fraction is used. For example, the value 33.125 is returned as "2’–9.125\""
when you use a setting of 3 and a precision setting of 3. The same input value results in "2’–9 1/
8\"" with a setting of 4 and a precision of 3. The precision setting affects the output. Using the
same example of 33.125 but with a precision of 2 results in the strings "2’–9.13\"" and "2’–9
1/4\"" for modes 3 and 4, respectively.

A LUNITS setting of 5 results in fractions using the number directly. Given 33.125 and a setting
of 5 and a precision of 3, the result is "33 1/8". There are no extra double and single quotation
characters denoting feet and inches.

The UNITMODE system variable can change the output of the RTOS subr for modes 3, 4, and 5.
By default, UNITMODE is set to 0 and results in the values you’ve seen thus far. When UNITMODE is
set to 1, the output changes slightly. All the spaces are squeezed out and the string looks like one
you type at the command prompt. For example, "2’–9 1/8\"" becomes "2’9–1/8\"" with the
hyphen moved and all spaces removed.

These conversion utilities should provide the basics for all you need to work with scalar real
numbers. In most cases, you will be working with distances for dimensions, and any of the modes
will work well. When working with measurements that do not represent distances, modes 1, 2,
and 5 work best because they do not convert to feet and inches. One recommendation is to never
trust the system settings; always supply values to the RTOS conversion subr so that you know
exactly what is expected. If you want to provide your users with the capability to set these values,
consider saving them to a global symbol for reference throughout your application. That way, you
can isolate and check them at appropriate times and override the values when needed. Next, you
turn your attention to the conversion of angles.

Table 6.1 LUNITS settings.

Setting Description

1 Scientific notation

2 Decimal

3 Engineering (feet and decimal inches)

4 Architectural (feet and fractional inches)

5 Fractions

Working with Angles 87

Working with Angles

Visual LISP uses angle values expressed in radians, which is not the method of measuring angles
that most people are accustomed to. After all, most people know how to turn 45 degrees to the
right, but wouldn’t know what to do if told to turn pi over four radians to the right. Before you
learn about converting and working with radians, you need a solid understanding of radians in
general.

The conventional angular measurement is in degrees. A circle has 360 degrees. The number
360 was selected because it was the nearest “good number” to 365, the number of days in a year,
when the seasons come full circle. There is no mathematical reason why degrees should be used
because they actually increase the amount of work needed to solve a problem involving angles and
circles. For example, to compute the arc length given the angle and radius, you multiple the radius
by the angle, and multiply that result by the factor pi over 180. The pi over 180 factor is a conver-
sion factor. It converts the angle value in degrees to radians. You can reduce this equation by sim-
ply storing the angle measurement in radians to begin with so that a conversion is no longer
required.

In the radians units of measurement for angles, a circle has 2π (2 times pi) radians. That means
half a circle is pi, a quarter circle is pi over 4, and so forth. The number pi is a special number
because it relates the radius of a circle with the circumference or arc length. But pi is an irrational
number, which means it has no final value; the decimal numbers keep going on and on. As such,
radians are often expressed as fractions of pi. In Visual LISP, the value of pi is provided as a con-
stant, so you do not need to establish a value for it before using it in a calculation.

Most languages use radians as the internal storage unit for angles. If your program must con-
vert radians and degrees, the process is simple. The functions in Listing 6.4, R2D and D2R, are util-
ity functions for converting radians to degrees (R2D) and degrees to radians (D2R). To convert
from degrees to radians, you divide 180 into the product of pi and the degrees value. To go to
degrees from radians, multiple 180 by the radians value divided by pi.

Fortunately, Visual LISP provides two powerful subrs for converting angular values to and
from strings. ANGTOS takes an angle in radians and returns a converted and formatted string.
ANGTOF takes a string containing an angle value and converts it to an angle value in radians.
In both the ANGTOF and ANGTOS subrs, you can specify the angular units. If these values are not
supplied, AUNITS, the default system variable value, is used. The angular units for these two subrs
are the same as the AUNITS system variable and are shown in Table 6.2. Experienced AutoCAD
operators should be familiar with these values and the types of angle strings that result from their
use.

Listing 6.4 Converting degrees and radians.

(DEFUN R2D (R)

 (* (/ R PI) 180.0))

(DEFUN D2R (D)

 (/ (* D PI) 180.0))

88 CHAPTER 6: Converting Numbers and Strings

When using ANGTOF and ANGTOS, the unit setting is optional. If not supplied, the default
AUNITS value is used as Visual LISP attempts to determine the value of the supplied string. If the
current AUNITS setting is 0, for decimal degrees, and you supply ANGTOF with a number, the num-
ber is assumed to be in decimal degrees unless otherwise specified. If ANGTOF performs the conver-
sion, it returns the angle value in radians, a real number . Should ANGTOF fail in the conversion, it
returns NIL.

In most cases, the AUNITS setting of 0 will suffice. The problem with using a setting of 1 is that
the degrees are labeled with the character d and not the degree symbol. When using conventional
AutoCAD text, the degree symbol (ASCII code 176) might appear as the result of a dimension. If
you were to output the string to a text object, the %%d special format control might be used. As
such, a common practice is to substitute the degree symbol or the special control characters with d
before or after a conversion using ANGTOS or ANGTOF. The VL-STRING-SUBST subr can be quite
useful for the task.

When working the conversion subrs, keep in mind also that the ANGBASE system variable set-
ting changes the output result if it is not 0. Your programs should take this into account when con-
verting angular measurements.

The last aspect to be aware of when working with angular units is the sign of the angle. Nor-
mally, angles are measured as positive in the counterclockwise direction. If you supply a negative
angle value for conversion to ANGTOS, the result is positive as wrapped around the circle. For
example, the conversion of pi/4 results in 45 degrees. Negative pi/4 yields 315 degrees. This is the
correct answer, but may not be what you were planning to display. You can use the function in
Listing 6.5 if you want the sign of the angle to survive the translation. Note that this signed angle
utility should not be used with survey units because the result would be confusing in that context.

Table 6.2 AUNITS settings.

Setting Description

0 Degrees

1 Degrees/minutes/seconds

2 Grads

3 Radians

4 Surveyor’s units

Listing 6.5 Converting a signed angle to a string.

(DEFUN SANGTOS (AA AU P / RES)

 (SETQ RES (ANGTOS (ABS AA) AU P))

 (IF (MINUSP AA)

 (SETQ RES (STRCAT "-" RES))

 RES))

Converting a String to a List of Numbers 89

Converting a String to a List of Numbers

You can use the READ subr (introduced in Chapter 4) to convert strings to numbers as well as sym-
bols. And if the string is properly formatted, READ can convert it to a list of numbers in one expres-
sion. Properly formatted means that spaces are between each number and there are no
non-numeric entries. The string "12 45 56.12" is a proper string. The string "12 ABC 56.12" is
not because "ABC" is non-numeric. Given a properly formatted string, concatenate an open paren-
thesis at the front and a close parenthesis at the end and pass that string to READ. The result is a list
of numbers, as in (READ "(12 45 56.12)"), which returns the list (12 45 56.12).

This mechanism is frequently used when reading data from a file containing space-delimited
numbers. (Space delimited means there is a space or tab between each number in each line of the
file.) The expression (READ (STRCAT "(" LN ")")) appends a parenthesis to each end of the
string in LN and then passes that value to the READ subr. The result, assuming LN holds a string of
numbers, is a list of numbers. The next example utility demonstrates how you can use READ to
convert numbers coming from a data file.

Example: Importing and Using Point Data

A frequent task that Visual LISP is called on to perform is to import data from a file and draw
something based on that data. An example is a survey notes set or graph points calculated by a
program running outside AutoCAD. The file to be processed by the example application is an
ASCII text file, with each line containing the X, Y, and Z ordinate values for a point in space. The
program draws a point object at the coordinates supplied. And just to make things interesting, the
coordinates in the data file can be either space delimited or comma delimited.

The utility, called (C:POINTSIMPORT), is shown in Listing 6.6. This example is just a seed for
you to grow into something useful for your own applications. Some aspects of the utility have not
been covered yet. For example, the example demonstrates modifying code, that is, program code
that changes.

(C:POINTSIMPORT) is a command function, which means you can run it from the command
line of AutoCAD by typing the name of the function without parentheses. The first action in the
function is to request an input filename using GETFILED, a common utility dialog box subr. For
now, note that GETFILED either returns a string containing a filename selected by the operator or
returns NIL, indicating that the operator selected cancel in file dialog box. Thus, immediately after
the GETFILED expression is a conditional test to see whether the FH symbol evaluates to a non-NIL
value.

If FH is non-NIL, it contains a filename and that file is opened in read mode. The file handle
returned as a result of the OPEN expression is saved in FH. You no longer need the filename; you
need only the file handle to read the file. Visual LISP symbols can be reassigned in this manner. Just
set the symbol to a new value (using SETQ), and the data type is reassigned automatically.

The next step in the function is to retrieve the first line of data from the input file using
READ-LINE. This subr returns a string that is a line of text read from the file, where each line ends
with the newline character (or characters). (The newline character is created in a text editor when
you press the Enter key for a carriage return and line feed.)

90 CHAPTER 6: Converting Numbers and Strings

The input to this program from the file is a line of text, such as "1,1,1" or "2 2 2". The next
task is to figure out what kind of data you are working with in this run of the program and pre-
pare accordingly. The preparations involve defining a function to handle the input format. To see
how this happens, find the COND expression in the program code. The first test in COND is to see
whether the input line of text in LN matches the pattern for comma-delimited input, which is
"*,*". If the text line matches, the next step in the program is to define a function named LN2PT.
In Visual LISP, defining a function on-the-fly, in the middle of evaluating another function, is per-
fectly legal.

Listing 6.6 Importing point data from a file.

(DEFUN C:POINTSIMPORT (/ FH LN LN2PT PT)

 (SETQ FH (GETFILED "X,Y,Z Data file" "" "" 0))

 (If FH

 (PROGN

 (SETQ FH (OPEN FH "r")

 LN (READ-LINE FH)) ;get first line

 (PROMPT (STRCAT "\n" LN))

 (COND

 ((WCMATCH LN "*,*") ;comma delimited

 (DEFUN LN2Pt (L)

 (SETQ L (VL-STRING-TRANSLATE "," " " L)

 L (STRCAT "(" L ")"))

 (READ L)))

 ((WCMATCH LN "* *") ;space delimited

 (DEFUN LN2Pt (L)

 (READ (STRCAT "(" L ")"))))

 ('T

 (PROMPT "\nDid not recognize format.")))

 (IF LN2Pt

 (WHILE LN

 (SETQ PT (LN2Pt LN)

 LN (READ-LINE FH))

 (COMMAND "_POINT" PT)))

 (CLOSE FH))))

Summary 91

When the program encounters the DEFUN expression, the evaluator simply creates a symbol (if
one does not already exist) with the name immediately following the DEFUN subr and assigns the
associated expressions to the symbol for later reference. This is perhaps the most elementary way
to create code that adapts to the environment it is working in: Define a common symbol name to
handle each unique circumstance that you expect. The example function handles two types of
translations of strings to points, but the adaptive translation function concept could support more
exotic formats as well.

Look closer at the definition of the LN2PT function in the middle of the code. For the
comma-delimited input string, the VL-STRING-TRANSLATE subr is called to convert the commas to
spaces. An open and a close parenthesis is concatenated to the front and end, respectively, of the
changed string, which is passed to the READ subr for conversion to a list of numbers.

The alternate definition of LN2PT is found in the other conditional option for a space-delimited
format. If WCMATCH returns true for a pattern match of "* *", the input file must be space delim-
ited. The comma-delimited check took place first. If the space-delimited test had been performed
first, the result might be questionable because the string "1, 2" (note the space between the
comma and the 2) returns true for a pattern of "* *". In a COND expression, the sequence of testing
is important.

LN2PT is defined only if the format in the first line of text was recognized. If the line was not
recognized, a prompt is issued and the LN2PT symbol is not assigned. Because LN2PT is a local sym-
bol, it is bound to NIL and thus you can test for a non-NIL assignment to see whether or not to
proceed.

Assuming LN2PT was defined to a function, the program enters a WHILE loop that iterates as
long as the LN symbol has a binding that is non-NIL. In the WHILE loop, the LN2PT function is
called with the value in LN. The resulting point, PT, is sent to the drawing as a POINT entity object
using the COMMAND subr. At this point, you might want your application to do something else, such
as draw connecting lines or create a polyline. That is where you can transform the program into
something that you find useful. You can add support for more format types in addition to the
space-delimited and comma-delimited types, or you can expand the recognition and processing
logic in the LN2PT function.

Summary

This chapter wraps up a few loose ends regarding strings. Specifically, you explored how to con-
vert between numbers and strings, with an emphasis on real numbers. Real numbers can be used
to represent scalars and angles. A scalar is anything that is not an angle and can represent dis-
tances, mass, scales, and much more. Angles in Visual LISP are manipulated using radians as a unit
of measure, and this chapter explained radians in more detail as well as presented two utility subrs
for converting between angles and strings.

Strings are essential in programming applications. They are the primary communication
between your program and the outside world, conveying information as well as posing queries and
getting answers. As you create applications for AutoCAD, you will make frequent use of string
and number conversions, and the subrs introduced in this chapter will become common tools.

92 CHAPTER 6: Converting Numbers and Strings

This Page Intentionally Left Blank

93

CHAPTER 7

Using Conditionals and
Loops

Almost all of the example functions and utilities you’ve looked at so far have included conditionals
and loops, critical components in programming computers. A conditional is a test, the result of
which causes your program to take a particular path. A loop is a repeating group of program code
that works with lists of data or that collapses on an answer through an iterative process such as
those commonly used in engineering computations involving linear algebra.

In this chapter, you explore the concepts behind conditionals and then look at the many
options available for testing data in Visual LISP. The two basic conditional structures, IF and
COND, are formally introduced, and you learn how to choose the right one for your programs. The
chapter then describes a related structure, the loop.

Conditionals

The difference between a script and a program is logic. A script plays back a series of commands in
order. It will not deviate from that sequence except to stop working when something is wrong. You
may have developed scripts in AutoCAD for menu macros or command streams (a sequence of
commands). You can save a command stream in a text file with an SCR extension. These SCR files
are called script files and can be played back using the SCRIPT command. Although scripts can be
useful for combining AutoCAD commands that you use frequently in sequence, that is all they can
do. If you must apply some sort of logic to when the commands are used, you need to look at a
programming language that supports conditionals.

A conditional is simply a test with associated code that executes if the test is true or false. For
example, suppose you have a utility that annotates graphics in a drawing. A typical conditional
test in is whether the annotation should be placed above, below, to the left, or to the right. You
might ask the operator to select the location of the annotation, but you still need to do some calcu-
lations, which vary based on the selection. Now suppose that the operator wants the annotation to
the left of the graphic, and your routine is uses the AutoCAD TEXT command. By default, the TEXT

94 CHAPTER 7: Using Conditionals and Loops

command expects the point input at the bottom-left corner for placing text. You can select options
from the command line for alternative locations, but they introduce a change in the command
sequence.

To handle changes in the command sequence based on circumstances or to expand the com-
mands available to provide even more options, the programming language you use must support
logical branching in the code, or conditionals. The most simple form of logical branching is the IF
conditional. In the IF conditional, a test is performed. If the test is true, there is a place for an
expression to be evaluated. After the expression is evaluated, the program continues forward. If
the test is false, that expression is skipped and program execution continues past that point. The
IF conditional is the most basic type of logic that can be used in a computer programming lan-
guage and serves as the foundation for other conditionals.

The IF conditional is typically read as “if then.” The IF part is the test that is either true or
false. The THEN part is the expression evaluated when the IF part is true. This conditional can be
expanded to IF-THEN-ELSE, where the ELSE part is an expression that is evaluated when the IF
part is false. The expanded version provides two independent paths for the program to take. When
the IF path is taken, the ELSE path is skipped. When the ELSE path is selected, the THEN path is
skipped.

The logic of an IF-THEN-ELSE structure is like driving down a road and coming to a fork, with
a sign indicating that the two roads eventually end up at the same place, but each offers different
scenery.

Sometimes just having
two choices is not enough.
You can nest IF-THEN struc-
tures to form IF-THEN-ELSE
IF... type logic chains that
keep testing deeper and
deeper in the ELSE path. Fig-
ure 7.1 shows this sort of
logic in a flowchart. (In a
flowchart, a diamond is a
test, or IF conditional.
Blocks represent an expres-
sion or a group of expres-
sions.) Reading down the
flowchart, when the first test
is false, the second test is
performed. If the second test
is false, the third test is per-
formed, and so on. Note
that all paths lead back to
the same path.

Although this is an
acceptable way to develop

Test

Test

Test

Else

Else

Else

Then

Then

Then

T

T

T

F

F

F

T FTrue False

Then Else Expressions

Figure 7.1 If-Then-Else flowchart.

Test Expressions 95

applications containing advanced logic, many languages, including Visual LISP, offer a better alter-
native. The alternative structure contains multiple tests that cascade in the same way as a series of
IF-THEN-ELSE structures, but it is much easier to read and manipulate. The name typically associ-
ated with the alternative structure can vary based on the programming language. Visual LISP calls
such a structure COND, Pascal uses CASE, and C++ uses SWITCH. The effect is the same: A series of
tests take place in sequence.

Returning to the example, suppose that the operator can choice to position the annotation to
the left or right of the graphic or above or below the graphic. The TEXT command has four differ-
ent responses to provide at the text location prompt based on the operator’s selection. The pro-
gram needs a test to see what location option was selected and an expression (or two) to handle
each possibility. The following shows what that might look like if you use a series of IF state-
ments.

Compare this with the next example, which uses a COND expression. The COND version is much
easier to read — and is therefore much easier to maintain or improve.

Although the primary difference between the IF and COND structures is readability, you need to
consider a few other differences as well. You look at those in more detail shortly. First, however,
you look at the heart of the conditional, the test expression.

Test Expressions

A test expression produces either a NIL or non-NIL result. A NIL result is equivalent to false, and a
non-NIL result is true. Because all Visual LISP expressions return a result, they are all valid test
expressions. Many of the examples in this book take advantage of this aspect of Visual LISP.

IF (put text to left?) THEN

 Text left point

 ELSE IF (put text to right?) THEN

 Text right point

 ELSE IF (put text above?) THEN

 Text above point

 ELSE

 Text below point

COND

 (put text to left?) Text left point

 (put text to right?) Text right point

 (put text above?) Text above point

 OTHERWISE Text below point

96 CHAPTER 7: Using Conditionals and Loops

Note, however, that some Visual LISP expressions are valid but are not suitable because they
always return a particular value, such as NIL, every time they run.

Many Visual LISP subrs are intended for use as a predicate, which is a true-or-false test. For
example, the three types of equality testing subrs do nothing but check equality between items in
slightly different ways. They all return a NIL or T result just like WCMATCH, which you’ve seen in
several examples.

To make things a little easier to digest, the discussion of predicate expressions is divided into
three groups: numeric values, data types, and string values.

Testing numeric values

Table 7.1 shows the numeric value testing subrs in Visual LISP. Note that although you use these
subrs primarily for testing numeric values, you can sometimes apply them to strings too.

With the exception of EQUAL, MINUSP, and ZEROP, you can supply more than a pair of numbers
for testing. For example, if you want to test whether A, B, C equal the same amount, the expres-
sion is (= A B C). Another example is testing whether X is between 0 and 1 by using (< 0.0 X
1.0). When the evaluator is presented with this sort of expression, it breaks the arguments into
pairs. The (< 0.0 X 1.0) expression is the same as (AND (< 0.0 X) (< X 1.0)), but the first
expression takes up less space and evaluates a little more quickly.

Speed of evaluation is why MINUSP and ZEROP appear in the list. You could test for negative or
zero values using an equality or relationship test, as in (< X 0.0), which tests whether the value
in X is less than 0. Although (MINUSP X) and (< X 0.0) are the same from a logical standpoint in

Table 7.1 Numeric value testing.

Subr Description

= Equality test. Compares numbers as well as strings. Must match exactly. This subr
may not be suitable for values computed as a result of trig functions or angles. For
those cases, see EQUAL.

/= Not equal test. Compares numbers as well as strings.

> Greater than test. Compares numbers to see whether the first one is greater than the
second.

>= Greater than or equal test. Compares numbers to see whether the first one is greater
than or equal to the second.

< Less than test. Compares numbers to see whether the first one is less than the second.

<= Less than or equal test. Compares numbers to see whether the first one is less than or
equal to the second.

EQUAL Equality test for numbers, strings, and lists. You can apply a fuzz factor to all
numeric comparisons. The fuzz factor accounts for slight differences due to float-
ing-point errors resulting from trig functions.

MINUSP Checks whether a number is less than zero.

ZEROP Checks whether a number is equal to zero.

Test Expressions 97

programming, they differ in execution speed. The relationship test involves the evaluation of two
symbols. The evaluator must get the values of both X and the 0.0 constant. Then it subtracts one
from the other and sees whether the answer is negative or positive. The last test of plus or minus is
performed by checking the sign bit of the number in the computer. Determining whether a bit is set
at the most fundamental level of the computer is a fast test, and MINUSP exploits this fact. It simply
loads the number value into the registers of the computer and checks the sign bit. With no subtrac-
tions and only one value to manipulate, MINUSP is much faster as a result. The same situation
exists with the ZEROP subr.

You might ask, “How much faster?” The answer is, not enough to worry about with today’s
computers. But not too many years ago, when machines ran slower by an order or more of magni-
tude, the difference was enough to merit making these options available to programmers.

You can use the EQUAL test with numbers as well as with lists of numbers. As such, EQUAL is the
preferred subr for testing the equality of points. EQUAL can also use a fuzz factor, which specifies
the limits of precision to test for equality. For example, suppose that your program has produced a
calculated result of 10.0000000001, which most reasonable people consider to be equal to 10. If
you set two symbols to these values and presented them to the equality subr (=), however, it
returns a false, or NIL, value.

To correct this, specify the fuzz factor when defining the EQUAL expression. The fuzz factor fol-
lows the two items being tested. For example, to test for equality between two symbols P1 and P2
to a precision of four decimal places, the expression is (EQUAL P1 P2 0.0001). The 0.0001 value
is the fuzz factor.

A fuzz-factor-based equality check works by subtracting the two values and comparing the
absolute value of the result to the fuzz factor value. If the value is greater than the fuzz factor, the
two values are considered not equal. If the value is less than or equal to the fuzz factor, they are
equal.

To illustrate, set P1 to 10.001 and P2 to 10.0 using a SETQ expression, as in (SETQ P1 10.001
P2 10.0). Next, compare the two values using EQUAL:

You can use the fuzz factor to determine whether numbers are nearly equal for more than just
trig computation errors. For example, you can determine whether a beam is within a number of
millimeters of another size or determine how many factors of some unit a measurement deviates.
Listing 7.1 shows a simple example that returns a color code based on tolerance bands.

You pass two values to the function: the value as read from some instrument and the nominal
value as determined by the function or the design. If these values vary by less than 1 percent,
"GREEN" is returned. If they vary by more than 1 percent but less than or equal to 2 percent,
"YELLOW" is returned. If the difference is greater than 2 and less than or equal to 5 percent,
"ORANGE" is returned. Anything greater results in "RED".

(= P1 P2) ; NIL

(EQUAL P1 P2) ; NIL

(EQUAL P1 P2 0.01) ; T

(EQUAL P1 P2 0.001) ;T

(EQUAL P1 P2 0.0001) ; NIL

98 CHAPTER 7: Using Conditionals and Loops

In Listing 7.1, the deviation percent is determined as a factor of the NOMINAL distance provided.
To find 1 percent of the nominal, divide it by 100. To find 2 percent, divide by 50 (half of 100).

Testing data types

Because of LISP’s dynamic nature in working with symbols, you may not always know what type
of data a particular symbol is housing. For example, Visual LISP enables you to specify keywords
before requesting input for a number or a point. This means that the response of the input system
may be a number, a point, NIL, or a string. How do you know what type of data was provided?
Visual LISP has several tools for testing data types, and they are listed in Table 7.2. The operation
of most of these tests is obvious, but there are a few subtle points to understand. Because NIL is
both a list and an atom, it has its own special test (NULL). You find out why NIL is considered a
list in the next chapter, when you explore how lists are constructed. For now, it is important to
know that NIL produces a true response from (ATOM), (LISTP), and (NULL). A binding of NIL to
a symbol results in a false response from (BOUNDP). When setting up a test sequence for data
types, it is critical that you consider these things because the possible data types you are seeking
dictate the order of the tests. If you need to rule out NIL, use the (NULL) test first to remove it from
consideration.

Another way of check data types in symbols is to use the TYPE subr as part of a test expression.
TYPE returns a symbol for the type of data supplied: ‘STR for string, ‘INT for integer, ‘REAL for
double-precision floating point, ‘LIST for a data list (or NIL), and ‘PICKSET for a selection set.
You can then make an equality check to see whether TYPE matches one of the known symbols for
types. For example, the (= (TYPE X) ‘STR) expression tests the X symbol to see whether it is a
string type.

You have already seen the EQUAL and (=) subrs, so why a third form of equality checking, the
EQ subr? This third option has only specialized uses, so it is used the least. The EQ subr tests to see
whether the objects being compared are the same thing, not just an equivalence. That is, EQ tests to
see whether the objects that the symbols reference are at the same location in system memory. A
typical use for EQ is to see whether a list or function has been modified.

Listing 7.1 Returning the amount of deviation as a color code.

(DEFUN DEVIATIONCOLOR (ACTUAL NOMINAL)

 (COND

 ((EQUAL ACTUAL NOMINAL (/ NOMINAL 100.0)) "GREEN")

 ((EQUAL ACTUAL NOMINAL (/ NOMINAL 50.0)) "YELLOW")

 ((EQUAL ACTUAL NOMINAL (/ NOMINAL 20.0)) "ORANGE")

 ('T "RED")

)

)

Test Expressions 99

Testing string values

Although we have already talked about string handling, the string testing subrs are listed in Table
7.3 for your convenience. Refer to Chapter 4 for information on string handling and string com-
parisons.

When checking for a particular string value in a test, you can use the STRCASE subr to convert
strings to uppercase or lowercase, thereby resulting in a case-insensitive comparison. If string A has
a value of "AbC" and string B has a value of "abc", the (= A B) expression returns NIL. The
strings are not equal in a case-sensitive comparison. The (= (STRCASE A) (STRCASE B)) expres-
sion returns T because both strings are converted to uppercase before the comparison.

In most cases, you will be testing an input value against you own internal constants. It is a good
idea to get in to the habit of converting all strings to either uppercase or lowercase for comparison
and just stay with whichever standard you prefer. That way, your code is consistent for future
updates. My preference is to convert all comparison strings to uppercase simply because it involves
less typing (you don’t need the Convert to lowercase flag).

Combining tests

Many times during programming, you will need to combine tests. You may want to know whether
a particular layer is current and whether a particular dimension style is both available and current

Table 7.2 Data type tests.

Subr Description

NUMBERP Checks whether the data type is an integer or real. Returns ‘T for numeric data types
or NIL otherwise.

LISTP Checks whether the data presented is a list. Returns true if data is NIL.

ATOM Checks whether the data presented is an atomic data type. Note that NIL will also
return a true response from this subr.

BOUNDP Checks whether the symbol presented is bound to anything other than NIL. The sym-
bol is provided in quoted form (not evaluated) to be tested.

EQ Checks whether two expressions evaluate to the same object.

NULL Checks whether the symbol presented is NIL.

Table 7.3 String comparisons.

Subr Description

= Case-sensitive comparison of strings

WCMATCH Wildcard search of string

VL-STRING-POSITION Finds matching character position

VL-STRING-SEARCH Finds matching string position

100 CHAPTER 7: Using Conditionals and Loops

so that you can make changes before drawing something. Although you can create a series of
expressions testing each option, readability and modularity suffer, making corrections or changes
later more difficult.

A better way to combine tests is to use the logical AND and OR subrs. The AND combination
returns a true result only if all tests combined return a true result. OR returns true if any or all com-
bined tests return a true result.

To combine tests in Visual LISP, just wrap the combination expression around the tests to be
combined. For example, if you want to test whether the A symbol has a binding, is a string, and
equals "ABC", you would use the (AND (boundp ‘A) (= (type A) ‘STR) (= (strcase A)
"ABC")) expression. When combined in this way, the evaluator starts with the first test on the left
and continues until it encounters a NIL result or the end of the grouping expression.

The fact that an AND combination stops if a NIL result is encountered is of particular impor-
tance in Visual LISP programming. In the example expression, the conversion of A to uppercase
fails and causes an error if the A symbol is bound to something other than a string. Thus, the test
to see whether A has a binding and whether the type of data is a string takes place first. This fea-
ture allows you to do combinations of tests to validate data.

OR comes in handy when looking for error situations or for values outside a legal range. It
returns true if any one of the tests are true, which means you can test opposite extremes. For
example, the following expression checks to see whether the A symbol is a number, is negative, or
exceeds 100:

(OR (NOT (NUMBERP A)) (MINUSP A) (> (FIX A) 100))

In other words, you are testing the A symbol to see whether it is a number between 0 and 100.
The OR test returns true if any one of these tests is true. The first test in the expression checks to see
whether A is a number and reverses the response using NOT. Thus, it will be true if the value in A is
not a number. The second test checks to see whether the value in A is less than 0. The first test
established that A was a number. Had it failed and A not been a number, NUMBERP would have
returned NIL and the NOT would have made it T, causing the OR expression to halt and return a T
result itself.

Differences between IF and COND

The testing expressions are applied most frequently in IF and COND expressions. These are the two
basic conditional branching control subrs in Visual LISP. The principle difference between the two
is that IF is used when you have one thing to test. That one test may be a combination test (using
AND or OR), but the primary concern is that there is just one test with two possible outcomes (true
or false) and with two possible program branches — the THEN expression and the ELSE expression.
The ELSE expression is optional. Sometimes you want to use only the THEN expression, such as
when checking to see whether a layer has already been created. If the layer has not been created,
create the layer; otherwise, just carry on.

COND involves multiple tests, although it could be just a single test if that is what you want. In
fact, when building applications, it is not uncommon to start with a COND that has one branch. The
intent is to build the options at a later time, and COND allows for easy expansion of an existing

Differences between IF and COND 101

logic set. Suppose you have a program that allows the operator to select zoom settings. You might
start with some basics and then add more at a later time as users begin to request updates and
improvements.

Whereas IF has the ELSE clause, COND often considers the last option as “otherwise” if the
test will always evaluate as true. This is typically accomplished by using T itself as a predicate in
the last option of a COND. If all else has failed, the T is true and that code is evaluated.

The syntax of the IF and COND expressions follows. Values inside brackets ([and]) are
optional. In the IF expression, the ELSE clause is optional. So too are the predicate 2 and
otherwise in COND.

(IF <predicate>

 <THEN expression>

 [<ELSE expression>]

)

;

(IF <predicate>

 (PROGN

 <THEN expressions>

)

 [(PROGN

 <ELSE expressions>

)]

)

;

(COND (<predicate 1>

 <expressions>

)

 [(<predicate 2>

 <expressions>

)]

 [(‘T

 <OTHERWISE expressions>

)]

)

102 CHAPTER 7: Using Conditionals and Loops

Note that you can have multiple expressions in the COND cases, indicated by the plural
<expressions> under <predicate 1>. Any number of expressions (including zero expressions)
can appear before the balancing parentheses. Each parameter in a COND expression is a list contain-
ing a predicate as the first member followed by expressions to evaluate if the predicate is true.

The IF expression, on the other hand, allows for only one expression in the THEN position and
one in the ELSE position. These groupings have no balancing parenthesis — just the one for the IF
expression itself. To get around this restriction, you use the PROGN subr, which defines an anony-
mous function without parameters. This subr allows you to group expressions. The PROGN subr is
used most frequently in relation to the IF expression, as shown in the second IF syntax. When
using PROGN in an IF expression, any number of expressions may fit in the THEN or ELSE branches.

Conditional branches are useful tools in programming because they allow your code to make
decisions and act based on the data available. Some say this gives the computer intelligence. As a
programmer, it all comes down to conditional branching and the capability to repeat, or loop.
Loops are the next topic because they, like conditionals, relate to program sequence control.

Loops

Looping, or the capability of a computer to tirelessly repeat a task over and over, is its greatest
aspect. Through this mechanism, you can solve advanced mathematical problems and manipulate
data on request. There are three basic structural types of loops. The differences between each type
have to do with when you leave the loop or make the decision to leave the loop.

Generally, you decide whether or not to leave a loop at some point in the code each time the
loop iterates, or repeats. That decision process may be something as simple as reaching a counter
value (as in “do this 100 times”) or something more complex (as in “do this until blue pigs fly”).

The three types of looping structures are based on the location of the exit test. The test can
occur at the front of the loop, at the end of the loop, or in the middle of the loop. After you deter-
mine which structure you want to us, you apply the Visual LISP looping control tools, REPEAT and
WHILE. Of these two, only the WHILE loop can be adapted to all three types of loop structures. The
REPEAT loop is a direct count iteration that loops for a predetermined number of times. You look
at the REPEAT loop first, and then you look at the WHILE loop and how you can adapt it to basic
looping structures.

The REPEAT loop is the simplest looping structure in Visual LISP:

(REPEAT <number> <expressions>)

The number is an integer determined before the REPEAT loop starts. You cannot change the
number after the loop is underway. REPEAT loops are useful when you know in advance how many
times you want the code to execute. And example REPEAT loop is building a log-log chart to fill a
particular area in a drawing. Another example is inserting some detail at set intervals along a line
(the REPEAT counter would be based on the length of the line divided by the interval size). REPEAT
is simple and intended for the simplest of loops. After a REPEAT loop starts, it ends only if it has an
error or finishes the count.

The WHILE loop is more versatile. The syntax follows:

(WHILE <predicate> <expressions>)

Loops 103

The expressions are evaluated over and over, as long as the predicate returns a non-NIL value.
As such, the termination of the loop is controlled by the contents of the loop. Whereas the REPEAT
loop iterates for a set number of times, the WHILE loop iterates as long as conditions call for it to
continue. So, unless you want the program to continue forever, you must provide something in the
expressions that allows the WHILE loop’s predicate test to fail.

A classic example is a WHILE loop based on user input. In the WHILE loop, the operator tells the
program what it wants to do next. If one of those options is to exit the program and that option is
selected, the program can take whatever actions are needed to exit the loop and the program.

It is easy to see how the WHILE structure can test before the loop. The predicate is located at the
front of the loop and no expression evaluates whether it is not true. So how do you implement the
other two logical loop structures, the ones that test at the end of the loop or at the middle of the
loop? You use flag variables, as demonstrated next.

The basic WHILE loop syntax is simple. The expressions are evaluated as long as the predicate
test is true. If the test fails on the first try, the loop expressions are never evaluated. Note that in
this syntax, the test occurs at the beginning of the loop.

If you need to reverse that logic and evaluate the loop expressions at least one time, use one of
the basic structures shown in the following. In this WHILE loop syntax, the test is at the end of the
loop:

In the first version, the DOIT symbol is set to true. The loop iterates as long as the DOIT symbol
is not NIL. Following the DOIT test are the expressions, and then a test is conducted to see whether
the exit condition has been met. Note that a NOT is used. The predicate is checking to see whether
the loop should continue in most cases where this structure is used. NOT reverses the answer and
then sets the DOIT symbol if the loop is not to continue. Another way to accomplish this would be
to simply save the result of the predicate test to the DOIT symbol directly.

(SETQ DOIT ‘T)

(WHILE DOIT

 <expressions>

 (IF (NOT <continuation test>) (SETQ DOIT NIL))

)

(WHILE

 (PROGN

 <expressions>

 <continuation test>

)

)

104 CHAPTER 7: Using Conditionals and Loops

The second part of the code places the entire WHILE loop iteration inside a PROGN for the predi-
cate of the loop. The last expression evaluated is the result of the PROGN expression, which allows
this structure to evaluate the loop contents at least once before leaving the loop.

The next two WHILE loop syntaxes show how you can structure WHILE loops to test in the mid-
dle of the loop, although the need for this is rare in well-designed programs. You may want to have
the program evaluate half the WHILE loop code at least once, and then check for the exit condition.
When that is the case, use whichever format you find more readable:

Following is the second version of a WHILE loop that tests in the middle of the loop:

The predicates in a WHILE loop are the same as those in COND and IF expressions, and the same
rules apply. If something evaluates to NIL, it is false. Any other value is true.

Beginning programmers often find it difficult to understand how to structure the testing for the
iterations in a WHILE loop. Sometimes just writing the problem down, using the word while, can
clarify how you should structure the program.

Example: Importing Text from a File

What follows is a complex example that contains many Visual LISP features that have not been
covered yet. I advise you to proceed with caution and come back to the example later too.

(SETQ DOIT ‘T)

(WHILE DOIT

 <expressions part 1>

 (IF (not <continuation test>)

 (SETQ DOIT NIL)

 (PROGN

 <expressions part 2>

)

)

)

 (WHILE (PROGN

 <expressions part 1>

 <continuation test>

)

 <expressions part 2>

)

Example: Importing Text from a File 105

Although the program is complex, the concept behind it is simple. We want a function that
reads lines of text from a file looking for a line that begins with an asterisk. The program outputs
any it finds to the drawing, until the end of the file is reached. To figure out how to program the
application, I will rephrase the concept using the term while:

While text is read from the file, if the text line starts with an asterisk, output it to the
drawing.

Now that I have described the program, the next step is to refine the description and syntax. In try-
ing to anticipate the needs of the operator using a command as just described in one sentence, I’ve
greatly expanded the description. When writing programs, you need to expand each step as you
refine your description into pseudocode:

Open a text file selected by the operator for input. Ask for a text starting point in the
drawing. While text can be read from the file, process it. Processing the text involves
testing to see whether the string just read from the file starts with an asterisk. If it
does, the text will be placed in the drawing. Before outputting the text to the draw-
ing, remove the prefix asterisk. Next, output the text string at the text point location.
Move the text point location down by one and half times the text height and repeat
the WHILE loop. When finished, close the file.

After reviewing the previous description, I decided to improve the design. Sometimes an operator
may want to bring text into a drawing at multiple locations. Logic for such an operation can be
added by including the following in the program description:

When two asterisks are encountered, have the operator select a new text point loca-
tion in the drawing. Then remove the first asterisk to output the text at that location,
and proceed as before.

Listing 7.2 contains a text file import utility based on this design. The IMPORTTEXT command
function reads a text file selected by the user and imports only lines tagged with an asterisk as the
first character.

The command function starts by requesting a file name from the operator using GETFILED, the
standard file dialog box utility. If GETFILED returns a file name, FH will have a non-NIL value so
the predicate for the IF expression will be considered true. PROGN groups all the expressions asso-
ciated with the THEN expression of the IF. Because you want to do more than one thing as a result
of getting a good file name, PROGN is required.

PROGN first opens the file in read mode and requests that the operator supply a text point. The
point 0,0,0 is presented as a default value. Following the GETPOINT input is another IF expression
in which you check whether the TP symbol has a null binding, indicating that a point was not
input using GETPOINT. If that is the case, the TP symbol is set to a list containing 0 for the X, Y, and
Z values.

With the file open and the starting text point known, the next task is to start reading the file.
The first step is to check the line just read for an asterisk. If an asterisk exists, you use the text line
for output. The WHILE loop contains a SETQ in the predicate. The SETQ contains a READ-LINE subr
that returns a text line from a file or NIL if the end-of-file is encountered. It is perfect for a
predicate test in this application. Because READ-LINE returns NIL at the end-of-file, the WHILE loop

106 CHAPTER 7: Using Conditionals and Loops

terminates when the file is completely read. The WHILE loop continues to repeat as long as
READ-LINE can return a string and put it in LN.

With a string in LN, the first character is tested to see whether it equals an asterisk. If so,
another PROGN is started because you need to do a few things in this case as well. First, you check
to see whether there are two asterisks, which signifies the desire for a new text insertion point. If
that case is met, the program asks for the new insertion point with the current value of TP as the
default. If the operator enters a new point, it is stored in TMP; otherwise, TMP is NIL. The next part
of SETQ tests TMP to see whether it is non-NIL. If so, TMP is placed in TP. Otherwise, TP is placed
back in TP. The text line is then reduced by another character to remove one of the two asterisks

Listing 7.2 Importing text.

 (DEFUN C:IMPORTTEXT (/ FH LN TP TMP)

 (SETQ FH (GETFILED "Text file to import" "" "" 0))

 (IF FH

 (PROGN

 (SETQ FH (OPEN FH "r")

 TP (GETPOINT "\nText point (0,0,0): "))

 (IF (NULL TP)

 (SETQ TP (LIST 0.0 0.0 0.0)))

 (WHILE (SETQ LN (READ-LINE FH))

 (IF (= (SUBSTR LN 1 1) "*")

 (PROGN

 (IF (= (SUBSTR LN 1 2) "**")

 (SETQ TMP (GETPOINT TP "\nNew text point: ")

 TP (IF TMP TMP TP)

 LN (SUBSTR LN 2))

 (SETQ TP (POLAR TP (* 1.5 PI)

 (* 1.5 (GETVAT "TEXTSIZE"))))

)

 (SETQ LN (SUBSTR LN 2))

 (COMMAND "_TEXT" TP "" "" LN))))

 (SETQ FH (CLOSE FH))))

 (PRINC)

)

Summary 107

from the front. The second asterisk is removed after the IF is finished. At that time, the text in LN
is output to TP.

Note that this version assumes that you do not have a style with a constant text height set. If
this function fails when testing, check the current text style and set the default text size to 0.

Summary

In this chapter, you explored conditionals and loops, the two most important branching tools for
programming applications. Both make use of predicates, the expressions that return either a NIL
or non-NIL answer. Predicate tests are provided in Visual LISP for strings, numbers, and data type
comparisons. Some of the tests are specific and fast. Others are more versatile.

The EQUAL predicate test allows you to test numbers and lists of numbers for equality with a
fuzz factor. The fuzz factor is a tolerance for the comparison so that floating-point shifts and trig
function results can be tested properly. The normal equal test (=) is useful for testing strings as
well as numbers, but the match must be exact: Strings must match in both case and character and
the numbers must match exactly, to the insignificant digit.

Visual LISP provides two types of conditional branching subrs: IF and COND. IF allows for one
test, and COND allows for a group of tests in a cascade-like structure. The IF expression sometimes
requires PROGN to expand the number of expressions that can be evaluated in either the THEN or
ELSE parts. COND does not require PROGN because the entire predicate and expressions are defined
in a list (they have surrounding parentheses). This structure permits any number of expressions.

Loops in Visual LISP are direct iterations based either on a predetermined number using
REPEAT or on the more versatile WHILE structure. WHILE can be manipulated so that the exit, or
breakout, test takes place at the front, end, or middle of the loop.

108 CHAPTER 7: Using Conditionals and Loops

This Page Intentionally Left Blank

109

CHAPTER 8

Working with Lists

LISP is an acronym for List Processing (not Lost In Stupid Parentheses, although sometimes one
does wonder). A list is an ordered collection of data; the organization of the list is up to the pro-
grammer. Some lists are expected to have a standard structure, such as lists of points or lists of
entity object data that AutoCAD should process.

Lists can be made up of any data type, including other lists. And lists can contain any mixture
of data. For example you could have a list that contains a layer name with a count of entity
objects, color code, last Z elevation used, and so forth. You could then create a list containing mul-
tiple copies of the previous list described for each layer in a drawing. It is up to your application to
keep track of what you are working on.

In this chapter, you look at how to build and access data in lists. Then you look at some specific
list types in AutoCAD programming, such as point lists and association lists. Lists representing
point data are important in AutoCAD, and you will explore several subrs for manipulating points.
You then dig deeper into lists by learning about the concepts of list storage that LISP employs. By
the end of the chapter, you should know how to create a list of your own design and manipulate it
using several techniques.

Creating a List

Lists are created either all at once or in pieces. Most applications build on existing lists that are
started using the LIST or QUOTE method. When you use these subrs to create a starting list, it gen-
erally contains only the basics. You then use other subrs to add data to or retrieve data from the
list.

A list can be extensive or simple. An example of an extensive list is parameter data (that can be
accessed by name) for all the types of windows in a particular construction job. A simpler list
might be one that is built as the application runs. For example, an application that tracks lumber
used would start by building a list based on the first piece of lumber selected for use. As more lum-
ber is used, the list grows.

The LIST and QUOTE subrs differ in one major respect. When you use QUOTE to build a list, the
elements in the list are not evaluated. Thus, if a symbol is used, the symbol becomes part of the

110 CHAPTER 8: Working with Lists

data list, not the data referenced by the symbol. LIST, however, allows the evaluator to evaluate
symbols as they are used to construct the list.

You can think of the difference between LIST and QUOTE this way. If you know all the data in
advance when coding the application, you can use QUOTE. If you need to use data generated during
the application run, you must use LIST. For example, if you knew the values for the X, Y, and Z
ordinate values for a point at programming time, you could use QUOTE or LIST to create the point
list. If you have just calculated these ordinates, however, you would use LIST. Table 8.1 shows the
basic actions for creating symbols using the LIST and QUOTE methods.

Adding to a List

To add data to lists, you use the APPEND and CONS subrs. In the simplest terms, APPEND adds data
to the end of a list, and CONS adds data to the front of a list. APPEND also allows you to work with
multiple lists as you merge them into a single list. CONS allows you to add only one item at a time
to a list.

CONS is significantly faster than APPEND and is thus preferred for building lists on the fly. In
LISP, you often build lists in reverse order and then reverse them as needed. Many example func-
tions from this book use CONS to construct a list inside a loop and then reverse the list at the com-
pletion of the loop. As you will see later, this operation is not difficult for LISP due to its approach
to list storage.

The APPEND subr takes two or more lists
and runs them together to return a longer
list. You cannot use atomic data types such
as strings and numbers. You can use only
lists as arguments to APPEND. One way to
think of APPEND is that it snips the parenthe-
ses between the lists supplied as arguments,
as shown in Figure 8.1.

A common mistake made by Visual LISP programmers is to use APPEND with two point lists, as
shown in the figure. The result is a list with six elements, which may not be the desired result. If
you want to merge two point lists to form a resulting list of two points, you must nest the lists.

Table 8.1 Examples of creating lists.

Expression Result

(SETQ A 1 B 10 C 100 D
“ABC”)

Set up some symbols

(SETQ L ‘(A B C D)) (A B C D), a list of symbols

(SETQ L (list A B C D)) (1 10 100 “ABC”), a list of data evaluated from the symbols

(SETQ L ‘(1 2 3)) (1 2 3); constants were used with no symbols

(SETQ L (LIST A B C ‘D)) (1 10 100 D); note the quote in front of the D symbol, which
causes the symbol name to be returned rather than evaluated

(1 2 3) (4 5 6)

(1 2 3 4 5 6)

(1 2 3 4 5 6)

Starting lists

Parentheses snipped

Merged result

Figure 8.1 Merging two lists with APPEND.

Adding to a List 111

Suppose that you stored the first list, (1 2 3), using the PT1 symbol, and stored the second list, (4
5 6), using the PT2 symbol. The following expression

(APPEND PT1 PT2)

results in

(1 2 3 4 5 6)

This expression

(APPEND (LIST PT1) (LIST PT2))

creates a nested list

((1 2 3) (4 5 6))

So too will the (LIST PT1 PT2) expression.

To add members after you build an initial list containing lists, you must wrap the new member
in a LIST expression as it is added to the nested list. If you stored the nested list just described
using the PTS symbol and the new point was named PT3, the following expression adds the new
sublist to the end of the PTS list:

(APPEND PTS (LIST PT3))

Table 8.2 demonstrates the APPEND subr in action with a few different lists. Note the use of the
LIST subr to wrap extra parentheses around some of the data to allow for proper nesting while
merging.

Table 8.2 Examples of CONS and APPEND.

Expression Result

(SETQ

 A (LIST 1 2 3)

 B (LIST 4 5 6)

 C (LIST 7 8 9))

Sets up the A, B, and C data lists

(SETQ AA (APPEND A B C)) (1 2 3 4 5 6 7 8 9); created from the individual lists

(SETQ AA (APPEND (LIST A)
(LIST B)))

((1 2 3) (4 5 6))

(SETQ AA (CONS C AA)) Adds C to AA from the previous step to form
((7 8 9)(1 2 3)(4 5 6))

(APPEND AA C) ((7 8 9)(1 2 3)(4 5 6) 7 8 9)

(SETQ AA (LIST A)) ((1 2 3))

(SETQ AA (CONS B AA)) Adds B to AA to form ((4 5 6)(1 2 3))

(SETQ AA (CONS C AA)) Adds C to AA to form ((7 8 9)(4 5 6)(1 2 3))

(REVERSE AA) ((1 2 3)(4 5 6)(7 8 9)); note that the internal lists
did not get reversed

112 CHAPTER 8: Working with Lists

The CONS subr is used to construct a list from the back forward. You might wonder why at
first, but consider that a list built in this way is behaving like a stack. A stack is a logical data orga-
nization in which the first thing in, or pushed, is the last thing out, or popped. (Put another way,
the last thing in is the first thing out.) Because CONS puts things at the front of a list, you can think
of it as pushing data onto the front of the list. When you access the list, the first thing you see is the
last thing that was added.

Lists can be made to behave like a stack by getting the CAR and CDR composite primitives
involved. CAR retrieves the front of a list, and CDR removes the front of the list. CAR and CDR used
in combination are the same as popping off the stack, and CONS is the same as pushing onto the
stack. You look at these two subrs in more detail later in this chapter.

Instead of a stack structure in your application, you may want to just build a list quickly and
with the minimal coding. In that case, use CONS, as shown in Table 8.2. When you have finished
building the list, simply use the REVERSE subr to change the order of items in the list. For example,
in Table 8.2, the REVERSE subr is shown with the AA nested list. When REVERSE was used, only the
outermost list was reversed, not the inner lists. This situation comes up only when working with
nested lists as shown. A single level list is reversed, as you would expect. For example, (REVERSE
(LIST 1 2 3)) returns the (3 2 1) list.

Storing and Accessing Lists in LISP

In this section, you look at how lists are stored and accessed in the LISP environment. The heart of
a list in LISP is the cons cell, so-named probably because the CONS subr is used to create cells. The
cons cell is comprised of two components labeled A and D. (These labels have to do with the origi-
nal computer LISP was developed on and refer to two parts of an internal register.) I just consider
them to mean “A list element” and “Dee rest of dee list.”

The cons cell is shown in Figure 8.2. In this figure,
a symbol (or another cons cell) points to the cons cell.
The cons cell contains two pointers. The first, called
A, is a pointer to the list data element. Keep in mind
that the data element being pointed at may be an
atom, such as a string or a number, or another list, in
which case it would point to another cons cell. The
second element of a cons cell, D, points to a cons cell
for the next member of the list. A list ends when the D component does not point to another cons
cell. You come back to that later. For now, just consider that all normal lists end with a D pointer
to NIL.

Figure 8.3 contains a
typical list structure dia-
gram. The list of integers, (1
2 3), is shown graphically.
A symbol points to the first
cons cell. The A pointer of
that cell points to the value

A D

List Element

Next Member

Cons Cell

Symbol

Figure 8.2 A cons cell.

1 2 3

NilSymbol A D A D A D

Figure 8.3 A typical list structure.

Storing and Accessing Lists in LISP 113

1, and the D pointer points to the second cons cell in the list. In the second cons cell, A points to the
value 2 and D points to the third cons cell. You can keep following the D track until you reach the
last cons cell, at which point D points to NIL, signifying the end of the list.

At first glance, using cons cells to
store lists of data may seem odd. How-
ever, two things about this design make
it powerful. First, pointers are just
pointers. You can quickly traverse a list
to a specific location. Second, pointers
can point to anything you want. The
location they point to contains the
information about the type of data
stored there (such as an integer, a real
number, or a string). Cons cells can
also point to other cons cells, allowing
list structures to take on all sorts of
forms, such as the ((1 2) 3 4) list in
Figure 8.4.

Figure 8.4 contains a nested list
named AA in which the first member is
a list. The AA symbol points to the
opening cons cell. From that cons cell, the A pointer points to another cons cell that represents the
first member of the nested list. The D pointer continues down the list, as in the previous figures. At
the end of each list, D points to NIL.

By layering cons cells, you can build any type of list structure. The form that a list can take has
no technical limits, though it might have practical limits based on your own requirements.

Accessing data using specialized subrs

Storing data in a list is only a small part of list manipulation. The real power of LISP is revealed
when accessing data from a list. Many subrs are dedicated to specialized tasks in list manipulation.
For example, the LENGTH subr returns the integer count of the number of element in a list, and the
LAST subr retrieves the last member of a list. (These subr names are easy to remember, but LISP
has a long history and many of the subrs used to manipulate lists are not as easy to decipher, such
as CAR and CDR.)

To demonstrate some important aspects of the list handling subrs, I’ll use the AA list in Figure
8.4, which is ((1 2) 3 4). You might want to follow along in AutoCAD. Start by setting the AA
symbol to the list:

(SETQ AA '((1 2) 3 4))

Next, using the LENGTH subr, you can see that the (LENGTH AA) expression returns 3. This subr
counts only the uppermost level cons cells in a list. It does not count any of the lower-level ones.
The first element was considered to be one entry in the list despite the fact that it is a list itself con-
taining two elements. If you think of this subr as counting cons cells and not data elements, the
concept makes sense.

AA

Nil

3

1

4

2

Nil

((1 2) 3 4)

A D A D A D

A D A D

Figure 8.4 A nested list structure.

114 CHAPTER 8: Working with Lists

The LAST subr returns the last element in the list, so (LAST AA) returns 4, the last data element.
The last data element was found by locating the last cons cell, which has a D pointer that does not
point to another cons cell. (The last D points to NIL.)

NTH retrieves any member in a list. You provide the offset into the list as one of the arguments
to the subr. The system simply counts that many cons cells, and then returns the contents pointed
to by the A pointer. NTH starts with an offset of 0 and retrieves data from the uppermost level of a
list. (NTH 0 AA) returns (1 2) list, the first element in the AA list. (NTH 1 AA) returns 3, the con-
tents of the second element in the AA list.

MEMBER searches a list for a matching value. Given an item to match, MEMBER returns a pointer
to the cons cell for the matching element, which can also be thought of as the remainder of the list.
(MEMBER 3 AA) returns the (3 4) sublist. When there is no match, as in (MEMBER 10 AA), NIL is
returned.

Another basic subr used in list manipulations is SUBST, which substitutes new values for mem-
bers in a list. Arguments to the subr include the list, the old value to be replaced, and the new
value. All instances of the old value in a list are replaced with the new value. The (SUBST 6 3 AA)
expression returns the ((1 2) 6 4) list. The item being substituted must be at the upper level of
the list. (SUBST 6 2 AA) results in an unchanged list because the value 2 is not visible at the upper
level of the list structure.

These subrs provide the tools needed to manipulate lists in a variety of manners. But they don’t
aid in accessing nested data lists and in getting even more specific information from a list. Suppose
you want the second member of the list that is the first element of AA. The (NTH 1 (NTH 0 AA))
expression produces the result, but it is difficult to read. LISP has a more direct approach available
for accessing pieces of lists.

Accessing data using composite primitives

For direct access to a list, you use the CAR and CDR composite primitives, which come from the
original LISP language. They are called composite primitives because they can be combined. CAR
stands for Contents of the A Register, which is the value associated with the first A in a list. For
example, (CAR AA) returns (1 2) because that is the first element in the list. CDR stands for Con-
tents of the D Register. For example, (CDR AA) returns (3 4) or the “Dee rest of the dee list” after
removing the first element. Composite primitives are useful when manipulating lists but the only
problem is that reading them in program code is odd.

You can combine primitives to provide access to nested lists. To get to the first value in the first
list of AA requires the CAR of the CAR of AA, or (CAR (CAR AA)). You can combine the primitives
to make the (CAAR AA) composite primitive. The action takes place starting from the R and work-
ing backwards to the C. Each A is the same as CAR, and each D the same as CDR. Thus, the CADR
composite primitive performs the CDR primitive first and then the CAR. (CADR AA) is the same as
writing (CAR (CDR AA)). The combined form hot only requires less typing but also runs faster.

To retrieve the second value from the nested list, use (CAR (CDR (CAR AA))), or (CADAR AA).
Starting at the AA symbol in Figure 8.4, follow the pointer to the first cons cell in the list. From
there, follow the A pointer to the first cons cell in the nested list. Now take the D pointer to the sec-
ond cons cell and then follow the A pointer to the data element itself (which is 2).

Special List Types 115

To retrieve the second item from the list, the composite primitive is (CADR AA). Again, reading
the composite primitive backwards starting just before the R, the symbol points to the initial cons
cell. Follow the D route to the second cons cell. From there, follow the A route to the data itself
(which is 3).

The only restriction with composite primitives is that you must know the list’s format in
advance. For most applications, this is not an issue because the data list is generally defined first to
carry the required items.

Another aspect of composite primitives is that they have been defined for up to four As and Ds.
If you need to go deeper into a list, use the NTH subr or just nest the composite primitives. Table
8.3 shows a variety of composite primitives operating on the ((1 2) (3 4) (5 6)) nested list.

Because points are stored as lists containing three numbers, you can use the CAR, CADR, and
CADDR composite primitives to get the X, Y, and Z ordinate values, respectively, from a point or
vector. For example, the function in Listing 8.1 uses these three composite primitives to extract a
point’s ordinates one at a time. Each value is then converted to a string using RTOS to create a
point with commas between each number. You may want to adjust the RTOS and ANGTOS conver-
sion parameters to suite your application needs. This function does not perform error testing, but
the version on the CD does. Please refer to that version when using this utility in your own work.

Special List Types

LISP has a few special list structures that are used frequently in Visual LISP programming when
manipulating AutoCAD entity objects using something called an entity list. You explore entity lists

Table 8.3 Examples of composite primitives.

Expression Result

(SETQ AA ‘((1 2) (3 4) (5 6))) Sets AA to ((1 2) (3 4) (5 6))

(CAR AA) (1 2)

(CAAR AA) 1

(CADAR AA) 2

(CADR AA) (3 4)

(CAADR AA) 3

(CADADR AA) 4

(CDR AA) ((3 4) (5 6))

(CDDR AA) ((5 6))

(CADDR AA) (5 6)

(CAADDR AA) 5

(CAR (CDADDR AA)) 6

116 CHAPTER 8: Working with Lists

in later chapters (starting in Chapter 12). In this section, you learn the basics of two special list
structures, the dotted pair and the association list.

Dotted pair list structure

As mentioned, a list is terminated when the D component of a cons cell
does not point to another cons cell. A normal list ends with the D com-
ponent pointing to NIL. If the D component instead points to an atom,
as in Figure 8.5, the list is called a dotted pair.

You can create a dotted pair in two ways. One, you can use the
CONS subr with an atom instead of a list. For example, the (CONS 1 2)
expression creates the dotted pair (1 . 2). Two, you can simply use a
quote and type the dot (period) where it is needed. For example, the
(SETQ B ‘(1 . 2)) expression creates the (1 . 2) dotted pair and
saves it using the B symbol as a reference.

A dotted pair is rarely used in other LISP implementations and
offers only one main advantage: It uses less memory for a list with only
two elements because an entire cons cell is eliminated. This was important when memory for LISP
applications was limited. The initial releases of AutoLISP, the predecessor to Visual LISP, ran in
just 64 kilobytes of memory. From today’s perspective, it is hard to fathom a program running in
such a small amount of memory. But because of the long legacy of Visual LISP, the dotted pair is
used quite a bit in AutoCAD-related programming.

Association list structure

You use an association list to associate data with a key. A key is something that you can search for
or locate by name. In this section, you look at the simple structure behind an association list and
see how it can be used to solve many different requirements for data retrieval.

The structure of an association list has only two basic rules. The first is that each member of
the main list must be a list. Atoms cannot appear in the uppermost list. The sublists in an associa-
tion list do not have to be the same size or structure, but they must be lists.

Listing 8.1 Converting a point list to a string.

(DEFUN PT_STR (PT)

 (STRCAT

 (RTOS (CAR PT) 2 3)

 ", "

 (RTOS (CADR PT) 2 3)

 ", "

 (RTOS (CADDR PT) 2 3)

)

)

1 2

A D

B

Figure 8.5 A dotted pair.

Special List Types 117

The second rule is that the first data element in each list must be a key. The key can be any type
of data, but all keys should be of the same data type. Keeping the keys unique enables you to
access all members of the association list without further manipulation. If you instead have two
entries with the same key, you must follow a multiple-step process to get at the data for the second
entry.

You use the ASSOC subr to access an association list. When ASSOC finds a matching key entry in
the association list, it returns the sublist. If no match is found, it returns NIL. Table 8.4 contains an
example association list and a series of accesses.

In the listings in this book, you can see many other examples of association lists and dotted
pairs. They are useful not only for housing your own data but also when accessing entity-related
data. In fact, most Visual LISP programmers use association lists and dotted pairs when they work
with entity data lists. The reason is that entity data lists are association lists with integer keys. And
most of the data lists in the entity association list are dotted pairs. You explore entity data lists in
later chapters (starting with Chapter 12) as you study the tools for accessing AutoCAD drawing
data.

Table 8.4 Examples of association lists.

Expression Result

(SETQ AA

‘((“A1” 1.0 2.0)

(“B3” 2.5 3.5)

(“C2” 7.1 8.3)))

The AA symbol references the
((“A1” 1.0 2.0)(“B3” 2.5 3.5)(“C2” 7.1 8.3))
nested list

(ASSOC “A1” AA) (“A1” 1.0 2.0)

(SETQ B (ASSOC “B3” AA)) The B symbol references the (“B3” 2.5 3.5) list

(CADR B) 2.5; CADR returns the second element in a sublist

(CADR (ASSOC “A1” AA)) 1.0

(CADR (ASSOC “C2” AA)) 7.1

(ASSOC “D5” AA) Nil; there is no entry for “D5”

(LENGTH AA) 3, the number of sublists in the AA list

(SETQ AA

(CONS ‘(“D5” 5.5 6.6) AA))

The AA symbol references the
((“D5” 5.5 6.6)(“A1” 1.0 2.0)(“B3” 2.5
3.5)(“C2” 7.1 8.3)) nested list

(LENGTH AA) 4

(CADDR (ASSOC “D5” AA)) 6.6; CADDR returns the third element in a sublist

118 CHAPTER 8: Working with Lists

Looping through Lists

Visual LISP provides two powerful subrs for looping through data lists, FOREACH and MAPCAR. The
primary difference between the two is what they return as a result of a loop. FOREACH returns the
result of the last iteration of the loop. MAPCAR returns a list containing the result for each iteration
of the loop. You may wonder why such a difference exists and when you would select one rather
than the other. The answer has to do with the purpose of the loop.

If the loop goes through a list and outputs data, the results of each iteration are not important,
so you would use FOREACH. Most loops you will create based on lists are like this. You will want to
do something with the data to achieve a result in the loop, and you will not be looking for a list
result.

Other times, you want to manipulate each member of a list in the same way and keep the
resulting list, so you would use MAPCAR. For example, if you have a list of points and want to offset
them ten drawing units, a MAPCAR loop accomplishes this feat in the fewest possible lines of pro-
gramming. (I like to think of MAPCAR as meaning Multiple Applications of CAR. In other words, it
does the same thing as CAR but multiple times through an entire loop.)

The FOREACH expression uses a local symbol name to house the elements of the list during the
loop iterations. Each time the loop starts, the next member in the loop is referenced by the local
symbol. For example, using the AA list in Table 8.4, the following expression prints the association
keys found at the beginning of each sublist ins AA:

(FOREACH A AA (PRINT (CAR A)))

The (CAR A) part of the expression extracts the first element of the list in the A symbol. This
symbol houses each individual list member from AA.

MAPCAR is sometimes difficult to work due to its syntax. The basic syntax seems simple enough:

(MAPCAR ‘<expression> <list> [<list> ...])

For example, the (MAPCAR ‘CAR AA) expression returns a list of the first elements in the AA list
from the previous examples. For basic manipulations such as those in Table 8.5, you can use a sin-
gle expression. The number of lists provided as arguments must meet the basic requirements of the
expression. The plus (+) expression can work with two or more numbers, so you can supply two
or more lists as seen in the examples. Adding and subtracting vectors or points stored as a list (like
the ones in the examples) is greatly simplified with the MAPCAR expression. It just looks strange
when reading the code until you get used to it.

But what if you need more than a single expression? How do you expand MAPCAR for that pur-
pose? The solution is to define a function that solves the problem for you. Suppose you want to
add the numbers in the AA and BB lists, and then divide the sum by 2. No single expression can
accomplish this, so you have to define a function for that purpose. If you define a function named
MIDDLE, for example, with two arguments that are both numbers, the (MAPCAR ‘MIDDLE AA BB)
expression returns the answer you are after.

To expand a MAPCAR expression, you can also define an anonymous function instead of a new
function. An anonymous function has no name but sports the same features as a function (bound
symbols, local symbols, and multiple expressions). You create an anonymous function with the
LAMBDA subr. LAMBDA is similar to a combination of PROGN and DEFUN. It is like PROGN in that it

Sorting Lists 119

provides an opportunity for more expressions when only one is allowed. It is like DEFUN in that it
has a parameter list of symbols that go on the stack during the evaluation. Novice programmer
might be intrigued with they come across LAMBDA in your code because it is not always clear what
LAMBDA is doing.

When working with points, vectors, and matrices, MAPCAR can be a powerful tool because it
allows you to perform operations to all members equally with minimal coding. Later in the chap-
ter, you look at point list operations as well as more examples of point manipulations. Some of
those examples use the LAMBDA expression. When you see LAMBDA in the code, just think of it as its
own function definition. It is a function without a name, and is used in only one place in the code.

Sorting Lists

One of the first problems you will most likely encounter when working with data lists is the need
to sort the data in a particular order, perhaps for a report or for part of a drawing table. For that
type of task, you use the VL-SORT subr, which accepts a list and a comparison operator to be
applied to the list. Like in the MAPCAR expression, the comparison operator can be a single subr or
a function. But unlike the MAPCAR expression, the comparison expression must accept two argu-
ments and act like a predicate in that it returns a true (non-NIL) or false (NIL) answer. This expres-
sion is applied to all the members of the list to produce a sorted list as a result. Duplicate values
are removed from the resulting list.

Following is a simple example:

(VL-SORT ‘(4 1 2 0 5) ‘<)

This expression returns the (0 1 2 4 5) list. The less-than operator (<) compares each ele-
ment in the list to produce a sequence in ascending order. If you used the greater-than operator (>),
the result would be a list of numbers in descending order.

When lists are more complicated, the comparison operator is more complex as well. This is
another case where you can define a function or use the LAMBDA expression to expand the routine.
The logic of your sorting system is up to you because you define the method of testing.

Table 8.5 Examples of MAPCAR.

Expression Result

(SETQ AA ‘(2 3 4)

BB ‘(5 4 3)

CC ‘(7 8 9))

Sets up three symbols that each reference a list with three
integer data elements

(MAPCAR ‘+ AA BB) (7 7 7), the summing of the individual values in AA and BB

(MAPCAR ‘- CC BB) (2 4 6), the difference of each element in the CC and BB
lists

(MAPCAR ‘+ AA BB CC) (14 15 16), the summed list

(MAPCAR ‘MIN AA BB CC) (2 3 7), the minimums from each list

120 CHAPTER 8: Working with Lists

Listing 8.2 shows a set of functions that use VL-SORT to create a set of more descriptive sort
functions to assist in your programming efforts. These functions sort a list of points by X or Y
ordinate values. A third function is provided as an example of sorting based on the distance from a
known point.

Point Lists

The previous examples demonstrated the sorting of point lists. Point lists are just lists of numbers
with two or three values, such as (1 2 3) or (5.3 1.2 0.0). The three values represent the X, Y,
and Z ordinate values for the point. You can also think of the values as representing a vector to be
calculated. As seen earlier in this chapter, the (MAPCAR ‘- P1 P2) expression returns the vector
difference between two points lists.

Table 8.6 lists the subrs that you will use most often with point lists. Some of these subrs are
dedicated to the manipulation of point lists; others are borrowed from the general-purpose LISP
library of tools. Points are something you will use frequently when programming Visual LISP
applications in AutoCAD. As such, you will find that you use the subrs in this table frequently.

Listing 8.2 Sorting lists.

(DEFUN SORT_BY_X (PTS)

 (VL-SORT

 PTS

 '(LAMBDA (P1 P2)

 (< (CAR P1) (CADR P2)))))

(DEFUN SORT_BY_Y (PTS)

 (VL-SORT

 PTS

 '(LAMBDA (P1 P2)

 (< (CADR P1) (CADR P2)))))

(defun Sort_By_Distance (PTS PT)

 (VL-Sort

 PTS

 '(lambda(P1 P2)

 (< (distance P1 PT)

 (distance P2 PT)))))

Point Lists 121

The ANGLE and POLAR subrs involve angles. Remember that all applications must use radians
internally as the unit of measure for angles. Thus, the ANGLE subr returns an angle in radians for
two points relative to the X-axis. And POLAR expects the angle value supplied to be in radians.

When manipulating points, the ANGLE, DISTANCE, POLAR, and composite primitives are used
the most often. A typical application problem is to accept input from the user in the form of points
and then calculate new point locations based on those input values.

The function in Listing 8.3 is useful when working with user-supplied or variable input. This
function tests a value to see whether it is a point list. The function can serve as a predicate that
checks to see whether a data list represents a valid point list. The function combines several predi-
cates for testing data types as well as some list tools.

Table 8.6 Point list manipulation subrsp.

Subr Description

ANGLE Computes the angle off the X-axis between two points

CAR Retrieves the X ordinate value

CADR Retrieves the Y ordinate value

CADDR Retrieves the Z ordinate value

DISTANCE Computes the distance between two points

INTERS Computes the intersection of two vectors defined by four points

OSNAP Returns a point matching the object snap option with a given point

POLAR Given a base point, distance, and angle, computes a new point

TRANS Converts a point from one coordinate system to another

Listing 8.3 Testing whether data is a point list.

(DEFUN IS_POINT? (PT)

 (AND

 (LISTP PT)

 (NOT (NULL PT))

 (APPLY 'AND

 (MAPCAR 'NUMBERP PT))

 (OR (= (LENGTH PT) 2)

 (= (LENGTH PT) 3)

)

)

)

122 CHAPTER 8: Working with Lists

To be considered a point, the data must meet all the criteria, so you use an AND expression
because it returns true if all predicates inside it are true. To be a point list, the item must be a list
and not an empty list. The LISTP and NULL predicates perform these tests. The next criterion is
that all data items in the list must be numbers. To solve this problem, the list manipulators are
called into action. You apply the AND subr to the lists that results from testing each element in the
list with the NUMBERP predicate. If any element is not a number, the NUMBERP returns NIL, which
causes the AND to return NIL. The last criterion for being a point list is that there be only two or
three numbers. A two-number list is a two-dimensional point list, and a three-number list is
three-dimensional.

If all these conditions are met, the IS_POINT? function returns a true result. Otherwise, NIL is
sent back as the response.

The MAPCAR expression is useful when manipulating lists, particularly point lists. If you need to
do something involving the ordinates of a group of points, MAPCAR can probably help.

Table 8.7 demonstrates the MAPCAR subr in action with point lists. For these examples, assume
that any symbol starting with P is a (P1, P2) point list, V is a vector list (the same a point list but
with a different meaning to the application), and PTS is a list of points.

Point computations are important in AutoCAD applications development. One subr that you
may find helpful is the OSNAP subr. OSNAP applies an object snap to a point to refine the point value
based on graphics in the drawing. You can use OSNAP to home in on an end point, a center point,
or another snap point of an object given a point on the object. OSNAP provides assistance for com-
mand processing in that it provides the point AutoCAD would select under operator control.
Commands such as BREAK and others require exact points related to the graphics on the screen,
and that is where OSNAP is usually applied.

Example: Getting Information from a Point List

Listing 8.4 contains a sample function for obtaining information from point lists. It demonstrates
the primary point list manipulators as it takes two points supplied by the operator and creates a
report on the screen about the two points. The data shown contains the points selected after

Table 8.7 Examples of point list manipulations.

Expression Description

(MAPCAR ‘- P2 P1) Vectors from P1 to P2

(MAPCAR ‘+ P1 V1) Adds the V1 vector to the P1 point

(/ (APPLY ‘+ (MAPCAR ‘CAR PTS))
(LENGTH PTS))

Calculates the average X value of points in the
PTS list

(/ (APPLY ‘+ (MAPCAR ‘CADR PTS))
(LENGTH PTS))

Calculates the average Y value of points in the
PTS list

(SQRT (APPLY ‘+ (MAPCAR ‘(LAMBDA
(V) (* V V)) V1)))

Calculates the square root of the sum of the
squares

Coordinate Transformations 123

conversion by PT_STR, which was introduced earlier in this chapter, along with the vector
displacement between the two points. The distance and angle between the points is then displayed.

Coordinate Transformations

Sometimes you need to transform a point list from one coordinate system to another. The primary
coordinate systems in AutoCAD are the World Coordinate System (WCS), the User Coordinate
System (UCS), and the Entity Coordinate System (ESC).

You might encounter other coordinate systems transformations, such as converting points from
a block definition to a location in the drawing. Blocks are defined as relative to a base point and
are transformed when inserted into the drawing. Block insert transformations include an offset
point, a scale factor set, and a rotation angle.

To perform coordinate transformations, you have two choices. The simplest is to use the TRANS
subr in Visual LISP. TRANS accepts a point list, a source coordinate system definition, and a target
coordinate system definition. It returns a new point list. The coordinate system definitions could be

Listing 8.4 Getting information about points.

(DEFUN C:PINFO (/ P1 P2)

 (SETQ P1 (GETPOINT P1 "\NLOCATE FIRST POINT: "))

 (IF P1 (PROGN

 (SETQ P2 (GETPOINT P1 " SECOND POINT: "))

 (IF P2 (PROGN

 (TEXTSCR) ;SWITCH TO TEXT SCREEN VIEW

 (PROMPT

 (STRCAT

 "\nCOORDINATES:\n\tP1 = " (PT_STR P1)

 "\tP2 = " (PT_STR P2)

 "\nVECTOR:\t" (PT_STR (MAPCAR '- P2 P1))

 "\nDISTANCE: " (RTOS (DISTANCE P1 P2) 2 3)

 "\tANGLE: " (ANGTOS (ANGLE P1 P2))

))))))

 (PRINC)

)

124 CHAPTER 8: Working with Lists

a code number (for some standard systems), an entity name, or a three-dimensional extrusion vec-
tor. Following are several code numbers:

The display coordinate systems are a combination of what you see on the screen and the van-
tage point you are using to look at the model.

When converting entity related points, you should understand that although an entity is created
on a given UCS, it is not stored in that manner in AutoCAD. Instead, each entity uses what is
called the Entity Coordinate System (ECS). When an entity is created with a UCS that is not the
WCS, a coordinate system is created for that instance of the entity called the ECS. This comes into
play when you access an entity from the AutoCAD drawing database. If the entity has an extru-
sion vector that is not the WCS (0,0,1), you must pass the data points through TRANS. Use the
entity name and the WCS code 0 to transform the data points to the World Coordinate System.

Sometimes TRANS cannot convert the data for you, such as when you are determining points
relative to an inserted block. A block is defined with all data points relative to the base point of the
block. Thus, if you have a block containing a line from 1,1 to 2,1 and that block is inserted at
position 10,20, the line coordinates are 11,21 to 12,21. To get the new coordinates, you must add
the insertion point values to the line’s end point values. That is simple. But what if the block was
rotated and scaled at insertion? Now you must perform three different transformations: apply the
scaling factors, apply the rotation, and do the translation (shift to a new insert point).

Listing 8.5 contains a function that performs the block coordinate system to World Coordinate
System transformations just described. You can use this utility to locate points relative to an inser-
tion given the data from the block definition. You supply two parameters to the function: the point
to be transformed and a reference to the insertion entity object. The reference to the insertion
entity can be an entity name or an entity data list. We have not covered the details regarding entity
names and data lists yet, so let’s take a quick look at that part of the program before getting into
the list manipulations.

The BLK_2_WCS function uses the value supplied in BLK as the reference to the block insertion.
BLK is either an entity data list or an entity name, and the first step in the program is to test the
type of data supplied to BLK. If BLK is a list, the routine assumes that it is an entity data list and
works with it as provided. If the type of data in BLK is an entity name (ENAME), the ENTGET subr
retrieves the entity data list. The result of the first SETQ assignment is that BLK now points to an
entity list.

Using the entity data list in BLK, the insertion angle (A) and insertion point (P) are extracted.
Entity lists are association lists, and the key is the integer code number for the item as defined in
the AutoCAD DXF file specification. With experience and by using the online help files, you can
determine that the code numbers 50 and 10 return the insert angle and point, respectively, for a
block insert instance. To get the value from the entity list, ASSOC is used with the code number
(sometimes called a group code). The result returned from ASSOC is applied to the CDR subr to

0 for WCS

1 for UCS

2 for the model space display coordinate system

3 for the current paper space display coordinate system

Coordinate Transformations 125

retrieve the value. CDR is used because the entity data in the entity data list is stored as dotted pairs,
and CDR returns the value pointed at by the D component of the cons cell.

The PT point is now ready to be scaled based on the scale factors in the block insert. Group
codes 41 through 43 provide the keys to the association list for the X, Y, and Z scale factors. These
values are extracted using the CDR and ASSOC subrs in concert. The values are then applied directly
to the data point values in PT. The X component of PT (CAR) is multiplied by the X scaling factor
(code 41), the Y component (CADR) by the Y scaling factor (code 42), and the Z component

Listing 8.5 Converting block coordinates to world coordinates.

(DEFUN BLK_2_WCS (PT BLK / A P)

 (SETQ BLK (COND

 ((LISTP BLK) BLK)

 ((= (TYPE BLK) 'ENAME) (ENTGET BLK))

)

 A (CDR (ASSOC 50 BLK))

 P (CDR (ASSOC 10 BLK))

 PT (LIST

 (* (CAR PT) (CDR (ASSOC 41 BLK)))

 (* (CADR PT) (CDR (ASSOC 42 BLK)))

 (* (CADDR PT) (CDR (ASSOC 43 BLK)))

 1.0

)

 TM

 (LIST

 (LIST (COS A) (- 0.0 (SIN A)) 0.0 (CAR P))

 (LIST (SIN A) (COS A) 0.0 (CADR P))

 (LIST 0.0 0.0 0.0 (CADDR P))

)

 PT (MAPCAR

 '(LAMBDA (TC)

 (APPLY '+

 (MAPCAR '* TC PT))) TM)

)

 (LIST (CAR PT) (CADR PT) (CADDR PT))

)

126 CHAPTER 8: Working with Lists

(CADDR) by the Z scaling factor (code 43). The result of multiplying all these values is stored back
in PT as a list.

Things get trickier in the next part. You are going to construct a transformation matrix that
translates the coordinates and rotates all at once. The transformation matrix is a 4 x 4 matrix that
combines the translation equations (add the insertion point to the data point) with the rotation
equations (apply block rotation to the data point). (I don’t go into the details of building the com-
posite transformation matrix.)

You multiply the data point (plus the extra 1.0 added to the end) to achieve the transformation
of coordinates. The real key is how the matrix is defined as a list. The TM matrix is defined as a
nested list of four elements, and each element contains four numbers. The sixteen numbers are
arranged in the list to represent the rows of the conversion matrix. The point, defined as a 4 x 1
matrix, is multiplied to the 4 x 4 matrix. The result is a 4 x 1 matrix in which the first three values
are the transformed point.

To perform the matrix multiplication, MAPCAR multiplies each row by the data point. TC is a
local symbol containing each row from the matrix as extracted by the outermost MAPCAR. Given
the row, APPLY sums the result of multiplying each value in the inner MAPCAR. That result is sent
back from the outer MAPCAR as a list of four numbers. The first three are extracted to build the
returning list of the function.

If you can see how MAPCAR and APPLY work in concert with nested lists to solve matrix prob-
lems, you have mastered a complex part of LISP programming. If you don’t see this, don’t worry
because list manipulation becomes more comfortable with practice.

Summary

This chapter covered a lot of ground. Lists are the primary tools for manipulating data in LISP.
The LISP system allows you to define lists of any structure using a system of cons cells that connect
everything in the computer’s memory. By understanding the cons cell system, you can begin to see
how most of LISP’s list manipulators work. From that understanding, you can see what steps are
needed to solve a problem involving a list of data.

The methods for creating a list are simple. You can use the LIST subr to define a new list or use
a QUOTE expression with a set of constants. You can increase a list by using CONS to build a new
cons cell at the front of the list or by using APPEND to merge lists. Quite a few list manipulation
subrs are available to then access and modify the contents of data lists. Refer to the online help to
learn more about the list manipulation subrs.

You also learned about several types of lists, including dotted pairs, association lists, and point
lists. The first two types of lists are used extensively in the manipulation of entity data lists. Dotted
pairs came to Visual LISP from AutoLISP as a tool to provide data in the minimum amount of
memory. The association list simply presents a nice way to organize data that will vary, as you
would expect given the variety of entity objects you might encountered when developing applica-
tions for AutoCAD users.

To best exploit the powers of Visual LISP, you should feel comfortable with point lists and
basic list structures. You do not need to be an expert with MAPCAR and other subrs, but you should
know that they exist. As you improve your skills in Visual LISP programming, you will find that
the list is a convenient and powerful concept that you can exploit in a variety of creative ways.

127

CHAPTER 9

Basic User Output

What good is a computer if it cannot display the results of computations in a meaningful manner?
Without the capability to display output, both as text and as graphics, Visual LISP would be use-
less to us. This chapter describes the essentials of Visual LISP output. I describe the components of
the interface from a programmer’s point of view and also introduce the primary subrs for generat-
ing output.

Building AutoCAD Commands

The main reason for programming in Visual LISP is to expand the capabilities of AutoCAD. And
that is best accomplished by creating your own commands for AutoCAD. If you are the sole user
of your programming effort, you are free to experiment with alternative input formats and com-
mand structures. But if you are writing code for others to use, the situation is less flexible. When
writing code for other AutoCAD users, you need to make your interfaces appear like AutoCAD as
much as possible. This is important for both input (the topic of the next chapter) and output.

Another thing to consider is the users relationship with the software. For example, if your pro-
gram performs a large number of computations and requires extensive time to accomplish that
task, you should output a message at regular intervals to let the operator know that the program is
still running. Many Windows applications use a progress bar to indicate the status of the applica-
tion. Unfortunately, Visual LISP cannot comply in that regard with ease (in some cases, you need
more code to display a progress bar than to perform the computations). You must use other alter-
natives, most of which involve using the command line or text area of output. You could highlight
entities as they are processed to indicate the status of an operation, but if the entities are not in the
display window, the operator sees nothing and may wonder whether the application has stopped
running.

The next time you write a program that takes a while to complete its computations, write it so
that nothing is reported to the screen. How many seconds of runtime before you begin to wonder
whether it is working okay? Keep in mind that you wrote the program and know what it is doing
at this step. Another operator will mostly likely be without a clue as to how it works and what the
routine is doing at any given time. In experiments conducted in the early 1980s regarding the ergo-
nomics of CAD/CAM interfaces, I found that in most interactive computer graphics environments,

128 CHAPTER 9: Basic User Output

the operator needed to see a response in less than a second to feel that the computer was working.
And in repetitive tasks involving longer computation times, a message or update needed to be
placed on the display every second or two to satisfy the operator that the computer was still work-
ing on the problem.

You should keep a few other considerations in mind when writing commands for operators.
Your new commands should not get in the way of normal operations. It is not a good idea to rede-
fine existing AutoCAD commands on a whim. AutoCAD operators with lots of experience may be
counting on obscure features of some of these commands; if you’ve rewritten them, you should
provide the same flexibility.

Extra prompts and messages disrupt operators and sometimes make them concentrate on the
wrong things. This is especially true when a problem comes up in the field and you are trouble-
shooting over the phone. For some reason, AutoCAD operators never seem to see the area of the
screen you are most interested in seeing. The lesson here is that if something is critical to the oper-
ation, it should stand out: Use a dialog box or highlight the output with asterisks at the beginning
of the line.

Here’s a tip: Supply an extra utility that enables some symbols referenced in the software.
When these symbols are true, or on, it indicates that the operator wants more information dis-
played. The information then provides indications as to how well the software is doing or where it
may be failing. This approach allows you to supply a streamlined input/output system for normal
operations and the capability to switch the software to debug mode if needed.

The Command Line and the Graphics Screen

In your Visual LISP programs, most output will be to the command line and the graphics screen.
The command line is part of the text screen, as it is known by AutoCAD operators. Prompts and
messages are typically placed on the command line. Graphics screen output is normally the result
of adding new entity objects or modifying existing ones, although you could post messages in a
drawing if that was the best way to convey a message to the operator.

The GRAPHSCR and TEXTSCR subrs switch the display of the graphics screen and the text screen
or command line. In Windows, that means the focus is set to the window desired, which is brought
to the foreground if it is not already there. The effect is the same as pressing the F2 key, but now
the toggling is accomplished under programmer control.

Sometimes, you want to display data to the user in a text format, but you won’t have enough
room if the command-line area of the graphics window has been reduced to one line. An example
is the LIST command in AutoCAD: When you select an object, the details of that object are dis-
played on the screen and those details often require multiple lines of text, especially if multiple
entity objects have been selected. A program that computes a lot of numbers may need display the
results of each computation and key variables as it progresses through the computations. This is a
classic example of when you might direct the work-in-progress report to the text screen for dis-
play.

Command-Line Output 129

Command-Line Output

In this section, you turn your attention to the subrs for producing output. Keep in mind that the
output mechanism is a like a line printer. When you print something to the text screen and then
send a new line, the line previously written is scrolled up one position and cannot be changed
without some clever programming. If you need to produce graphics output, that is what AutoCAD
is best at doing. But for basic text reports, the following subrs work great. These subrs output to
the AutoCAD command line as well as to a text file opened in w (write) or a (append) mode.

PRIN1 is the basic print operation. Given a symbol, it prints the value of the symbol. Given a
quoted symbol, it prints the symbol name. If the value to be printed is a string, any control charac-
ters are printed as ordinary characters in slash format. Control characters are special symbols in a
string that you can use to format the output. When you use PRIN1, control characters are printed
as if they were regular characters of no significance.

PRINT is like PRIN1, except a new line is printed first, then the evaluated symbol output is sent
to the command line or the file, and then a space is printed following the output. Control charac-
ters are printed in slash format. Both PRIN1 and PRINT are useful when debugging a complex
application because data can be displayed on the text screen or written to a log file without worry-
ing about format control.

PRINC is another version of PRIN1 in which control characters in strings are expanded. This
means newline and tab characters are executed as part of the string. Otherwise, the output of
PRINC is identical to that of the other PRIN subrs.

Listing 9.1 shows results from the command-line using the PRIN subrs. Each of the subrs
returns a value that is the string printed, which is why it appears to print the string twice. The \t
inserts a tab.

The PRINC subr is the only one suitable for outputting text that contains formatting informa-
tion in the form of control characters. Note that even the double quotes do not appear in the
example dialog in Listing 9.1.

Listing 9.1 Using PRIN at the command line.

COMMAND: (SETQ S "\tMoon")

"\tMoon"

COMMAND: (PRIN1 s)

"\tMoon""\tMoon"

COMMAND: (PRINC s)

Moon"\tMoon"

COMMAND: (PRINT s)

"\tMoon" "\tMoon"

130 CHAPTER 9: Basic User Output

Another interesting use of the PRINC and PRIN1 subrs is to force a function to not output its
results to the command line when returning. You might have noticed PRINC or PRIN1 at the end of
most command functions (that is, functions whose name begins with C:). Command functions —
unlike the rest of the functions you write and use in Visual LISP — are not expected to return val-
ues. Instead, command functions are expected to do something and then return to the Command
prompt without any further output. It is annoying to see NIL or some other message appear at the
end of a command, especially if you don’t know what it means. In some cases, the very presence of
such text on the command line prompts a call to technical support.

When you use PRINC or PRIN1 at the end of a function that is returning to the command line in
AutoCAD, the function is said to have a silent exit. If PRINC or PRIN1 is not the last expression in
the function, the result of the last expression evaluated is returned to the command line. You might
want this when debugging, but users do not appreciate seeing this type of message.

String output

Two additional subrs provided for the output of string data with format expansion are PROMPT
and WRITE-LINE. You can use both to output string data to the command line; any control charac-
ters in the string are expanded. That means \t (tab) is replaced with empty spaces to the next tab
mark, and \n (new line) advances to a new line, scrolling the text screen up one.

The difference between PROMPT and WRITE-LINE is that PROMPT always returns NIL and
WRITE-LINE returns a copy of the string written. In addition, you can direct WRITE-LINE output
to a file opened in write or append mode.

The ALERT subr also outputs strings, but not to the command line. Instead, ALERT outputs text
to a pop-up dialog box that appears in the middle of the AutoCAD screen; nothing more can hap-
pen until the operator clicks the OK button. ALERT accepts only a string for output. If you want to
output data values, you must convert them to strings and then concatenate them to a single output
string.

The string for an ALERT box can contain control characters, so you can format the output data
to the same degree as you can for command-line output. For example, you can use tabs and new
lines to format the message into something more readable.

Note that if you need more extensive interaction with the operator using a dialog box, you
have to create the dialog box yourself using the information presented in a later chapter (Chapter
11). Dialog boxes are easy to create after you understand how they work and what the tools can
do for you.

The ALERT dialog is a quick way to display a message. Messages to the command line may be
missed, but a dialog box that requires the operator to click OK to continue cannot be skipped.
However, use the ALERT subr only for the most important messages. Routine messages used for
debugging or to simply to let the operator know the status of the program should be directed to
the command line or a text file.

Non-string output

When you want to display numeric information to the text screen or as part of an alert box, you
should usually convert the numeric values to a string. You then concatenate the strings to build the

AutoCAD Command Output 131

output message. The ANGTOS, ITOA, and RTOS subrs provide ample control for converting num-
bers.

But what about other data types such as entity names and mixed lists? The PRINC, PRINT, and
PRIN1 subrs print non-string data to the command line or to a data file. However, if you need to
display non-string data as a string in an alert, use the VL-PRINC-TO-STRING subr. This subr and
the VL-PRIN1-TO-STRING companion subr use the PRINC or PRIN1 conversion-to-string rules.
Instead of outputting directly to the command line or to a file, they return the string as a value for
use in a function.

AutoCAD Command Output

By combining logic and AutoCAD commands, you can create powerful tools for operators as well
as a productive environment for many applications. The complete suite of AutoCAD commands is
available to Visual LISP programs through a pipeline. (A pipeline is a communications channel
through which data or commands can flow. A program can establish a pipeline to another pro-
gram so that the first program can control the second.) The pipeline is one way, so if something
goes wrong at the command side, the calling program will not know immediately. (In fact, the call-
ing program must take extra steps to see whether there was a problem with the command stream
sent though the pipeline.)

To send output to the AutoCAD drawing system through the pipeline, you use the COMMAND
subr. COMMAND allows the program to send one part of a command at a time to the AutoCAD com-
mand line. It is as if you were typing the commands, except now the process is under computer
control. COMMAND accepts any number of arguments. If supplied with no arguments, it is the same
as sending a Cancel to the command prompt. Using an empty string is the same as pressing the
Enter key. Each argument to COMMAND is sent one at a time to the AutoCAD command processor.
Any symbols used in the COMMAND argument set are evaluated before they are sent to AutoCAD for
processing.

For example, the following expression generates a line from the point in P1 to the point in P2.
The LINE command expects a continuous stream of points and is terminated when you press the
Enter key. Consequently, this expression must issue an Enter key to terminate the LINE command:

(COMMAND "_LINE" P1 P2 "")

Perhaps the biggest problem with COMMAND is that it is a one-way communication. Errors are
not immediately reported back to the calling program. This means the program can get out of
synch with the AutoCAD command processor, resulting in data sent in response to the wrong
prompts. In most cases, the result is a series of invalid inputs.

Command errors

A few mechanisms for determining whether operations were successful are available, but the best
tool is prevention. By checking ahead, you can save a lot a processing time. For example, if you are
going to put something on a particular layer, you should first check to see whether the layer exists.
Another check might be to see whether another command is running that could interfere with the
operation of this command. Try to anticipate problems. In my experience, however, no matter how

132 CHAPTER 9: Basic User Output

hard you try to imagine what an operators might do, they always seems to find something you
didn’t think about.

In most cases, you can catch an error before it occurs by checking the AutoCAD system vari-
able settings or the tables. The tables are where a drawing’s layer names, style details, and more
reside. We learn more about system variables shortly and the tables in a later section about access-
ing the drawing database.

Another tool for catching COMMAND stream errors is the VL-CMDF subr. VL-CMDF is similar to
COMMAND except its arguments are pre-evaluated by the AutoCAD command processor to see
whether they are okay. If they are, AutoCAD executes the command stream and VL-CMDF returns a
true value. If any of the arguments are invalid as far as the command processor is concerned,
VL-CMDF returns NIL. VL-CMDF is forgiving when it comes to arguments and makes an effort to use
what you supply.

An important difference between VL-CMDF and COMMAND occurs when user input takes place,
that is, if you use a GETxxx type subr in the command stream. With VL-CMDF, the input operation
is performed before the command starts. COMMAND performs the input operation while the com-
mand is running. Why is this important? Consider the task of dragging a block for insertion.
VL-CMDF asks for an input point before the graphics figure is dragged along with the cursor on the
screen. COMMAND presents a copy of the block by the cursor (provided the block has a near-zero
base point) that is dragged to the insertion point. If you want your command stream to look and
feel like AutoCAD, use COMMAND.

Finish what you started

When you use the COMMAND stream subr, be sure to finish what you started! Although you do not
need to complete the command sequence in a single expression, you should complete the com-
mand in your function. A command left hanging after a Visual LISP routine has finished is usually
a sign that something went wrong.

For the most part, terminate any command sequences underway within your program. This
requires a thorough understanding of the actual command sequences, some of which change based
on settings in the system. An example is the TEXT command stream. If the current style has a text
height of 0.0, the TEXT command requests the text height during the command. If the current style
has a non-zero text height, that prompt is skipped. Your routine could easily stumble on this
nuance of the TEXT command.

To learn the command sequences, run AutoCAD and try them out. Many commands have dia-
log boxes for the input of variable parameters, and these will not work well for Visual LISP pro-
gramming. If a given command seems to have a dialog box interface only when the command is
typed at the command line, type the command with a hyphen as the starting character. For exam-
ple, when you type the LAYER command at the command prompt, a dialog box appears, regardless
of the system variable settings. If you type –LAYER instead, there is no dialog box and the prompts
for the command options appear on the command line.

When you use the Visual LISP COMMAND pipeline to send commands to the AutoCAD system,
the assumption is that you want the non-dialog box command interface. (COMMAND "LAYER")
starts the layer command at the command line, not in a dialog box. By placing a hyphen in front of

System Variables for Output 133

the command name, you force the non-dialog box interface — and can then learn the command
sequences that Visual LISP works with to achieve the desired results.

If you want the dialog box to appear for a command started by Visual LISP’s COMMAND pipeline,
the INITDIA subr should be evaluated before the COMMAND subr. When INITDIA is evaluated, the
next commands that have dialog box interfaces use the dialog boxes and not the command-line
sequence. You can use INITDIA to force the display of the PLOT or LAYER dialog box.

For example, if you want the LAYER dialog box to pop up in your application, use the following
expression:

 (INITDIA) (COMMAND “_LAYER”)

The LAYER dialog box appears and allows you to manipulate the layer table as desired. When
you click the OK or CANCEL button in the dialog box, control returns to your program with the
changes (if any) made to the layer table.

Note the underline character at the front of the string in the COMMAND expression. Three possi-
ble characters can appear before a command name: an underline, a period, or a hyphen.

The hyphen signifies that the command should be used without dialog boxes; this is needed
sometimes with commands started by Visual LISP, such as the VBA RUN and LOAD commands. To
turn off the dialog box, add a hyphen (or use the VL-VBALOAD and VL-VBARUN subrs).

The period is used when the command has been undefined. Commands can be undefined and
replaced with new commands of your own design. If you want to make sure you are running the
original AutoCAD-supplied version of the command, put a period in front of the command name.
Calling a command that has been redefined in Visual LISP can sometimes result in an error at run
time.

An underline makes sure you are using a single language for the commands. AutoCAD is sup-
plied in multiple languages. If your Visual LISP programs might be running in an environment
using some language other than English, you can put an underline at the front of the command
name to force AutoCAD to recognize the English command name. Unlike the period and the
hyphen, the underline character may be used also inside commands to force the responses to the
commands to be accepted in only English. (Although this restriction requires additional effort for
developers not working in the English language because they must know the English command
equivalencies, one language had to be selected. And because AutoCAD was written in English and
most developers spoke English when the decision was made to incorporate this feature into the
LISP environment, that is the language of choice.)

System Variables for Output

Several system variables in AutoCAD can change the way things are output and displayed to the
operator. For example, you may want to turn off the AutoCAD command echo so that the opera-
tor does not see commands issued from Visual LISP programs. This makes the entire sequence run
faster and simplifies the text displayed to the operator in the command area. (More than one oper-
ator has canceled a Visual LISP macro because a stream of unreadable messages appeared at the
command prompt.)

134 CHAPTER 9: Basic User Output

You can access an AutoCAD system variable using the GETVAR subr with the name of the sys-
tem variable. Different system variable data types could be returned, but your program will be
expecting them. If you request the name of the current layer, expect a string. If you request the cur-
rent text size, expect a real number.

Visual LISP can establish the settings of system variables using SETVAR. Supply the variable
name and the new value to the SETVAR subr to make the change. If the system variable is
read-only, however, you cannot change the setting with SETVAR. In many cases, they cannot be
updated because they relate to the system configuration or hardware. In other cases, you may have
to run a series of AutoCAD commands to update them.

To see which variables are read-only, type the AutoCAD SETVAR command and view the far
right side for the read only string. Any system variables marked as such cannot be updated
through the SETVAR mechanism.

The most important system variables for Visual LISP programmers are listed in Table 9.1 along
with a short description. More information about these system variables and many others can be
found in the online help for AutoCAD.

Table 9.1 Commonly used system variables.

System Variable Description

ACADVER Returns a string telling you what version of AutoCAD is running

ANGBASE The base angle orientation changes some commands in AutoCAD; angle
calculations in Visual LISP have to be adjusted by this value

AUNITS, AUPREC The angle unit style and precision setting

CDATE The system date and time in almost display-ready format

CLAYER The name of the current layer

CMDACTIVE Indicates whether or not a command is active

CMDECHO Echoes commands to the command line when run inside Visual LISP

CMDNAMES The command names currently active

CTAB The currently set model or layout space tab

DATE The system date and time in computation-ready format

DWGNAME The drawing name

DWGPREFIX The folder where the drawing is located

EXPERT Changes in expert mode change the sequences of prompts, especially the
“Are you sure?” type prompts

UNITS, LUPREC The units and precision for non-angle numbers

OSMODE A bit-encoded integer with the object snap modes currently set

_PKSER The package serial number for AutoCAD

TDCREATE The time and date, in Julian day format, when the drawing was created

Example: Reporting Dates and Times 135

Listing 9.2 contains two utility functions that I use frequently. They get the current setting of a
group of system variables, which you might use when starting an application in which you will
change some of the settings. The GETSYSVARS function is given a list of system variable names to
retrieve and returns an association list with the variable name followed by the current value of that
variable.

The SETSYSVARS function accepts a list of the same format created by GETSYSVARS and sets the
variables back to their original settings. This function is evaluated on the way out of the applica-
tion to restore the system variables to the values they had when the operator started the applica-
tion. (This function can help avoid technical support calls.)

The only restriction in using these functions is that the system variables supplied must be read/
write. If they are read only, the SETSYSVARS function will fail because there is no way to test
whether a variable is read only in advance.

Example: Reporting Dates and Times

The final example in this chapter reports the time spent drawing as well as additional details such
as the drawing name, the directory, the last time saved, and when the drawing was created. This
simple function, shown in Listing 9.3, demonstrates the use of PROMPT with format control charac-
ters embedded in the string, specifically the \n (newline) and \t (tab) characters. When the func-
tion is run at the command prompt, a formatted report is presented to the operator. This function

TDINDWG The time in days that the drawing has been worked on

TEXTSTYLE The name of the current text style to retrieve text-generation information

UCSNAME The name of the current UCS

Listing 9.2 Setting and saving system variables.

(DEFUN GETSYSVARS (SLIST)

 (MAPCAR '(LAMBDA (S)

 (IF (LISTP S) (SETQ S (CAR S)))

 (LIST S (GETVAR S)))

 SLIST))

(DEFUN SETSYSVARS (SLIST)

 (FOREACH S SLIST

 (SETVAR (CAR S) (CADR S))))

Table 9.1 Commonly used system variables. (Continued)

System Variable Description

136 CHAPTER 9: Basic User Output

also demonstrates system variable access of the time system used to keep track of time and dates in
AutoCAD.

STRCAT constructs a string that is passed to the PROMPT subr. Most of the work in this function
takes place in the STRCAT expression, where the string is built. That work involves translating the
date and time information in AutoCAD to something that makes sense to people. AutoCAD
records dates and times using a time system called Julian days. This system offers a significant
advantage in computations involving dates and times. Unlike the calendar system, the Julian days
system has no month names, no variable number of days in a month, no leap years, and no other
disturbances in the count. Julian days are simply a count of the number of days that have elapsed
since a set date.

Julian date-based systems did not suffer any Y2K problems and do not have trouble with com-
puting elapsed time at the end of the day — or any other time period. You simply subtract the val-
ues to achieve a difference in days. The fractional part of the number represents the hours and
minutes as a fraction of a day.

The JTIME function in Listing 9.4 accepts a Julian date and returns the time of day based on
the fractional component. The number of hours is that value times 24. Take away the remaining
fraction and multiple by 60 to get the number of minutes. Multiply that fraction by 60 again and
you have the number of seconds. As you can see, the Julian days system offers a significant advan-
tage in computing elapsed times.

Listing 9.3 Reporting the drawing date and time.

(DEFUN C:DATES ()

 (PROMPT

 (STRCAT

 "\n\tDrawing: " (GETVAR "DWGNAME")

 "\n\tDirectory: " (GETVAR "DWGPREFIX")

 "\n\tCreated: " (J2D (GETVAR "TDCREATE"))

 " " (JTIME (GETVAR "TDCREATE"))

 "\n\tLast saved: " (J2D (GETVAR "TDUPDATE"))

 " " (JTIME (GETVAR "TDUPDATE"))

 "\n\tHours in dwg: " (JTIME (GETVAR "TDINDWG"))

)

)

 (princ)

)

Summary 137

The DATES function also makes use of the J2D function. J2D is supplied on the CD and is a useful
utility for converting Julian days to Calendar days. Given a Julian date, the function returns the
month, day, and year as a string suitable for printing. Like JTIME, J2D can be adjusted to fit spe-
cific needs.

Summary

Most applications must report the results of computations and the status of the current situation.
When reporting textual information, output can be generated to the command line or the text
screen. For graphics, you can use the COMMAND subr to control AutoCAD within Visual LISP.

The combination of commands and logic control can produce powerful command enhance-
ments in AutoCAD. The result is improved productivity because the system responds to you
instead of you responding to its demands.

AutoCAD’s commands are designed to interact with the user, not with a computer program.
Visual LISP must sometimes use special characters to invoke the proper command sequence and
take extra steps to enable dialog boxes and other features in the system. All commands with dialog
boxes accept a hyphen at the start to disable the dialog box so that you can learn the com-
mand-entry sequence, which is the sequence used by the Visual LISP COMMAND subr.

An important aspect of command processing in AutoCAD is the status of certain system vari-
ables. This chapter introduced the important system variables in AutoCAD as related to Visual
LISP programming. You learned about utilities for preserving the values of the system variables
that change during an application as well as a tool to reset them when the program finishes.

Output is just one part of the picture. All programs in this book and on the CD make use of
output in one way or another, unless they are simple utilities. The next part of the picture, input, is
even more important.

Listing 9.4 Converting time formats.

(DEFUN JTIME (JDT / HH MM SS) ; JDT is Julian Date/Time

 (SETQ JDT (- JDT (FIX JDT))

 HH (* JDT 24.0)

 MM (* (- HH (FIX HH)) 60.0)

 SS (* (- MM (FIX MM)) 60.0))

 (STRCAT (ITOA (FIX HH)) ":"

 (IF (< (FIX MM) 10) "0" "") (ITOA (FIX MM)) ":"

 (IF (< (FIX SS) 10) "0" "") (ITOA (FIX SS))))

138 CHAPTER 9: Basic User Output

This Page Intentionally Left Blank

139

CHAPTER 10

Basic User Input

Most programming languages have a way to accept string input and convert it to a particular data
type. But Visual LISP, because it runs in a CAD/CAM environment, must do more than just accept
basic input in the form of numbers or strings. Visual LISP’s input system must be able to accept
points, entity selections, selection sets, window selections, angles, and distances, as well as num-
bers and strings.

Operator input in the Visual LISP environment can be accepted in three ways: in a dialog box,
from the graphics screen, and from the command line. The next chapter introduces dialog boxes
and their components. In this chapter, you look at command-line and graphic screen input. Virtu-
ally all applications written in Visual LISP use at least one of the subrs described in this chapter.

Building AutoCAD Commands

Like output, the input to a command function should parallel the AutoCAD system as much as
possible — even if you have a better method in mind. (If you are writing code only for yourself,
however, improve the interface to suit your fancy.) When writing code for a large community of
AutoCAD users, it is best to keep the essence of the command like AutoCAD. That means supply-
ing a default value whenever possible and including options in the same form when prompting the
user. The normal approach is to provide a prompting question, and then present the options (if
any) between the [and] characters, with the default option following between the < and > char-
acters. The entire prompt should end with a colon and a space. Commands built in this manner
will appear familiar to AutoCAD operators.

Another item to consider when building AutoCAD commands is the action of transparent com-
mands such as transparent zoom and pan. This is not an issue when using the elementary input
subr library because those routines know how to respond properly. When using more advanced
input systems, however, you can run in trouble. One key to success is planning. And when plan-
ning, try to keep the input as simple as possible. You can still provide an expert mode with mini-
mal error handling but more dynamic input options, but don’t make it the default for beginners.

140 CHAPTER 10: Basic User Input

Visual LISP Input

From the Visual LISP programmer’s perspective, input is received from three places: the command
line, the graphics screen, and dialog boxes. Command-line input consists of keyboard entries or
menu selections that duplicate keyboard-entry sequences. Graphics screen input consists of points
returned when the pointing device is clicked in the graphics window. Although the graphics screen
is a two-dimensional device, points are returned as three-dimensional coordinates. Dialog box
input is always string based and can utilize a variety of input mechanisms, such as text boxes, but-
tons, lists, radio buttons, and sliders. Dialog boxes, which are more complex than the other two
types of input, are covered in Chapter 11.

You should think carefully about the best input system for your application. The choice you
make will help determine whether or not users deem your program to be user friendly. Programs
that are not user-friendly are inflexible and often have too many input requirements. User-friendly
software is flexible, giving the user choices when asking for input. For example, in a routine that
draws circles, the routine should not accept only the radius or only the diameter of the circle to
draw. Instead, the routine should allow the operator to enter either one. In addition, the operator
should be able to enter those values at the keyboard, on the graphics screen by showing a distance,
or by selecting an existing circle.

Does making user-friendly software require more lines of code? It usually does, especially when
dialog boxes are involved. However, Visual LISP provides a powerful subr library that makes the
job of working with command-line and graphics input a lot easier. And the savings in support and
the gains in productivity due to user acceptance will make the extra coding effort worthwhile.
Remember, users are your customers. Your software should work with them, not against them.

Command-Line Input

You start your exploration of the input subrs in Visual LISP with command-line input, which gen-
erally consists of a prompt to the text screen or the command line asking the user for a bit of infor-
mation. In most cases, if the user chooses not to enter anything, the result from the input subr is
NIL. I say most cases because the string input subr returns an empty string instead of NIL when the
user presses the Enter key instead of typing a string. The command-line input subrs are shown in
Table 10.1. The syntax for these subrs is essentially the same. All have a prompt string, except the
string input subr, which can accept an optional, non-NIL, non-string parameter to signify that
spaces are allowed in the input string.

Table 10.1 Subrs for command-line input.

Subr Description

GETINT Gets an integer value from the command line

GETKWORD Gets a keyword string from the command line

GETREAL Gets a double-precision real number from the command line

GETSTRING Gets a string value from the command line

Command-Line Input 141

In most cases, GET expressions are used inside a SETQ, where the value obtained is saved for ref-
erence later. The reason to save the value and not just assume a good value was supplied is that
you must check all user input for validity. Users will test the limits of your software, so anticipate
that by always testing to see whether input is acceptable.

Following are some sample GET expressions. These are the most basic GET expressions. The
only one to note is the GETSTRING subr. If the first parameter is not a string and is not NIL, the
input string can contain spaces. If the first parameter is a string or is NIL, the input string cannot
contain spaces and pressing the spacebar has the same result as pressing the Enter key.

Another way to get good input is to use the Visual LISP INITGET tool to initialize the input sys-
tem. INITGET allows you to define keywords as well as input conditions. The GETKWORD subr
requires that you use INITGET to define the keywords you will accept, but it is optional for all the
other GET subrs in Visual LISP. INITGET does a lot of error checking for you.

The error-checking flags for INITGET are shown in Table 10.2. These flags are passed as
bit-coded integers. To activate any one of the tests, add the bit number to the integer code supplied
to INITGET. In this way, you can combine tests. For example, you can combine the non-zero and
non-negative tests to allow only numbers greater than 0. (Note that you would still have to test the
upper limit in your program.)

An example of using INITGET with keywords is shown in the YESNO function in Listing 10.1.
YESNO is a simple user input function that asks a yes-or-no type question. If the answer is Yes, the
function returns T; otherwise, the function returns NIL. The default answer is a parameter to the
function and can be a string or a flag. If it is a string, it is used directly. Otherwise, the default
value, DEF, is replaced with a Yes or No string.

(SETQ IVAL (GETINT “\nEnter an integer: “))

(SETQ RVAL (GETREAL “\nEnter a real number: “))

(SETQ SVAL (GETSTRING “\nEnter a string: “))

(SETQ SVAL (GETSTRING T “\nEnter a long string: “))

Table 10.2 Principle flag settings for INITGET.

Setting Description

1 No null or empty entries allowed

2 No zero entry allowed

4 No negative entry allowed

8 LIMCHECK system variable is applied against the next point input

32 Use dashed lines for a rubber-band line or box during graphics input

64 Force a two-dimensional distance input even if three-dimensional points are input for
GETDIST

142 CHAPTER 10: Basic User Input

The DEF default string is displayed as part of the prompt for the GETKWORD subr. The rest of the
prompt consists of two constant character strings, “ <” and “>: ”, along with the PR prompt
parameter. The value returned from GETKWORD is saved in the TMP symbol.

After the GETKWORD is completed, TMP is tested to see whether it has a value. If not, the default
value is put in TMP. The value of TMP is then tested to see whether it equals Yes or No. If it equals
Yes, the functions returns the value ‘T. If it equals No, the NIL value is returned.

Some of the bits in the INITGET settings are for point input. The 1, 2, and 4 bit codes are used
most frequently for number input. To activate these settings, add the codes together. For example,
a code of 7 means you will not accept 0 input, negative input, and a null entry. All you need to do
is test for any upper limit that might apply. If no upper limit is applicable, your program doesn’t
need to do anything except use INITGET.

Listing 10.2 uses INITGET and tests whether the input is in a particular range. This is the type
of utility you can use in applications to save programming time. Using a library of input routines
that solve standard input functions can help give your applications a professional polish.

The GETRANGE function issues a prompt (PR) and then waits for integer input. A WHILE loop
iterates as long as the TMP value is bound to NIL. In the WHILE loop, an INITGET subr prepares the
input to not accept null inputs. Then GETINT is called with the PR prompt string and the value
input by the operator is placed in TMP.

TMP is tested to see whether the value is greater than or equal to MN and less than or equal to MX.
If not, TMP is set to NIL so that the WHILE loop will repeat again. Otherwise, TMP retains the value,
the loop exits, and TMP is evaluated to send its value back as a result for the GETRANGE function.

Another example of the GET subrs in action is shown in Listing 10.3, where you create a new
GETREAL version. This version of the input function uses a default value displayed with a prompt.
GETREAL1 has two arguments: a prompt string and a default value passed as PR and DEF, respec-
tively.

Listing 10.1 Inputting yes or no.

(DEFUN YESNO (PR DEF / TMP)

 (INITGET 0 "Yes No")

 (IF (/= (TYPE DEF) 'STR)

 (IF (BOUNDP 'DEF)

 (SETQ DEF "Yes")

 (SETQ DEF "No")))

 (SETQ TMP

 (GETKWORD

 (STRCAT PR " <" DEF ">: ")))

 (IF (NULL TMP) (SETQ TMP DEF))

 (= TMP "Yes")

)

Command-Line Input 143

Inside the GETREAL1 function, a GETREAL expression establishes a value for TMP. The prompt
for GETREAL contains a STRCAT expression, which concatenates the PR prompt string with the DEF
default value, after converting it to a string with RTOS. That’s a lot going on in a single SETQ
expression. Sometimes it helps to read the code from the innermost parentheses, as in the follow-
ing. Take the real number DEF and convert it to a string. Concatenate that string with the constant
strings “ <” and “>: “ and the PR parameter string to form a prompt string for the GETREAL
expression. Then save the result of GETREAL in TMP.

After the GETREAL expression and SETQ have finished, the value of TMP is tested to see whether
it is null. A null value indicates that the operator simply pressed Enter, meaning he or she accepted
the default value. Null value detection will result in TMP being set to the value in DEF. The last
action of the function is to return the result of evaluating TMP, which is either a number as entered
in GETREAL or the DEF value on return.

Listing 10.2 Inputting integers with a range check.

 (DEFUN GETRANGE (PR MN MX / TMP)

 (WHILE (NULL TMP)

 (INITGET 1)

 (SETQ TMP (GETINT PR))

 (IF (NOT (<= MN TMP MX))

 (SETQ TMP NIL))

)

 TMP

)

Listing 10.3 Inputting real numbers with a default value.

(DEFUN GETREAL1 (PR DEF / TMP)

 (SETQ TMP

 (GETREAL

 (STRCAT

 PR

 " <"

 (RTOS DEF)

 ">: ")))

 (IF (NULL TMP)

 (SETQ TMP DEF))

 TMP)

144 CHAPTER 10: Basic User Input

Graphics Input

Because Visual LISP runs inside AutoCAD, it must have some way to permit the programmer to
obtain data from the graphics screen. A program can get several items of information from graph-
ics input, such as point locations, angles, distances, entities, and selection sets. Whereas com-
mand-line input requires keyboard or menu activity, graphics input involves the pointing device
and clicking.

Note that all graphics input subrs support command-line input in some fashion. This means
you can enter a distance or angle in response to a prompt instead of always showing the value
graphically. In addition to command-line input options, the GET functions also support the activi-
ties of the INITGET subr in preparing the input system. INITGET settings can be used to force the
operator to enter a point without leaving the associated GET function.

The primary graphics input subrs for Visual LISP are shown in Table 10.3. Because of their
variety, you have more programming options when using these subrs. Graphics input is accom-
plished using the pointing device or keyboard. In some cases, you can either locate points or type a
scalar value. As the programmer, you have control over which options you make available in your
functions. You can elect to give the operator all the options or you can limit them. For example,
when requesting a distance value, you can allow the operator to show two points (the distance is
calculated between them), or have the operator show a single point with the other supplied by
your program, or force the operator to type a value at the keyboard.

The GETDIST, GETANGLE, GETORIENT, and GETPOINT subrs accept an optional base point as the
anchor for a rubber-band line drawn to the current cursor location. The rubber-band line exists
only while the input routine is actively in control of the system. After a point is selected, the rub-
ber-band line disappears. The rubber-band line can be either a solid line (the default) or a dashed
line. A dashed line is used when INITGET has been evaluated with a bit code of 32 just before the
GET subr.

Table 10.3 Subrs for graphics input.

Subr Description

GETCORNER Point input for the opposite side of a box

GETDIST Enter value or show point(s) for the distance

GETANGLE Enter angle value or show point(s) for the angle

GETORIENT Enter or show the angle value relative to BASEANG

GETPOINT Point input

ENTSEL Select a single entity object

NENTSEL Nested entity selection with point and translation matrix

SSGET Select one or more entity objects and save them as a selection set or PICKSET
object

Example: Moving and Rotating an Entity 145

Angles and distances can be entered at the keyboard or graphically. When entered graphically,
two points must be supplied. If a base point is used for rubber-band line generation, that point is
considered the first of the two required points. Angular input occurs in the current units and is
converted to radians automatically.

Points input with GETPOINT and GETCORNER can be defined at the keyboard by typing the coor-
dinates. AutoCAD-operator-level object snap modes work as well. In addition, relative point loca-
tions can be defined using the keyboard, just like entering any other point in AutoCAD. In other
words, GETPOINT and GETCORNER operate like the majority of AutoCAD commands when asking
for point input.

The GETCORNER subr displays a rectangle from the required base point to the current cursor
location. It provides the opposite corner of the input for a window-type selection. The orientation
of the rectangle produced by the GETCORNER subr is always square to the edges of the graphics dis-
play, no matter what the current UCS. The point returned from GETCORNER is in the current UCS,
just like GETPOINT.

Listing 10.4 contains an example function for the GETPOINT and GETCORNER subrs. GETWINDOW
accepts a prompt string as a single parameter and ask for two points from the operator. If two
points are provided, they are returned in a nested list; otherwise, the result is NIL.

Operators can select entities in Visual LISP by either selecting objects one at a time or con-
structing a selection set. For most commands, operators are accustomed to creating selection sets
and are comfortable with the Select Objects: prompt and its options. Entity selection takes
place with a pick box when you use any entity input routine, including selection set input.

The entity selection routines return entity-name data elements, and the SSGET subr creates a
pick set. These data objects, which are covered more in later chapters (starting with Chapter 12),
provide tools by which you can specify a specific entity or set in response to an AutoCAD com-
mand prompt. An example of the entity selection is provided in the next section.

Example: Moving and Rotating an Entity

You have covered enough information about Visual LISP to begin writing useful functions, such as
the one presented in Listing 10.5. The C:MOVROT command function combines the AutoCAD MOVE
and ROTATE commands in a single command that works with one entity at a time. This routine is

Listing 10.4 Inputting window points.

(DEFUN GetWindow (Pr / P1 P2)

 (SETQ P1 (GETPOINT Pr))

 (IF P1

 (PROGN

 (SETQ P2 (GETCORNER P1 " other corner: "))

 (IF P2

 (LIST P1 P2)))))

146 CHAPTER 10: Basic User Input

meant to serve as a springboard for additional command combinations. It is typical of a large
library of AutoCAD command macros that you may want to create for your own purposes.

The function has four bound or local variables: RT for the rotation, P1 and P2 for the points,
and EN for the entity that will be moved and rotated. As the program starts, a prompt is issued to
the operator announcing the beginning of the command. This prompt gives the operator immedi-
ate feedback to his or her command entry, providing the sense that “all is well.” The rotation, RT,
is set to 0 as an initial default value, and the program is ready to begin accepting entity selections
for the move and rotation operations.

A WHILE loop begins and repeats as long as the operator selects an object. ENTSEL returns NIL
if nothing is selected or if the Enter key is pressed. A NIL return from ENTSEL terminates the WHILE
loop. A non-NIL return from ENTSEL indicates that an entity has been selected, and the code pro-
ceeds inside the WHILE loop with the entity name information in the EN symbol.

The first action inside the WHILE loop is to ask the operator for the base point. GETPOINT
returns a point list if a point is clicked or NIL if the Enter key is pressed with no input. The opera-
tor is free to select any point on the screen. Provided such a selection is made, P1 now contains a
non-NIL value and the program continues deeper into the nest with another GETPOINT using P1 as
a base point. The second GETPOINT return is saved in P2.

The move command can be run only if you have two points, so the next test is to check
whether P2 has a non-NIL value. If so, the AutoCAD move command sequence is sent to the com-
mand line.

The sequence for the MOVE command is identical to typing it on the command line. First the
_MOVE command starts. The underline character at the beginning of the name is for international
operations. The MOVE command requires at least one entity. EN is supplied as the only entity to be
moved, and a pair of double quotes follows. That pair is the same as pressing the Enter key,
thereby moving the command to the next input.

The base point, P1, and the to-point, P2, are supplied last to the COMMAND to finish the
AutoCAD move operation. If the P2 value is NIL, the COMMAND sequence is skipped and P2 is set to
the value in P1. This happens because you will be using the P2 value in the rotation operation.
GETANGLE prompts the user for a rotation angle to apply. The result of GETANGLE is stored using
the P1 symbol reference.

Note that a STRCAT inside the GETANGLE prompt concatenates the prompt and the last rotation
value used in RT as the default. That way, the operator can use the same angle over and over by
just pressing the Enter key. Thus, if GETANGLE returns a value that is non-NIL, the operator has
entered or shown a new angle of rotation, and that value is stored in P1. P1 is tested for a non-NIL
value; if it is non-NIL, the RT symbol is updated to the new value.

Next, the COMMAND subr is used again to call the rotate command into action with the entity
name provided at the start of the WHILE loop. Note that the angle value in RT must be converted to
the current units. Supplying RT directly to the COMMAND subr ends up sending a value in radians
when a value in degrees may be expected. It is rare to have AutoCAD units set to radians for angu-
lar measurement. ANGTOS is used to convert a value in radians to degrees.

The MOVROT routine loops each time the operator selects another entity to process. At the end
of the loop, PRIN1 forces a silent exit to the command processor.

Example: Moving and Rotating an Entity 147

Listing 10.5 Moving and rotating.

(defun C:MOVROT (

 / ;; Local Variables

 RT ;; Rotation (radians)

 P1 ;; Base point

 P2 ;; To point

 EN ;; Entity to manipulate

)

 (prompt "\nMove & Rotate")

 (setq RT 0.0)

 (while (setq EN (entsel "\nChoose an object: "))

 (setq P1 (getpoint "\nBase point: "))

 (if P1

 (progn

 (setq P2 (getpoint P1 " to point: "))

 (if P2

 (command "_MOVE"

 EN

 ""

 P1

 P2)

 (setq P2 P1)) ;else save P1 in P2

 (setq P1 (getangle P2

 (strcat "\nROTATION <"

 (angtos RT)

 ">: ")))

 (if P1 (setq RT P1))

 (command "_ROTATE"

 EN

 ""

 P2

 (angtos RT 0 8))

))

148 CHAPTER 10: Basic User Input

This example function can be thought of as a template for other AutoCAD command combina-
tions that work with single entities. Entity objects are covered in much more detail in a later chap-
ter (starting in Chapter 12), where you see how they can provide even more powerful editing
utility options.

Summary

Input — the way an operator interacts with your software — is one of the most important aspects
of programming. Visual LISP provides a variety of input vehicles, including entering data at the
command line, pointing at things on the graphics screen, and interacting with a dialog box. The
first two are covered in this chapter. The more complex dialog boxes are the topic of the next
chapter.

User input through the command line or graphics screen is the most common form of accepting
data from the operator. Visual LISP provides a host of subrs that you can use for that purpose. All
GET subrs, except GETSTRING, return a NIL value if the operator provides an empty entry. In addi-
tion, you can send a prompt string to the command line when the GET subr is running.

It is the responsibility of the program to test the input supplied by the user to make sure it is
proper for the application. That testing can be partially accomplished using the INITGET subr to
prepare the input system. INITGET provides a facility to force non-NIL input, non-zero input,
non-negative input, as well as other types of input. In many cases, INITGET can reduce the amount
of testing your program must do with input data.

The point-input systems allow for the entry of points using either the graphics screen or the
keyboard. In most instances, they can behave just like the AutoCAD commands, accepting entities,
object snaps, windows, and so on. Using the basic GET subr library, you can create input systems
that look and feel like regular AutoCAD commands.

When using the input tools provided in Visual LISP, it is best to make your prompts look as
much like an AutoCAD-generated prompt as possible. That means your input options should
include default values whenever possible as well as keyword options presented between brackets.

The quality of your application’s input and output plays a big part in how a user feels about
your software, so you should take the time to think carefully about these aspects of an application.

)

 (prin1)

)

Listing 10.5 Moving and rotating.

149

CHAPTER 11

Introducing Dialog Boxes

A dialog box is a rectangular area of the screen where data is displayed and selections are made
using a pointing device and the keyboard. Operators can select elements in the order they want,
but they can select only the items you decide to enable and display. In this way, dialog boxes pro-
vide the programmer with an excellent tool for controlling input alternatives.

In this chapter, you find out how to create a dialog box in Visual LISP, a process that is different
in other programming languages such as Visual Basic and Visual C++. Other languages have
easy-to-use graphical editors. In Visual LISP, you design dialog boxes in a Dialog Control Lan-
guage file using a text language, and then display the file to see how the dialog box looks.

Dialog box programming is
more complex than basic com-
mand-line input or graphics input,
and in this chapter I introduce only
the basics. For details, see the
online help in Visual LISP.

How Dialog Boxes Work

In this section, you begin by look-
ing at how dialog boxes work and
what is needed from a program-
ming point of view to make one
work. The major components that
make up a dialog box are shown in
Figure 11.1. Here, you look at how
the components work from a pro-
grammer’s perspective.

First, a dialog box is designed
and programmed before the appli-
cation runs. Although some dialog
boxes may alter their appearance when the program is running, the majority of the layout must be

Figure 11.1 The components of a dialog box.

150 CHAPTER 11: Introducing Dialog Boxes

completed before you can test and run the application. In some environments, such as Visual
Basic, you design a dialog box (called a form in that language) by using a graphics design tool to
select and place objects. In Visual LISP, the dialog box layout is defined using DCL (Dialog Con-
trol Language); the placement of an object relative to other objects is determined by its order in the
source file.

Second, a dialog box is rectangular and made up of rectangular areas. The rectangular areas
are called tiles in Visual LISP. Think of ceramic tile, where each tile is a different size. As you lay
out the tiles, they are oriented parallel to a baseline so that they will fit in the rectangular region. If
you move the tiles, the size of the rectangle changes. Visual LISP tiling works the same way, but
with a lot more flexibility. You can resize most of the tiles in Visual LISP so that they fit together
nicely.

Third, tiles are like objects. If you understand object-oriented programming, you know what
that simple statement means! If you don’t, that’s okay. It means tiles contain properties, or
attributes, and have associated methods, or functions. Visual LISP uses the terms attributes for
data elements associated with the tile (such as its name) and callback functions for the functions
defined to react to a change in the tile. Tiles are not real objects in the truest sense of object-ori-
ented programming, but they exhibit some object-like features.

Fourth, all data communication with tiles and dialog boxes is accomplished using strings.
When you want to send data, you send a string. When you attach a callback function, you supply
a string. And when the callback function is invoked through the dialog box, it sends strings. Data
conversion and data checking are handled during each communication with the dialog box. This
gives the programmer control over each aspect of the input process in an isolated environment.
There are some numeric communications with tiles but mostly regarding their various modes, or
states, and not data.

Fifth, the process involved in displaying the dialog box, preparing the tiles with data, interact-
ing with the operator, and then returning the results are the same for all dialog boxes, as is the
sequence of steps. After you have created your first dialog box, the next will be similar. The differ-
ences will be in the details such as what specific types of tiles are used and how the callback func-
tions behave with the data provided.

Sixth, dialog box programming supports modular concepts by isolating the input and some of
the output to a specific function set designed around the dialog box itself. Modular program devel-
opment and testing can be accomplished by defining a single function entry for your input request.
Then you return data values for testing. The processing component of the application you are cre-
ating can be tested in this manner while the dialog boxes are developed at another time or by
another person on a development team.

Seventh, dialog box programming is event-driven programming, which requires that you set up
a series of possible events with consequences. As the events occur, the consequences play out. In
dialog box programming, the events are tiles and the consequences are callback functions. When a
user does something with a particular tile, the callback function is invoked and does something
about it.

All of these concepts meld to form dialog box programming. In the next section, you see how
these concepts work together in an example application.

Creating a Dialog Box 151

Creating a Dialog Box

Suppose that you want to build a program that accepts input from the operator using a dialog
box. The first step is to create the Dialog Control Language (DCL) file, which defines the initial
layout of the dialog box. (You can always return to the DCL and make changes.)

The next step is to define a function that serves as the primary dialog box driver. This function
loads the DCL file and then displays the particular dialog box you want to see. You can store more
than one dialog box definition in a DCL file. After the dialog box is displayed, the program can
place default data into the dialog box tiles, set up the callback functions, and establish the initial
modes for the tiles. The mode control establishes whether or not a tile is enabled

After the preparations are finished, the dialog box is started and your primary dialog box
driver program waits for the dialog box to be finished. At this point, control is turned over to the
operator to choose and manipulate the elements of the dialog box. As tiles are manipulated, the
callback functions run. Callback functions are permitted to change the modes and values in other
dialog box tiles, so a callback function can produce significant changes in the user’s interface,
including displaying another dialog box on top of the initial dialog box.

Dialog boxes are terminated when a callback function requests an exit or the operator clicks a
button such as OKor Cancel. At this point, the dialog box driver program takes control again. An
integer code is passed back to the driver program indicating the exit option that the operator
selected. If the OK button was clicked, the driver program prepares the data for returning to the
master program that started the driver. The simplest way to return data is as a direct result of the
driver function. If the Cancel button is clicked, the driver program typically returns NIL and none
of the variables change. The dialog box DCL can be unloaded before the exit of the driver function
to free memory for other dialog boxes. However, if you will be using the same dialog box DCL con-
tents again in the application, just leave it open and close it when you are completely finished.

This is just one possible sequence for program flow with a dialog box. Another is to set up
retirement buttons so that the operator can go to the graphics screen and make a selection or input
a point. This type of operation is still considered retiring the dialog box because you are getting it
off the screen to display the graphics window. Typical programming of this type of dialog box
interaction places all the main dialog box driver logic, with the exception of the DCL load and
unload subrs, into a loop that iterates until one of the exit conditions is met.

The DCL file is an ASCII text file that you create with the Visual LISP editor and save with the
DCL extension (by choosing the Save As option and then selecting DCL for the Save as Type option).
When you save the file (even an empty file), the editor recognizes that you are writing a dialog box
source file.

The syntax of a DCL file is different than Visual LISP syntax because you are defining a screen
layout rather than a program. Every object in the DCL file has the same syntax:

[NAME]: ITEM [: ITEM …] { ATTRIBUTE = VALUE; … }

NAME is something you can use to reference the tile or dialog box in your application. Normally,
you use NAME only when defining the dialog box object itself. ITEM is the name of a previously
defined tile type. It can be a reserve name or something of your own design. You typically have one
ITEM, but you can have more than one if needed. The attributes for the DCL object are between the
braces.

152 CHAPTER 11: Introducing Dialog Boxes

Version 1

The first dialog box you will create is shown in Figure 11.2. It
has a text display line, two Change buttons, and an OK button
and Cancel button. This is a basic dialog box that you will use
for the first few examples. The dialog box in Figure 11.2 was cre-
ated with the DCL definition in Listing 11.1.

Starting at the top, the primary tile is a dialog type. You
usually start with a dialog tile and then define other tiles inside it.
In this case, three tiles (text and two button tiles) are defined
along with the named object ok_cancel. The named object is a
cluster of two buttons in a row showing the text OK and Cancel.
When writing DCL files, you should consider named objects to be
single tiles. You can create you own named objects, such as
ok_cancel in the DCL file, but the primary ones you will want are already provided in AutoCAD.
ok_cancel is a common one that provides two familiar exits from the dialog box. Next, you turn

your attention to the text and button tiles in the example listing.

Every tile in the dialog box has a common attribute, named key, which is the name by which
your program will reference or recognize a specific tile. Note that key names are case sensitive and

Listing 11.1 Creating a dialog box, version 1.

HELLO1 : dialog {

 label = "A Basic DCL";

 : text {

 key = "T1";

 value="A Simple DCL example.";

 }

 : button {

 key = "B1";

 label = "Change 1";

 }

 : button {

 key = "B2";

 label = "Change 2";

 }

 ok_cancel;

}

Figure 11.2 A sample dialog box,

version 1.

Creating a Dialog Box 153

must be unique within the dialog definition. I tend to use a simple standard when first laying out a
dialog box to see what it looks like on the screen. I name the tiles in sequence, using only a few
characters. As I arrange the dialog box and establish the locations for the various elements, I often
assign more meaningful key names.

The label attribute contains the text displayed on the tile in the dialog box. This is another
common attribute found in all tiles except picture, or image, tiles. Although a label is not manda-
tory, the lack of one will affect the readability of your dialog box.

To create the dialog box, follow these steps:

1. In the Visual LISP IDE, load the example DCL file from the CD or type the code in Listing 11.1.

2. Set the focus to the DCL file’s edit window and then choose Tools > Interface tools.

3. Select the Preview DCL in Editor option. The names of the dialog boxes are displayed in a
pull-down list.

4. Select HELLO1 and then click OK. You should see the dialog box shown in Figure 11.2.

The dialog box in Figure 11.2 is a rectangle that contains several rectangles. The buttons are
obviously rectangles, but so is the text. Note the space on either side of the text inside the buttons.
The extra space was added so that the ok_cancel grouping could fit properly in the dialog box
window. Visual LISP adds spaces automatically to fill in the extra room.

The ok_cancel group is a style of dialog box design. It is arranged in a row. Dialog boxes are
divided into rows and columns of rectangular shapes, and the sequence of their appearance in the
DCL controls how the dialog box looks on the graphics screen. It is up to you whether you want to
use other styles, such as rows and columns of toggles or list boxes and edit boxes, when you create
dialog boxes. However, Visual LISP dialog boxes should appear the same as AutoCAD dialog
boxes to provide operators with a consistent interface.

Version 2

A dialog box is a column by default. You can change the dia-
log box so that it looks like the one in Figure 11.3 by adding
the tile description for row around the two button tiles, as in
Listing 11.2. (Look for the two lines marked //New. (The
double slash is a comment in a DCL source file.) Tiles like the
buttons seen here can be put in a row by inserting the defini-
tion of the button tiles inside the brackets for the row tile.

By adding the row tile around the two buttons, you drasti-
cally change the shape of the dialog box. The buttons are
smaller (so that two fit in a row) and there is more space to
the right of the text in the text tile containing the string “A
Simple DCL example.”

The buttons are contained in row because they appear between the braces for the row tile. You

can nest row and column tiles as deep as needed to split up the screen in any fashion you want.

Figure 11.3 A sample dialog box,

version 2.

154 CHAPTER 11: Introducing Dialog Boxes

Version 3

Consider version 3 of the dia-
log, which is shown in Figure
11.4. In this version, the
majority of the dialog box is
a row. The buttons are
arranged in a column at the
end of the row.

The source code is in List-
ing 11.3. Note the addition
of the width attribute for the
row, which forces the row to
be big enough to hold 60
characters (more than enough). Note too the box around the buttons. Both row and column tiles
can also be labeled as boxed_row or boxed_column. When boxed is added to the front of the
group tile name, a thin line is drawn around the tile. This helps to offset important elements or
groups of input in a dialog box.

Listing 11.2 Creating a dialog box, version 2.

HELLO1 : dialog {

 label = "A Basic DCL";

 : text {

 key = "T1";

 value="A Simple DCL example.";

 }

 : row { //New

 : button {

 key = "B1";

 label = "Change 1";

 }

 : button {

 key = "B2";

 label = "Change 2";

 }

 } //New

 ok_cancel;

}

Figure 11.4 A sample dialog box, version 3.

Standard Tile Types 155

Inserting row and column adjusts the shape your dialog box. Adding boxes make the dialog
box look better organized. You can also add labels to boxed rows and columns to provide a title
for the entire grouping. With practice, you will be able to create a variety of dialog box layouts.

Standard Tile Types

The basic tiles defined in Visual LISP are presented in Table 11.1. All of these tiles have attributes.
Some attributes are common for all tile and others are unique for a particular tile or have a special
meaning for only some tiles.

Listing 11.3 Creating a dialog box, version 3.

HELLO3 : dialog {

 label = "A Basic DCL";

 : row {

 width = 60;

 : text { key = "T1"; value="A Simple DCL example."; }

 : boxed_column {

 : button { key = "B1"; label = "Change 1";}

 : button { key = "B2"; label = "Change 2";}

 }

 }

 ok_cancel;

}

Table 11.1 Dialog box tiles.

Tile Description

boxed_column Rectangular column grouping with a border.

boxed_radio_column Rectangular column area for radio buttons with a border.

boxed_radio_row Rectangular row grouping for radio buttons with a border.

boxed_row Rectangular row grouping with a border.

button Pushbutton, such as OK.

column Rectangular column grouping.

edit_box Text entry box.

errtile Error-reporting box area at the bottom of the dialog box.

image Graphic.

156 CHAPTER 11: Introducing Dialog Boxes

The attributes you will use most frequently are listed in Table 11.2. Virtually all tiles have these
attributes available for use. The label and value attributes, however, are not used with all tiles.
For example, value does not make sense in the case of a row. If you do not want to change or
modify a tile, it does not need a key.

Some of the attributes can be changed during the evaluation of your Visual LISP programs
using the subrs mentioned in the table. You look at those subrs later in this chapter, after you learn
about some of the attributes used with specific tiles.

Button tiles

A button tile is an area that the user clicks. You can use buttons to allow the operator to exit the
dialog box permanently (such as the OK and Cancel buttons), to exit the dialog box for graphics
selection, to change values in other tiles in the current dialog box, or to display another dialog
box.

Most programmers follow certain conventions when using buttons. If a button will be used for
a graphics selection, the less-than character (<) is often placed at the end of the label. When a
button is used to display another dialog box, three periods (…) are displayed at the end of the label.

image_button Graphic that behaves like a button.

list_box List of text choices.

paragraph Grouping of text_parts and concatenation.

popup_list List of text choices that is pulled down to display the list; normally dis-
plays only the selected item.

radio_button Button associated with other radio buttons in a radio_row or
radio_column that can be selected to indicate a unique choice. Only
one radio button can be selected at one time in a radio row or column. If
another is already selected, it will be automatically deselected.

radio_column Rectangular column grouping for radio buttons.

radio_row Rectangular row grouping for radio buttons.

row Rectangular row grouping.

slider Vertical or horizontal sliding bar used to indicate a value within a range.

spacer Empty space between tiles.

text Text display only; no editing.

text_part Text display only; part of a paragraph. Allows for the insertion of partial
text based on the application. Used with the paragraph and concatena-
tion tiles.

toggle Button that indicates an on-or-off state. It has a checkmark or a box with
an X in it.

Table 11.1 Dialog box tiles. (Continued)

Standard Tile Types 157

In addition, you should clearly mark the function of buttons that exit or change values in the
current dialog box.

The IS_DEFAULT and IS_CANCEL attributes are specific to the button tile. Both are Boolean val-
ues, so they are true or false. Only one button per dialog box can have either of these values set to
true, and no one button tile can have both. When IS_DEFAULT is true for a button, that button is
activated (its action called forth) when the user presses the Enter key. When IS_CANCEL is true,
that button is activated when the user presses the Escape key.

IMAGE_BUTTON tiles are a variation of button tiles that also supply information as to where on
the button the selection was made. An image button can display an AutoCAD slide (SLD or SLB)
image to provide a graphic description for operator input. When the operator selects a location in
the button, the location (relative to a corner) is available for use in your program.

Text tiles

Text tiles display text data inside the dialog box. The text tiles are text and TEXT_PART, as well as
PARAGRAPH to glue the parts together. You can change the text value and use the box to keep the
operator informed as to the status of your program while it is running. For example, a message
could tell the operator how many objects are currently selected based on the search criteria sup-
plied in the dialog box.

Table 11.2 Common tile attributes.

Attribute Type Description

action String Visual LISP expression to evaluate when the tile is selected or
changed. This is one of two places where you can establish the
callback function reference. To overwrite the callback reference
setting, use the (ACTION_TILE) subr.

alignment Left,
Right,
Centered

Alignment of a tile within a group.

height Integer Count in dialog units (characters) of the height of the tile.

key String Name of tile for external references.

is_enabled True,
False

Can the tile be selected and manipulated? The default, which is
TRUE, can be overwritten using the (MODE_TILE) subr.

is_tab_stop True,
False

Is the tile a stopping point when tabbing through the dialog
box?

label String String to be displayed with the tile.

mnemomic String Character that can be used for quickly reaching the tile (hot
key).

width Integer Count in dialog units (characters) of the width of the tile.

value String Initial value of the tile. To overwrite it, use (SET_TILE).

158 CHAPTER 11: Introducing Dialog Boxes

The only attribute unique to text tiles is the Boolean IS_BOLD attribute. When set to true, it
forces the displayed text to appear in a bold font.

The data entry tile

The only data entry tile in Visual LISP is the edit_box tile. This tile can be used for entering and
editing string data, allowing it to hold numbers, words, and sentences. Your program determines
what is allowed in this tile. Should the operator supply something that is not proper, your program
must detect that fact and inform the operator of the problem. The ALERT subr is useful for inform-
ing the operator of a problem in the midst of a dialog box.

Several attributes are designed for the data entry tile. edit_width sets the width of the display
field. EDIT_LIMIT sets the maximum number of characters to be accepted. PASSWORD_CHAR, which
is used for password entry, is a replacement character that masks the display of what the operator
has typed.

When programming a data entry tile, you should include a default value. If it is something that
can be turned on and off, use the toggle or radio buttons with the data entry tile. When the associ-
ated toggle is on, enable the edit box so that the operator can see that it is associated with the but-
ton. When off, disable the edit box so that the operator can see immediately that data is no longer
applicable. To enable and disable tiles, you use the MODE_TILE subr, which is covered in a later sec-
tion.

Data-entry-tile callbacks occur after the data has been entered and the operator is attempting
to leave the tile. A reason code supplied as an argument to the callback function can be tested to
determine whether the operator pressed the Enter key (accept the input as provided) or moved to
another tile. In either case, the input should be verified for validity by retrieving and checking the
stored value.

Toggles and radio buttons

A toggle is something that has one of two values, such as yes or no. Toggles appear as check boxes
in a dialog box. The operator clicks the toggle to change its state between on and off. Toggles can
be used to turn on and off other sections of the dialog box or as the input device for flags or set-
tings having only two possible values.

For flags and settings with more than two possible values, you can use radio buttons. Radio
buttons are like toggles except they are always used in a group. Instead of answering a yes-or-no
type question, radio buttons answer a “which of the following” question. Radio buttons can be
arranged in a row or a column .

Every time the button or toggle is changed, its associated callback functions are called. A value
of 0 or 1 is passed to the callback function as an argument. The value 1 indicates a true, or on,
state. A value of 0 is for false, or off.

Toggles and radio buttons appeal to a broad majority of operators — if the default values are
right. When using toggles and radio button options, you should not reset the default each time the
dialog box is displayed. Instead, maintain the previous default when possible.

The Art of Dialog Box Design 159

List tiles

The two types of list tiles in Visual LISP are boxes and pop-ups. A boxed list has a boundary and
scrolling bars on the right for moving through the list of options. Boxed lists may have one or mul-
tiple items selected, depending on the application and how the DCL is defined. The
MULTIPLE_SELECT attribute controls that aspect of list boxes. Pop-up lists can have only one item
selected, and that item is displayed in a single line in the dialog box. When selected, the list pops
up for the selection of a single item. Scrolling bars are presented if the content of the list exceeds
the number of lines displayed.

For both types of lists, horizontal scrolling is not supported. You must allocate enough space in
your dialog box to display the data you want or provide a mechanism of your own design for that
purpose. You can use the TABS attribute to establish columns in the list. Then, in the string, insert
the tab character (ASCII 9) where you want column breaks.

Although pop-up lists resemble a control known as combo boxes, they do not support the same
features. That is, you cannot have a pop-up list and edit box combination in Visual LISP. Perhaps
that support will be provided in a future update of the language, one with a next-generation dialog
box manager.

The Art of Dialog Box Design

The art of dialog box design is a study in how
people use computers. After you have created
your interface, it is best to seek feedback from
as many users as is reasonable. Each will have
an opinion as to how the dialog box should
look or act, and you will gain insight about
how people view the dialog boxes they use.

The dialog box should be arranged in a
readable format. For most users of AutoCAD,
that means having neat columns of data with
related elements grouped together. Depending
on the needs of the operators, your dialog box
might range from one that is direct and simple
to one with many options.

Figure 11.5 Fillet option not selected.

160 CHAPTER 11: Introducing Dialog Boxes

Suppose that you have a dialog box for
drawing rectangles that includes an option for
adding corners. If operators want rounded cor-
ners, they select a toggle and the current fillet
radius is presented as the default in an edit box.
Figures 11.5 and 11.6 show a dialog box based
on that concept. The fillet option is off in Figure
11.5 and on in Figure 11.6.

The dialog box retained the settings from
previous runs of the program so that operators
could rapidly repeat the same command. List-
ing 11.4 contains the DCL source code for the
dialog box. Note that it has radio options on
the top and two columns below, one labeled
Size and the other labeled Fillet.

Listing 11.4 Creating a dialog box with radio buttons and toggles.

RECT : dialog {

 label = "Draw a Rectangle";

 : boxed_radio_row {

 label = "Select placement method";

 : radio_button {

 key = "LS";

 label = "Left side";}

 : radio_button {

 key = "CE";

 label = "Center";}

 : radio_button {

 key = "RS";

 label = "Right side";}

 }

 : row {

 : boxed_column {

 label = "Size";

 : edit_box {

 key="X";

Figure 11.6 Fillet option selected.

The Art of Dialog Box Design 161

Reading DCL files can be difficult when columns are inside rows inside columns. That’s why
Visual LISP has the DCL preview feature. As you create a DCL, start simple. Then improve it
step-by-step, reviewing your work in the preview editor. When creating a DCL in the editor, I usu-
ally start with everything in the main column, and then I turn things into rows to improve read-
ability and organize the data. A better approach is to design your dialog box on paper and then
divide it into rows and columns. After you determine the rows and columns, you know where to
place the individual tiles.

The RECT dialog box in Listing 11.4 contains four primary areas:

• The radio box at the top, which has three radio button tiles

• The Size input area, which contains a pair of edit box tiles

• The Fillet input area, which houses a toggle with an edit box

• The OK and Cancel buttons area at the bottom

DCL files define dialog boxes starting at the top. If you want a wide dialog box with multiple
columns, you need to define a row at the start. If the entire design fits into a single column, you can

 label = "Length";

 edit_width=6;}

 : edit_box {

 key="Y";

 label = "Width";

 edit_width=6;}

 }

 : boxed_column {

 label = "Fillet";

 : toggle {

 key = "FF";

 label = "Fillet corners?";}

 : edit_box {

 key="FR";

 label = "Radius";}

 }

 }

 ok_cancel;

}

Listing 11.4 Creating a dialog box with radio buttons and toggles. (Continued)

162 CHAPTER 11: Introducing Dialog Boxes

just start with the topmost tile because the default shape of a dialog box is as a column. The exam-
ple in this section is a single column — you can tell because the radio button set stretches from one
side to the other. Thus, the first tile in the dialog box is the radio row grouping.

Groupings can have labels, which appear at the top of the group’s rectangular area. The label
for the radio row sets off the row and provides something of a prompt for the operator.

A row follows the closing brace for boxed_radio_row. The row has no other attributes
because it only divides the column into multiple tiles — in this case, two column tiles. The first col-
umn tile is for choosing the size of the rectangle, and the second one is for the fillet inputs. The edit
boxes and toggle tile definitions sit inside each tile.

Several format options are available for tiles, including setting the width and height. For an edit
box, that means not only setting the width of the tile, but also setting the width of the edit win-
dow, or the number of characters that can be typed, or both. When I began designing the dialog
box, the difference in the width of the characters in the words Length and Width caused the edit
boxes to appear out of alignment. By setting the edit_width attribute to the same number, the
edit boxes for data entry were the same size.

DCL files are just a written description of the layout of a dialog box. Although difficult to read
and comprehend at a glance (just like any programming language), they are easy to maintain and
modify. The hardest part is the initial layout, which is why I recommend starting with a pencil and
a piece of paper.

Program Manipulation of Dialog Boxes

In this section, you turn your attention to the Visual LISP programming aspects of a dialog box.
You must take several steps before a dialog box can even appear on the screen.

The first step in using a dialog box is to load the DCL file into memory. DCL files are read into
AutoCAD’s memory space for reference by your programs and are assigned a handle. A handle is a
number that is used to reference a particular file or dialog library. You use the LOAD_DIALOG subr
to obtain a dialog box handle. You give LOAD_DIALOG the file name of the DCL source, including
the folder name, as a string. The subr returns a dialog handle after successfully loading the DCL file.

Any errors in the DCL file are reported to an error file, and an alert appears during the loading
process. If there are errors, the DCL is not available. That means any other dialog box DCL files
expecting to use named parts of the malfunctioned DCL will find them unavailable. This is true
even if these parts are fine and the error is in a later dialog definition within the file.

When programming a dialog box, the normal starting sequence is to test the return from
LOAD_DIALOG to see whether there are any problems. If everything is okay, LOAD_DIALOG returns a
positive value and the program can continue to process the dialog box. Otherwise, you should
post an error to the display because you can usually assume that your DCL file is okay and the load-
ing error is the result of a missing file. (You find out more about this in a later chapter about direc-
tory management.

If your program will be opening dialog boxes from the same DCL multiple times, you should
establish the dialog box handle as a global symbol. At the start of your dialog box functions, check
to see whether the symbol is bound to NIL. If so, open the DCL and set the handle into a global
symbol so that the next time it is found to be non-NIL.

Program Manipulation of Dialog Boxes 163

After obtaining a good dialog box handle, the next step is to display the dialog box on the
screen using the NEW_DIALOG subr. NEW_DIALOG has two arguments: the name (case sensitive) of
the dialog box to be displayed and the dialog handle obtained when the DCL file was opened.

At the completion of the NEW_DIALOG subr, the dialog is visible on the screen. It is not ready for
the user to interact with yet and restrictions now come into play in the programming. One of the
restrictions is that you cannot issue command prompts and commands until the dialog box is no
longer displayed (and no other dialog boxes are open).

NEW_DIALOG returns NIL if the DCL file is not open or if the dialog box requested was not found
in the DCL definition. Names and keys are case sensitive. If your dialog box does not appear after
you have created it and written the Visual LISP code to load and display it, check the spelling and
case of the dialog box name.

After the dialog box is on the screen, you can display the data to be used as defaults. The
SET_TILE subr establishes these values. SET_TILE works with the currently displayed dialog box
only. You cannot use SET_TILE to establish values in nested dialog boxes until the target dialog
box is the topmost. The data supplied to SET_TILE consists of the key name (case sensitive) for the
tile along with the value to be placed in the tile. Data for the tiles is always a string. If you send a
non-string value to a tile, an error results or the dialog box freezes on the screen and AutoCAD
will seem locked up.

SET_TILE is used to establish the value of tile types that need a single value. These tile types
include edit boxes, radio buttons, text, toggles, and sliders. SET_TILE sets the value attribute of a
tile. You can also adjust the mode and action settings for a tile, allowing you to change the way a
tile appears (enabled or disabled) and what callback function will be used when the tile is manipu-
lated.

To enable and disable a tile, use the MODE_TILE subr, which accepts a key name (case sensitive)
and an integer value between 0 and 4 as follows:

◗ 0 enables the tile if it is not currently enabled.

◗ 1 disables the tile for input.

◗ 2 places the focus at a specific tile.

◗ 3 used only for edit boxes, sets the focus to an edit box and highlights the value

◗ 4 toggles the highlight status of image tiles

Dialog boxes are intended to give users the ability to move freely through the input system, so
be prudent when navigating for the user automatically.

To change the action or callback function for a tile, use the ACTION_TILE subr. Supply a
case-sensitive key name to indicate the tile and a string that represents a complete expression in
Visual LISP. The string must have surrounding parentheses and a valid LISP expression between
the double quotes. If quotes are needed in the string, use the backslash-quote control character.
For example, suppose that you want to set the AA symbol to the value “100”. The string expres-
sion would be

“(setq AA \”100\”)”

Visual LISP translates the string to the (setq AA “100”) expression. You cover callback func-
tions more thoroughly later in this chapter.

164 CHAPTER 11: Introducing Dialog Boxes

After all the data and actions are established for the dialog box and you are ready to let the
operator have at it, invoke the START_DIALOG subr. This subr has no arguments. It starts the inter-
action with the operator and your program waits until that is finished. Your callback functions are
called while the operator manipulates the tiles you’ve designed for that purpose. When a retire-
ment option is taken (such as the OK or Cancel button), the START_DIALOG subr returns control to
the main routine that set up the dialog box in the first place. The dialog box is removed from the
screen and you get an integer result.

The integer returned from START_DIALOG is based on the operator’s action. If the operator
clicked the OK button, a value of 1 is returned. Clicking the Cancel button returns 0. You can use
DONE_DIALOG to force other returning options in the callback functions.

Generally, the result of START_DIALOG is stored in a local symbol and then tested in a COND
expression. You decide the response that each retirement option will cause, but in general you
should save values from the dialog box when OK is clicked and just return with no change data
when Cancel is clicked. This is easier if you use temporary symbols for all dialog box manipula-
tions. When processing an OK-return, place the temporary symbol values in global symbols. A
Cancel is then processed by not doing anything.

When you have finished using a dialog box, unload it from memory. If you plan to use multiple
dialog boxes from the same DCL file or if you expect to return to this dialog box in your applica-
tion, leave the DCL file loaded. But if the dialog box is a one-shot deal or your application is wrap-
ping up, release memory by using the UNLOAD_DIALOG subr. Supply the dialog handle, and Visual
LISP takes care of the rest.

Programming Callback Functions

The actions involved in setting up a dialog box for display and the placement of data is culminated
with the user interaction that takes place when the START_DIALOG subr runs. Your program is still
running and in control, but the program is running in an event-driven environment rather than in
a linear fashion. The operator triggers events by manipulating tiles. When an event takes place,
your associated callback function is evaluated.

A callback function can be a simple expression or a call to a complex function of your design.
When your function takes over, the operator’s interaction is halted. After the callback function is
completed, the operator may resume the manipulation of the tiles in that dialog box.

Callback functions can do a lot but there are restrictions. The primary restriction is that call-
back functions cannot do anything that involves the AutoCAD command line, so data cannot be
output through the PROMPT subr and COMMAND activities cannot take place. You can send data to
the command line using the WRITE-LINE subr, but you should avoid doing this except when
debugging your program because you do not want to cause the operator concern by displaying
text that may scroll off quickly.

You can send data from the tile causing the callback directly to the callback function. In the
action attribute, the “$key” and “$value” keywords are substituted with the values from the
tile. For example, if you set up an edit box tile named AA with an action string of “(My_Function
$key $value)”, the MY_FUNCTION function is called with the key name and value at the time the

Using Lists in Dialog Boxes 165

tile is manipulated. If the tile has a value of “123” while running and the operator presses the
Enter key, the function call is (My_Function “AA” “123”).

Another item of information that you can supply is the reason why the callback function is
being called. The “$reason” keyword is substituted with an integer code. Most of the time, the
reason code has a value of 1, indicating a normal request. The meaning of a normal request
depends on the type of tile. An edit box returns code 1 when the Enter key has been pressed. Code
2 results if the operator moved to the next field with the Tab key or a pointing device. Code 3 is
associated with sliders and indicates a change in value without a final change setting. List boxes
may return code 4 if the operator double-clicks a selection, allowing your callback function to
react differently under that circumstance.

After your callback function starts, you can retrieve data from other tiles in the active dialog
box. You can also use the SET_TILE and MODE_TILE subrs to set the attributes of other tiles in the
active display. Callback functions can even start into another dialog box sequence, resulting in a
nested dialog box interface.

You can use the GET_TILE subr to retrieve the current value of a tile, which is returned as a
string. The value of an edit box is the text content. The value of a radio button or a toggle is an
integer string (“1” for on and “0” for off). The string value for a list box contains an integer indi-
cating the NTH position in the list (list boxes are discussed in more detail shortly).

To retrieve the attributes for a tile, use the GET_ATTR subr. If you want to check against a value
stored in the DCL file, the name of the attribute and the tile are presented to GET_ATTR, which
returns a string value containing the setting. This setting is the original DCL value, not the current
value if that has changed due to SET_TILE or MODE_TILE. You can use GET_ATTR to reestablish the
default setting, and you can include custom attributes for a tile. You can use GET_ATTR also to
obtain local, language-specific terms to be used in messages related to the tile. If the user changes
the DCL file to match local terms or language requirements, the Visual LISP program will adapt
accordingly.

Using Lists in Dialog Boxes

Because LISP is a list processing language, it makes sense that dialog boxes will contain lists of
data. Special subrs manipulate list tiles (these include regular and pop-up styles of lists). Because
you may want to do several things with a list, such as add an item to the end of a list or insert an
item in the middle of a list, Visual LISP provides a powerful set of list manipulate subrs.

List boxes are set up one at a time in a dialog box. If the dialog box contains more than one list
box, each must be set up using the following sequence. Use START_LIST to open the list tile, use
ADD_LIST to add members to the list, and use CLOSE_LIST to indicate that you are finished.

Listing 11.5 shows a sample list box being populated. This sample shows the code associated
with the “MYLIST” list box tile in a DCL file that is already opened and displayed on the screen.
Note the use of MAPCAR to apply the ADD_LIST subr to each member of the MyDataList list.
MyDataList must be a single-level list of strings for this code snippet to work properly. To use
nested list structures, just expand the MAPCAR expression with a LAMBDA to manipulate the sublists.

It is important to keep a copy of the list internal to your program. When a list item is selected,
the only information that Visual LISP returns is the NTH position selected in the list. It is up to your

166 CHAPTER 11: Introducing Dialog Boxes

program to equate that position to a value. In the example, the NTH position in the MyDataList list
reveals the text that the operator selected in a callback.

Normally, the value of a list tile is a string with the offset position number. You use ATOI to
convert the string to an integer, and then use NTH to retrieve the list member. This works fine in the
default mode of single selection for a list tile. If you have turned on the MULTIPLE_SELECT
attribute for the tile, however, the value for the list box tile is a string of numbers. Suppose that the
operator has selected the first, third, and fourth list items on the screen. The list offset positions are
returned in the “0 2 3” string. To get the individual offsets in a format that you can use to quickly
access the data list, concatenate parentheses characters on each side of the return string and use
READ to convert the string to a list of numbers. Now you can loop through that list and retrieve the
values.

It takes practice to effectively use list boxes — as well as most tile types in DCL files. Each has
specific nuances that you need to learn and experiment with for any given interface requirement.
For more information on tiles and attributes, look in the Visual LISP online help files. There is a lot
to be found, almost enough for a complete book on just that subject.

Rules and Suggestions for Programming Dialog Boxes

Following are some rules and suggestions regarding the programming of dialog boxes. If your pro-
gram violates any of the rules, the dialog box will not work properly.

Rule 1: Do not use the command line

When the dialog box is visible, do not attempt to run any AutoCAD commands or send data to the
command line using the PROMPT subr. The primary reasons for this is to keep things under control.
When Visual LISP is running a dialog box, there is no reason for AutoCAD to perform commands
that the operator cannot see. This does not mean that you cannot access the AutoCAD database
but it does mean that you cannot interact properly with the command line. An attempt to do so
will result in an error in your program.

Listing 11.5 Populating a list box tile.

 ; … Partial program listing

 (START_LIST “MYLIST”)

 (MAPCAR ‘add_list MyDataList)

 (CLOSE_LIST)

 ; … program continues

Rules and Suggestions for Programming Dialog Boxes 167

Rule 2: Use strings in SET_TILE

When you send a non-string value to SET_TILE, the dialog box locks up. And because AutoCAD
is waiting on the dialog box, AutoCAD locks up as well. The only way around this is to cancel
tasks (with Task Manager), but this could leave a mess (and the loss of unsaved work) in system
memory and even the disk system. To prevent this, always double-check your values for SET_TILE
to make sure that they are strings.

Rule 3: Use unique names

Dialog box names, key names, and custom attributes should be unique. When the same name is
used in a conflicting manner, the dialog box system in Visual LISP generates an error message and
then the dialog box is displayed. You can avoid a lot of problems by adopting a standard, such as
always using uppercase letters.

Suggestion 1: Do not use abbreviations

Abbreviations can confuse for some applications. Dialog boxes are supposed to be easy-to-use
input forms. The use of abbreviations, except when the abbreviation is the accepted standard of
communication, makes the dialog box harder to read and understand.

Suggestion 2: Provide shortcuts

Users or your program develop from novices to experts. And expert users look for shortcuts when
running a program.

Suggestion 3: Display default values

An empty dialog box entry looks incomplete, whether it is an empty text field or a radio button
group without one of the values selected. From a user’s perspective, the ultimate dialog box has all
the data filled in correctly and simply requires a click of the OK button.

Suggestion 4: Remember changes

Users find it frustrating to change something and then see that it has undone itself. When a value is
changed in a dialog box, that change should be remembered when the dialog box is displayed the
next time in the same drawing edit session.

Suggestion 5: Report input problems

The adage that there is no time like the present applies to dialog box programming. If an operator
supplies incorrect input, tell him or her as soon as possible. The best opportunity for informing the
operator about a mistake is in the callback function associated with the input tile. You can tell the
operator what went wrong in the error tile or by using the ALERT pop-up dialog box. Then refo-
cus on the tile so that the operator can correct the entry or revert to a previous good value.

168 CHAPTER 11: Introducing Dialog Boxes

Suggestion 6: Provide an escape

A dialog box should have a Cancel button or some other way for the operator to escape from the
dialog box without suffering a consequence. When using software, users often explore the inter-
face and select things at random just to see what happens. If they want to back up to a higher level,
the interface should allow it.

Suggestion 7: Program fast callback functions

Callback functions should be fast. They should perform basic error checks and then return control
to the dialog box manager as soon as possible. Users quickly become impatient if a button or
action is taking too long. When a long delay cannot be avoided, give operators a message, letting
them know that things are proceeding. The dialog box error tile can be a useful messaging center
for this purpose.

Dialog Box to AutoCAD and Back

A common requirement in a dialog box is to leave the box, perform some AutoCAD operation
under the guidance of the operator, and then return to the dialog box with new values. For exam-
ple, you might click a button to jump back to the AutoCAD screen to locate two points represent-
ing a distance value to be placed in an associated edit box, which is redisplayed after the selections
are completed.

If you want a dialog box to appear, go away, and then come back again, program the dialog
box in a loop. The processing of the dialog box remains the same. First you load it, and then you
display it, fill it in, and start it. But now the contents from the “display it” task onwards are in a
loop. That way, the dialog is redisplayed each time but loaded only once.

In the loop, use the current value of whatever variables the operator may have changed. For
example, suppose that you have a dialog box that asks for a distance and a count. Additionally, a
button locates the distance graphically. Even though you might think that operators will supply the
distance before the count, do not expect them to do that. They may want to choose the count first
and then click the distance button. The changed count value must be preserved when the dialog
box reappears after the distance input.

Related to this is that your program should not exit with an error from the dialog box when a
bad input is received. Instead, you should inform the operator and then return to the dialog box if
possible. The only exception is when the Escape is pressed during graphics input, in which case,
control is usually returned to the command line as soon as possible.

The remaining piece of the puzzle to discuss is the DONE_DIALOG subr. This subr allows you to
describe an integer to be returned as the result of the START_DIALOG subr. START_DIALOG then
returns as soon as your callback function is finished. Normally, DONE_DIALOG is the last step (or
only step) in a callback function associated with a button from which you retire (close) the dialog
box. After the dialog box is retired, it is up to your program to decide what happens next. You can
use DONE_DIALOG to return from the dialog box like a modified OK or Cancel. Or you can use
DONE_DIALOG to return from the dialog box so that your program can accept graphical input and
then loop back to display the data.

Example: Creating the Final Dialog Box 169

Example: Creating the Final Dialog Box

In this section, you improve the dialog box
introduced previously (Figures 11.5 and 11.6)
for the rectangle generator. A new dialog box
layout with buttons for graphics selection is
shown in Figure 11.7. The Visual LISP code is
provided in Listing 11.6, and the DCL code is
shown in Listing 11.7. The RECT2 dialog box is
similar to the one introduced previously, but
this one contains the action attribute for many
of the tiles. action establishes the Visual LISP
code that is evaluated when the tile is manipu-
lated. For this example, the only actions defined
in the DCL relate directly to the setting of sym-
bols that are part of the source code in Listing
11.6.

Listing 11.6 LSP source code for the final version.

 (defun C:RE (/ DH FR FF SI XS YS TMP P1 P2)

 (RE_RESTORE_VARS)

 (setq DH (load_dialog "CHAP11.DCL"))

 (while (and (> DH 0) (new_dialog "RECT2" DH))

 (set_tile "FF" (if FF "1" "0"))

 (mode_tile "FR" (if FF 0 1))

 (mode_tile "PFR" (if FF 0 1))

 (set_tile "FR" (rtos FR))

 (set_tile "X" (rtos XS 2 3))

 (set_tile "Y" (rtos YS 2 3))

 (cond

 ((zerop SI) (set_tile "CE" "1"))

 ((= SI 2) (set_tile "LS" "1"))

 ((= SI 4) (set_tile "RS" "1"))

)

 (action_tile "FF" "(RE_FILLET_FLIP $value)")

 (action_tile "PXY" "(done_dialog 100)")

 (action_tile "PFR" "(done_dialog 200)")

Figure 11.7 A sample dialog box, final version.

170 CHAPTER 11: Introducing Dialog Boxes

The source code for the LISP and DCL files is on the CD. This is the type of example that you
could expand into something more application specific. It could evolve into a window generator, a
mill plate generator, an electric pad, and much more. The structure of the program is essentially
the standard for this sort of dialog box, where the operator may select a variety of input, show it

graphically, and then quickly repeat the drawing task with the given parameters.
The first step in the C:RE function is to restore its internal variables. The RE_RESTORE_VARS

function on the CD sets initial default values to the local symbols used in the dialog box. By
isolating the setup activity in a subroutine, it is easy to append new logic to the initialization
sequence if necessary.

 (setq TMP (start_dialog))

 (cond

 ((= TMP 0) ;cancel

 (setq DH (unload_dialog DH))

)

 ((= TMP 1) ;ok

 (while (RE_DRAW_IT))

 (setq RE_SAVED_STATE_P (list XS YS FR)

 RE_SAVED_STATE (+ SI (IF FF 1 0))

)

)

 ((= TMP 100) ;show size rectangle

 (setq P1 (getpoint "\nCorner point: "))

 (if P1 (progn

 (setq P2 (getcorner P1 " other corner: "))

 (if P2

 (setq XS (abs (- (car P2) (car P1)))

 YS (abs (- (cadr P2) (cadr P1))))))))

 ((= TMP 200) ;show fillet size

 (setq P1 (GETDIST "\nFillet size: "))

 (if P1 (setq FR P1)))

)

)

 (prin1)

)

Listing 11.6 LSP source code for the final version. (Continued)

Example: Creating the Final Dialog Box 171

Listing 11.7 DCL source code for the final version.

RECT2 : dialog { label = "Draw a Rectangle";

 : boxed_radio_row {

 label = "Select placement method";

 : radio_button {

 key = "LS";

 label = "Left side";

 action="(SETQ SI 2)";

 }

 : radio_button {

 key = "CE";

 label = "Center";

 action="(SETQ SI 0)";

 }

 : radio_button {

 key = "RS";

 label = "Right side";

 action="(SETQ SI 4)";

 }

}

 : row {

 : boxed_column { label = "Size";

 : edit_box {

 key="X";

 label = "Length";

 edit_width=6;

 action="(SETQ XS (ATOF $VALUE))";

 }

 : edit_box {

 key="Y";

 label = "Width";

 edit_width=6;

 action="(SETQ YS (ATOF $VALUE))";

172 CHAPTER 11: Introducing Dialog Boxes

The next step is to load the dialog box stored in the CHAPT11.DCL file on the CD. Copy the DCL
file to your local working directory so that Visual LISP can locate it before running the example
function. When programming a real-world application, you will want to establish a standard loca-
tion for support files in your custom applications. If you have only a few, the AutoCAD Support
directory is a good location.

A WHILE loop is started and iterates as long as the DH symbol has a value and the RECT2 dialog
box can be loaded from the dialog source. LOAD_DIALOG returns a negative integer if it cannot load

 }

 : button {

 key="PXY";

 label = "Show <";

 }

 }

 : boxed_column { label = "Fillet";

 : toggle {

 key = "FF";

 label = "Fillet corners?";

 }

 : edit_box {

 key="FR";

 label = "Radius";

 action="(SETQ FR (ATOF $VALUE))";

 }

 : button {

 key="PFR";

 label = "Show <";

 }

 }

 }

 ok_cancel;

}

Listing 11.7 DCL source code for the final version. (Continued)

Summary 173

the dialog box, and NEW_DIALOG returns NIL if it cannot display the dialog box requested. The
combination makes an excellent predicate (conditional test) in this type of program structure.

Inside the WHILE loop, SET_TILE and MODE_TILE establish the values of the tiles. Additionally,
the ACTION_TILE subr defines several callback actions. These actions can be placed in the DCL or
in the Visual LISP source code. This example demonstrates both approaches and also demon-
strates my preference for placing in the code the code-based actions, such as the return values set
by DONE_DIALOG and function calls. If I ever need to change these, they are in one place and I do
not have to access the DCL file.

After the tiles have been prepared, the START_DIALOG subr is called so that the operator can
interact with the dialog box. As values are changed, the symbols in Visual LISP are updated. When
the buttons are clicked to show the data graphically, DONE_DIALOG is evaluated as the callback
action. The values 100 and 200 are used in this example, but you can use any numbers as long as
they are unique and do not interfere with the standard return values for OK and others. My pref-
erence is to use a larger number than I think Autodesk will ever need.

The START_DIALOG return value is placed in the TMP symbol. A COND then checks to see what
was returned so that the appropriate action can take place. If the returning value in TMP is 0, the
operator has indicated that he or she has finished drawing rectangles and wants to exit. DH is set to
the value returned from the UNLOAD_DIALOG subr. That value is always NIL, so you are in essence
setting up the DH symbol for an exit from the main WHILE loop.

When the values 100 and 200 are intercepted in CONS, the user is asked to locate the input.
Note that the symbols holding the values destined for the dialog box are updated only after a suc-
cessful input. For the sizes, two points are requested, and the differences in X and Y are calculated.
For the corner fillet, all you need is a simple distance.

When the operator clicks OK, the program starts a tight WHILE loop containing a single func-
tion call that serves as a predicate and an operation. The RE_DRAW_IT function requests an input
point and draws the rectangular figure described by the parameters. That makes this function set
an example of a parametric drawing program. The source code for the RE_DRAW_IT function is on
the CD.

Summary

Users are critical of the input and output of a program because this is where they interact with the
software. Dialog boxes represent a Windows approach to a user interface that most AutoCAD
operators are comfortable with for a number of reasons. Windows provides a standard that opera-
tors can learn with ease and then apply to new input. Dialog boxes are Visual LISP’s way of carry-
ing that into AutoCAD.

Working with the dialog box system takes practice in order to achieve the proficiency needed to
design and build effective interfaces using Visual LISP. But it is not difficult to program despite the
lack of a graphical dialog box design tool. Dialog box files are ASCII text descriptions of the
layout of the dialog box. A dialog box is defined as a nested set of rectangles displayed for the
purpose of user input.

Many types of input can be performed using a dialog box. Text, numbers, and easy selections
make up the majority of dialog box input. Each of these (and other) input types has different

174 CHAPTER 11: Introducing Dialog Boxes

attributes suited to the application of the item. Attributes give the dialog box character because
they are used to define labels and sizes. The order in which something appears in the dialog box
definition file is where it will appear in the dialog box.

All dialog boxes are referenced using a case-sensitive name. The components inside dialog
boxes, called tiles, are also referenced using a case-sensitive name called a key. After the dialog box
is displayed on the screen, Visual LISP modules that interface with dialog boxes do so through the
keys.

Dialog boxes come to life using the various subrs in the callback functions that manipulate
tiles. You can turn tiles on and off using the MODE_TILE and reset the value at any time using
SET_TILE. During run time, values stored in the DCL can be retrieved using GET_ATTR and the cur-
rent value of a tile using GET_TILE.

This chapter introduced just a few aspects of dialog boxes. You are strongly encouraged to seek
out more examples and to learn how the various tiles and attributes can work for you. Visual
LISP’s online help system contains a comprehensive list of all aspects of tiles and dialog boxes.

175

CHAPTER 12

Working with AutoCAD
Drawings

AutoCAD drawings contain entities that you can manipulate using Visual LISP. Due to the legacy
of Visual LISP, you can access these entity objects using two different strategies. These strategies
differ based on how you address drawing objects such as lines and arcs. The older but still effective
approach uses entity data types first introduced in AutoLISP. The newer approach uses the same
object-oriented programming techniques as Visual BASIC and Visual C++ when interfacing with
AutoCAD. You can use these approaches separately or can combine them in your programs.

This chapter introduces the Visual LISP subrs for entity manipulations. The subrs require either
an entity name or an entity object ID that points to an entity in the drawing. The name or ID is
obtained directly from the drawing, so the first topic in the chapter is how data is stored in a draw-
ing.

Entities, Selections, and Tables

You can access objects in a drawing database from three levels: entities, selections, and tables.
Entity access involves entity names or object IDs obtained from the drawing as the result of a user
selection on the screen, a sequential read of the drawing file, or a pointer stored in a selection or
table entry.

A table is a collection of similar or related data. In the case of an AutoCAD drawing, a table is
used to store layer specifics, line type details, and viewport data. Tables are used also to store block
names, and block definitions are tables of entity objects. In Chapter 13, you explore several
table-accessing subrs provided in Visual LISP. For now, it is important to understand that tables
are used to store similar data in a drawing and that entity objects are stored in tables. A table of
entities exists for the model space, for each layout space, and for each block defined in the draw-
ing.

A selection is a picked or selected collection of entity objects. Selections are used frequently
when working with a group of entity objects or interfacing with AutoCAD commands that contain

176 CHAPTER 12: Working with AutoCAD Drawings

the Select objects prompt, such as ERASE, COPY, and MOVE. In Chapter 13, you learn more
about the special subrs for handling selections. I mention them here because selection sets are a
source of entity names.

Selections and tables are the source of most of the entity names you will be using in your pro-
grams. User input and external databases may provide additional sources. When you use entity
names stored in an external database, you use a form of the entity name called the entity handle.

Entity names, object IDs, entity handles, and more may seem overwhelming at first. But the
concept is well structured, and after you see how it works, you will rarely get lost in the hierarchy.

Defining Entities in AutoCAD

The AutoCAD database contains variable-length table entries for entity objects. Each table entry
contains an entity-type code defining what the entity object is and what data is expected from the
entity itself. From the Visual LISP perspective, entity-type codes are descriptive strings, such as
LINE or ARC. Database manipulations are handled inside AutoCAD, shielding Visual LISP pro-
grammers from the details.

When written to a file, a drawing database contains tables of entity objects. The table entries
vary in length depending on what you store in them. Each contains coded links to relevant tables
elsewhere in the database, such as the layer table and the styles table. Each table entry also con-
tains additional data based on the type of entity. For example, a LINE entity has a from-point and
a to-point, whereas an ARC entity has a center point, a radius, a start angle, and an end angle. The
parameters in the file are converted to entity objects when you load the drawing into the editor.
Basically, they become the properties of the entity objects and are used to calculate additional
properties as needed by AutoCAD or your programs.

To access an entity object using Visual LISP, you must first load the drawing. Loading a draw-
ing into the editor creates a table of entity names and object IDs. The table values point to the var-
ious entity details as stored on the disk or in memory. Each time you load a drawing, a new entity
name or object ID sequence is assigned to the entities. As a result, there is a third member of the
entity-object ID table called the entity handle. Entity handles are unique for each entity in a draw-
ing and remain unique (and unchanged) in the drawing over time. External databases use entity
handles to reference specific entity objects in the drawing database. When a drawing is opened in
the drawing editor, a table is created that contains the entity handle, an entity name just created
but assigned to a specific entity, and an object ID also assigned to the specific handle.

Given an entity name, you can now open and access details of the entity. You can retrieve what
is known as an entity data list, which contains the basic parameters of the entity in an
easy-to-access format for your programs. It does not contain the extra methods and properties
associated with a given entity object. In other words, an entity data list does not allow you to take
advantage of the object-oriented-programming features in Visual LISP, but it does permit access to
the raw data for an entity object.

You can use an entity name also to get an object ID. Given an object ID, you can access the var-
ious properties and methods associated with the object. When you convert an entity name to an
object ID, you are opening the object for access by your functions. If that same object is changed
elsewhere, your program must retrieve the latest data. This is where accessing the object ID differs

Accessing Entities 177

most from accessing the entity data list. Object access through the object ID always retrieves the
latest data. On the other hand, an entity data list is created at the time you access the entity, and
subsequent changes to the entity do not automatically change the contents of the entity data list.
For most applications, this is not a critical situation.

The other difference between programming based on object IDs versus entity data lists is that
the object methods and properties available to your program greatly exceed the basic raw parame-
ter data found in the entity data list. As a result, most new applications for Visual LISP utilize
object IDs.

Accessing Entities

Most Visual LISP subrs for handling entities start with the ENT characters. For example, the
ENTLAST subr returns the entity name of the last object added to the drawing database. ENTLAST is
frequently used to get the entity name of an entity just created using the COMMAND subr.

To obtain the first element in the drawing database, you use the ENTNEXT subr. When evaluated
without parameters, ENTNEXT returns the first entity name in the active drawing. When evaluated
with a single entity name parameter, ENTNEXT returns the next object in the database.

For example, Listing 12.1 shows a template for a function that reads every entity object in an
AutoCAD drawing. The ENTNEXT subr is used twice: before the WHILE loop when it gets the first
drawing entry and again at the end of the WHILE loop when the next entity is retrieved. ENTNEXT
returns an entity name for the next entity object in the drawing or NIL when the last entity is
encountered.

Given an entity-handle string, the HANDENT subr returns an entity name that can be used to
retrieve the specifics for the entity object. Handles are created at the same time that entities are cre-
ated. They are strings that are unique in a given drawing. That is, no handle is repeated in a draw-
ing, even if the entity object that was originally given the handle is erased. This makes handles well
suited to point to entities in a drawing from an external database. Handles are obtained from
entity data lists or as an object property after an entity object has been created.

To retrieve an entity data list, you use the ENTGET subr. Given an entity name, ENTGET returns a
data list containing all the parameters for the entity. Entity data lists have a specific structure that
makes accessing the parameters simple, although the structure may appear cryptic to someone just

Listing 12.1 Reading entities in a drawing.

(DEFUN READ_DRAWING (/ EN)

 (SETQ EN (ENTNEXT)) ;get first drawing database entry

 (WHILE EN ;loop while EN has binding

 ; process entity name EN

 (SETQ EN (ENTNEXT EN)) ;get the next database entry

) ;end WHILE loop

)

178 CHAPTER 12: Working with AutoCAD Drawings

learning LISP. Entity data lists are stored as nested association lists, in which the first member of
each sublist is an integer code number.

Entity Data Lists

As mentioned, ENTGET returns an entity data list, which contains the basic parameters of the indi-
vidual entity object. To retrieve these items, you pull them out of the association list using a
list-accessing subr called ASSOC. Entity lists are always association lists that use an integer key code
as the first member of the sublists. To get a value from the list, you need to know the code number
value for use with ASSOC.

The code numbers are the same as those found in the DXF (Drawing Exchange Format) file gen-
erated by AutoCAD. DXF files predate Visual LISP and even AutoLISP. When entity access was
introduced in AutoLISP, it was a logical choice because the use of integers saved memory space in
the computer and the coding system was well documented. Today, we have objects and little con-
cern about memory restrictions, but the integer code system survives because of its succinct ele-

gance.

Table 12.1 Common group codes.

Group code Meaning

–1 Entity name

0 Entity type string

1, 2 Text strings, such as block names and dimensions

5 Entity handle string

6 Line type name string

7 Text style name

8 Layer name string

10 Primary point list

11 to 15 Additional point lists

38 Elevation

39 Thickness

40 to 48 Floating-point scalars such as text height and circle radius

50 to 58 Floating-point angular values, such as the start and end angle of an arc or the rota-
tion of a block insert

62 Color code

67 Paper or model space indicator

70 to 78 Integer values for flags and counters

210 Entity coordinate system vector

Entity Data Lists 179

The online DXF Reference Help library provides an easy way to learn about the DXF codes used
in entity data lists. The code numbers are called group codes because they signify the beginning of
a new grouping of data. Group codes are consistent from one entity object to the next. For exam-
ple, the group codes 0, 8, and 10 signify the entity type, layer name, and primary point, respec-
tively. To find out what type of entity is in the entity list, test the value associated with the 0 group
code. Table 12.1 lists the group codes you will most likely encounter when working with entity
data lists.

An example might make the entity list concept clearer. Listing 12.2 contains a command
sequence with AutoCAD, with the operator’s input in boldface. The entity data list has been
spread out in the listing for readability; it appears as a single list sequence in AutoCAD when you
duplicate the command sequence.

All the details about the line-entity object just created are contained in the entity data list.
Group code –1 is the entity name, 0 is the entity type, 10 is the starting point, 11 is the ending
point, and so forth. (Refer to Table 12.1 and the online help to learn the details about the various
group codes shown.) You might want to try the same thing with other entities in AutoCAD to
learn how they are stored in the database.

Listing 12.2 Generating an entity list.

Command: LINE

Specify first point: 1,1

Specify next point or [Undo]: 2,5

Specify next point or [Undo]:

Command: (entget (entlast))

((-1 . <Entity name: 4005fd58>)

 (0 . "LINE")

 (330 . <Entity name: 4005fcf8>)

 (5 . "2B")

 (100 . "AcDbEntity")

 (67 . 0)

 (410 . "Model")

 (8 . "0")

 (100 . "AcDbLine")

 (10 1.0 1.0 0.0)

 (11 2.0 5.0 0.0)

 (210 0.0 0.0 1.0))

180 CHAPTER 12: Working with AutoCAD Drawings

Normally, you use ENTGET with a SETQ expression so that the entity data list is preserved for
access in your program. After all, the entity data list exists mainly so that you can retrieve data
from the AutoCAD database directly.

In Listing 12.2, note that the association list contains nested lists that are dotted pairs when
they contain only two elements. The reason for this is twofold. First, the use of a dotted pair con-
serves memory space, which was a great concern in the earlier days of AutoLISP and that legacy
has carried forward. Second, this allows programmers to use CDR to retrieve data associated with
the sublist extracted through ASSOC. Thus, the (CDR (ASSOC)) expression is seen frequently in
code that involves entity data lists. For example, the (CDR (ASSOC 0 EL)) expression returns the
entity-type string from an entity list referenced by the EL symbol.

Entity lists can be modified and sent back to the AutoCAD drawing database. If the entity list is
still valid and the base parameters have changed, the list is changed in the drawing. The ENTMOD
subr takes an entity list as its sole argument and attempts to apply the modifications to the draw-
ing database. To change an entity list and keep it valid, you use the list substitute subr, SUBST. By
just substituting the elements you want to change, you can keep the list structure intact and not
worry about rebuilding it from the individual pieces. Listing 12.3 contains an example function
demonstrating this basic sequence of operations. In this listing, all data elements not found on
layer 0 are changed to layer 0. The layer group code is 8. Note how the CONS expression is used to
build the (8 . "0") dotted pair list inside the substitution expression. You could also use the
quoted list, as in '(8 . "0"), for the same result.

Listing 12.3 is a nested programming example as well. The ENTMOD expression uses the modi-
fied entity data list returned from the SUBST expression. SUBST is substituting the result of the
CONS expression with the value found using the ASSOC expression in the entity list. This happens in
an IF expression that tests to see whether the layer name is not equal to 0.

ENTMOD is used to update an entity’s internal storage. It updates the display of the object only if
the entity is not part of a complex object such as a polyline. Thus, your program can update the
various parts of a complex polyline and then update the display when all the changes have been

Listing 12.3 Converting entities to layer 0.

(DEFUN LAYER0 (/ EN EL)

 (SETQ EN (ENTNEXT)) ;get first entity in drawing

 (WHILE EN

 (SETQ EL (ENTGET EN))

 (IF (/= (CDR (ASSOC 8 EL)) "0") ;not on layer zero

 (ENTMOD

 (SUBST (CONS 8 "0") (ASSOC 8 EL) EL)))

 (SETQ EN (ENTNEXT EN))

)

)

Entity Objects 181

completed. When you are ready to regenerate the display for an entity, use the ENTUPD subr with
an entity name from the collection of entities that make up the complex object.

You use ENTUPD when you are changing complex, three-dimensional polyline objects or when
updating attributes attached to a block insertion. Other entity objects in AutoCAD require only a
single object definition and are updated in both the drawing database and the display with ENTMOD
alone.

The ENTMAKE subr creates a new instance of an entity object. Given the majority of an entity
data list, ENTMAKE attempts to create the entity described. When successful, a completed entity
data list is returned. Should ENTMAKE fail, the result is NIL. Entity data lists are specific, and some-
times ENTMAKE needs more information than you think it needs. As a result, many programmers
avoid using ENTMAKE and prefer to stick with COMMAND. The main advantages to using ENTMAKE are
speed and control. ENTMAKE processes entities faster that COMMAND. In addition, ENTMAKE lets you
know whether there was a problem, whereas COMMAND does not.

The easiest way I’ve found to use ENTMAKE is to copy the data list directly from AutoCAD. The
process is somewhat backhanded, but it saves time. First, create a sample entity in an empty draw-
ing using the normal AutoCAD operator commands. Then get the entity data list from the object,
as in Listing 12.2. Using the Edit feature of the AutoCAD text window (press F2 to display the text
window), copy that text to the Clipboard. Then paste the text in the VLIDE text editor window.
Remove the parts you do not want (such as the entity name) and place a single quote at the begin-
ning — and you have a template ENTMAKE entity data list ready to use.

Entity data lists provide the parameters that drive entity objects in AutoCAD, and you can
write robust applications that involve these data elements. If you find entity lists confusing and
bulky, however, you can use an alternative: entity objects.

Entity Objects

Starting in AutoCAD Release 13, Autodesk began converting all the entities in the drawing data-
base to objects. By AutoCAD 2000, the entire system was object-oriented, which enabled a greatly
expanded set of programming interfaces. Visual BASIC, Visual C++, and other languages could tie
into the AutoCAD 2000 system through the ActiveX Automation tool kit.

ActiveX Automation is a program-to-program communications protocol defined by Microsoft
that allows one program to serve as a host to another program and share internal components.
These components are called objects and contain both properties (data) and methods (functions).
Because Visual LISP can make use of ActiveX Automation, it can use the same automation tools.

Objects are defined in computer programming as containers of properties and methods. In
Visual LISP, objects are typically represented as functions. All ActiveX Automation subrs are not
initially loaded in Visual LISP. To make them available, your application must make a specific
request using the VL-LOAD-COM subr. (Any additional calls to the subr return immediately.) After
VL-LOAD-COM loads the additional utility routines, you can begin to take advantage of the VLAX
(Visual LISP ActiveX) library of functions in Visual LISP.

A typical VLAX function includes an object reference of some type. You create an object refer-
ence from an entity name by using the VLAX-ENAME->VLA-OBJECT subr. For example, Listing 12.4

182 CHAPTER 12: Working with AutoCAD Drawings

is a pair of utility functions that convert entity names and VLAX object references after testing to
see whether the data type is proper.

You can use the VLAX-GET-PROPERTY, VLAX-PUT-PROPERTY, and VLAX-INVOKE-METHOD subrs
to access the properties and methods associated with all ActiveX Automation objects, both outside
and inside AutoCAD. But for objects inside AutoCAD, there is a good chance that a VLAX routine
already exists. For example, consider a circle that has been opened as an object. You can use the
VLA-GET-RADIUS subr instead of VLAX-GET-PROPERTY with RADIUS as an argument. The same is
true for most methods in Visual LISP. In fact, Visual LISP has hundreds of VLAX functions. The
best way to learn about them is to simply try them out as you encounter the requirement in an
application.

When you look up objects in the help system, you are presented with Visual Basic terminology
and examples. Simply use the name preceded by VLA-GET or VLA-PUT, depending on whether you
are retrieving or storing the property. When working with the VLIDE, the entry changes color as
you complete the typing of the property name. For example, if you type VLA-GET-RADIUS in the
Console window, the entry changes color as you type VLA-GET and again as you complete the
entire subr name. (If the text did not change color, VLIDE did not recognize the subr, which means
you need to run VL-LOAD-COM.)

You might also want to use the reserved-word searching feature of the VLIDE. Type VLA-GET
and a hyphen followed by the first one or two characters of the property name. To have the VLIDE
assist in filling out the name, perform the name search. (After typing the first several characters of
the subr you want, press Ctrl+Shift+spacebar. The Apropos window is displayed with matching
names that you can then select.)

You can also test to see whether a property is available in your program. This may be useful
when performing a task in which you cannot be certain about the type of entity. The

Listing 12.4 Converting object references.

(DEFUN ENAME-OBJ (EN)

 (Vl-LOAD-COM)

 (IF (= (TYPE EN) 'ename)

 (VLAX-ENAME->VLA-OBJECT EN)

)

)

(DEFUN OBJ-ENAME (OBJ)

 (VL-LOAD-COM)

 (IF (= (TYPE OBJ) 'VLA-OBJECT)

 (VLAX-VLA-OBJECT->ENAME OBJ)

)

)

Entity Objects 183

VLAX-PROPERTY-AVAILABLE-P subr returns NIL if the property name does not exist for a given
object ID reference. A True result is returned if the property is available.

Object methods are equally simple to use, after you understand how to translate the Basic-ori-
ented online help to Visual LISP. To use VLAX-INVOKE-METHOD, you supply the object ID reference
and the name of the method, followed by any arguments that the method is expecting. And like
properties, most common methods already have many subrs defined. Add the characters VLA to the
front of the method name and provide the parameters as required, as in VLA-ADDCIRCLE or
VLA-COPY.

Remember that when your program is communicating with the ActiveX Automation side of
AutoCAD, you are communicating between two different programming environments. This differ-
ence is most visible when sending nonstandard data types such as point lists. ActiveX Automation
understands real (floating-point) numbers, integers, and so on, but it does not understand the list
type of data used in LISP. Consequently, you must convert the data from the list storage scheme to
variants and arrays that can be recognized by the ActiveX interface.

The VLA functions that convert data from one type to another are shown in Table 12.2. Two
data types in the ActiveX interface are different than in Visual LISP: the safe array and the variant.
A safe array is like a list but it is a fixed size and contains only a single data type. A variant is a
general-purpose storage container for holding data and can be made up of numbers, strings, point-
ers, safe arrays, and so on.

In most cases, you will be using the conversion utilities only before and after you send data to
one of the many subrs that utilize these data types. The simplest course to follow is to create a
library of utility routines that solve the conversion and call problem, thereby shielding your pri-
mary application flow from excess code. The utility routines also improve the readability of your
program by providing you with the ability to create names that best fit the application. For exam-
ple, instead of having a utility routine named INSERT-BLOCK, you could use something meaningful
such as PLACE-CLAMP or ADD-WINDOW.

Table 12.2 VLA conversions.

Function Description

VLAX-3D-POINT Converts a list of numbers into a variant, safe array data
type

VLAX-ENAME->VLA-OBJECT Converts an entity name into an ActiveX object reference

VLAX-MAKE-SAFEARRAY Creates a fixed array to be passed to an ActiveX method

VLAX-MAKE-VARIANT Creates a variant data type to be passed to an ActiveX
method

VLAX-SAFEARRAY->LIST Converts a safe array to a list of data

VLAX-VARIANT-TYPE Gets the type code number of a variant variable

VLAX-VARIANT-VALUE Gets the value of a variant and places it in a LISP symbol
reference

VLAX-VLA-OBJECT->ENAME Converts the object reference to an entity name

184 CHAPTER 12: Working with AutoCAD Drawings

So why go through all the troubles of converting entity information into object references? If
you have not had the opportunity to explore the object library provided with AutoCAD’s ActiveX
Automation interface, you will be surprised and pleased to see all that is available to you. Powerful
methods such as IntersectWith and valuable properties such as the area or length of an object
are already calculated and available for your use.

Most of the improvements for programming AutoCAD, such as the Mechanical Desktop and
Architectural Desktop tools, involve objects. Although VLA shortcut names may not be available
for these objects, everything that is exposed can be accessed using the more generic
VLAX-GET-PROPERTY and VLAX-INVOKE-METHOD subrs.

Examples: Accessing and Manipulating Entities

The two functions in this section are examples of accessing and manipulating entities. Both accom-
plish the same thing but use a different style. The first function uses an entity data list, and the sec-
ond uses object references. The functions loop through the entire drawing model space and
retrieve each entity. The text entities are tested to see whether the string contains a match to an
input string (case specific). If a match is found, the object’s color is changed to mark the text.

At the end of the examples, you can decide which you prefer and which you find less cryptic.
Both examples represent the basic structure for navigating through an entire drawing and perform-
ing an edit or testing operation on a global basis.

Listing 12.5 contains the version of our text test and color mark function that uses entity
names and entity lists. The function starts by having the operator enter the text string to be
located. If the text entry in the TXT symbol is not an empty string, the operator is asked to supply a
color code number. This number is used for entities that have text that matches TXT, the input
string. A default value of 2 is presented with GETINT for the input. If CLR is NIL, nothing was
input, indicating that the value 2 should be used.

Group code 62 signifies the color code in an entity data list. Using CONS to stick 62 to the front
of the CLR color number builds a dotted pair that can be used in the entity data list. TXT is then
updated for wildcard matching by adding asterisks on either side.

You are now ready to begin looping through the database, starting with the ENTNEXT subr
(with no parameters). A WHILE loop iterates as long as EN has a value indicating that another
object has been found in the drawing database.

Inside the WHILE loop, you start by using ENTGET to obtain the entity data list, which you then
place in the EL symbol. EL now points to an entity data list, and you can test that to see the type of
data you have just retrieved. Group code 0 holds the type of entity, and group code 1 holds the text
data itself. After testing to see whether the entity data list contains a text entity and whether the
text string matches the search string, the program moves on by using ENTNEXT again to get the
next object in the database. ENTNEXT returns NIL when it is has exhausted the database.

Take a look at the ENTMOD expression in the middle of the code. This expression expects a mod-
ified entity list. I point out this expression because it shows how to add a new member to the entity
data list if one does not already exist. The color code entry is optional, so it may not appear in an
entity data list. This function tests to see whether it does by using the ASSOC subr. If ASSOC finds
something with a 62 group code, the color code already exists. In that case, SUBST substitutes the

Examples: Accessing and Manipulating Entities 185

CLR value with the current group code 62 data. If ASSOC finds nothing, the CLR value is appended
to the list after being nested another level deeper in the list so that the APPEND list is proper.

The frequent use of CDR and ASSOC in the code makes the entity name and data list version of
this example look complex and forbidding for the beginning Visual LISP programmer. The good
news is that the template remains the same for most similar programs — all you change are the
group code numbers. And those values can be obtained from the online help references provided in
the VLIDE.

The next listing is similar, but you process objects instead of entities one at a time. Listing 12.6
contains the C:OTF (object text find) function. It starts in the same basic way as Listing 12.5, by
asking for the text to locate and the color number to assign to that text. The similarities stop when
the VL-LOAD-COM expression is evaluated.

Listing 12.5 Locating text in a drawing.

(DEFUN C:TEXTFIND (/ TXT CLR EN EL)

 (SETQ TXT (GETSTRING 'T "\nText to locate: "))

 (IF (/= TXT "")

 (PROGN

 (SETQ CLR (GETINT "\nColor code <2>: "))

 (IF (NULL CLR) (SETQ CLR 2))

 (SETQ CLR (CONS 62 CLR)

 TXT (STRCAT "*" TXT "*")

 EN (ENTNEXT)

)

 (WHILE EN

 (SETQ EL (ENTGET EN))

 (IF (AND (= (CDR (ASSOC 0 EL)) "TEXT")

 (WCMATCH (CDR (ASSOC 1 EL)) TXT))

 (ENTMOD

 (IF (ASSOC 62 EL)

 (SUBST CLR (ASSOC 62 EL) EL)

 (APPEND EL (LIST CLR)))))

 (SETQ EN (ENTNEXT EN))

) ;End While EN

)) ;End IF PROGN

 (PRINC)

)

186 CHAPTER 12: Working with AutoCAD Drawings

The next expression, VLAX-MAP-COLLECTION, is a looping expression that works very much
like the MAPCAR subr. That is, it allows you to process a collection of data, such as all the entities in
model space. Each entity is processed one at a time. The function in Listing 12.6 gets the entities in
model space from the current document in the current AutoCAD application session. Each entity

Listing 12.6 Changing text, object version.

(DEFUN C:OTF (/ TXT CLR)

 (SETQ TXT (GETSTRING 1 "\nText to locate: "))

 (IF (/= TXT "")

 (PROGN

 (SETQ CLR (GETINT "\nColor to change to <2>: "))

 (IF (NULL CLR) (SETQ CLR 2))

 (SETQ TXT (STRCAT "*" TXT "*"))

 (VL-LOAD-COM)

 (VLAX-MAP-COLLECTION

 (VLA-GET-MODELSPACE

 (VLAX-GET-ACTIVEDOCUMENT

 (VLAX-GET-ACAD-OBJECT)))

 'OTF-TEXT)

)) ;end IF progn

 (PRINC)

)

;

(DEFUN OTF-TEXT (OBJREF)

 (IF (VLAX-PROPERTY-AVAILABLE-P

 OBJREF 'Textstring T)

 (IF

 (WCMATCH

 (VLA-GET-TEXTSTRING OBJREF)

 TXT)

 (VLA-PUT-COLOR OBJREF CLR)

) ;end IF wcmatch

) ;end IF property

)

Summary 187

is in turn passed as a parameter to the OTF-TEXT function, which is also shown in Listing 12.6.
This function simply tests the object reference to see whether the property named TEXTSTRING
exists for the object. If so, the text string is compared to the input test string; if there is a match,
the color is set for the object.

For the most part, the object-oriented version is a lot easier to describe, although the VLAX and
deeper hierarchy tracings make it more difficult to digest at first. You may find it easier to work
with object-oriented concepts after you get accustomed to testing only whether something is avail-
able. Some day, Autodesk might improve Visual LISP by exposing the function or property you
were missing. If you program the object-oriented interfaces properly, the code you write should
run for many future releases of AutoCAD (unless they make drastic changes).

Summary

Entity manipulation is an important aspect of AutoCAD productivity programming. This intro-
duction scratched the surface of object-based programming and showed the basics behind both
that style and processing based on entity data lists. Visual LISP has a long legacy, so you will prob-
ably encounter examples that use entity data lists and names. Therefore, having a firm grasp on
how they work is important. Newer code most likely takes advantage of the more recent
object-oriented style of programming because it provides a more elegant way to express problems
to the computer.

Execution speed is rarely an issue these days because the speed and capacity of desktop
machines far exceed the requirements of this style of programming. The only real difference in
speed is when you use the VL-LOAD-COM expression, because the computer slows down for a few
moments while it loads the support modules. And that happens only once — future calls to
VL-LOAD-COM do not require any processing time.

You also looked at how entity names and object IDs are related to the drawing system. The
entity handle was presented as a solution for external file interfaces because an entity retains that
value when saved and reloaded in a later editing session. Handles are strings and must be con-
verted to entity names and then object IDs before they can be used in additional subrs.

In the next chapter, you look at selection sets, which are groups of entity objects. The entity
processing methods introduced here work also with the entity name values obtained from selection
sets.

188 CHAPTER 12: Working with AutoCAD Drawings

189

CHAPTER 13

Using Selection Sets and
Tables

In this chapter, you explore groups of entities or related information. There are basically two kinds
of data in this regard: data that you want to use temporarily and discard when finished, and data
that must stay so that it can be referenced from other locations in the drawing database. A selec-
tion set is a temporary grouping of entity objects. A block, which is defined in the block table, is a
more permanent grouping of entity objects.

Using Selection Sets

A selection set is a specific data type in Visual LISP known as a PICKSET. AutoCAD operators use
selection sets all the time in commands such as MOVE, COPY, and ROTATE. Whenever AutoCAD
prompts to Select objects, you are building a selection set.

You can create a selection-set object in Visual LISP in several ways. You can use the SSADD subr
by itself and create an empty selection set. For example, the (SETQ SS1 (SSADD)) expression cre-
ates a new, empty selection set referenced by the SS1 symbol. You can use SSADD also to add enti-
ties one at a time to a selection set by providing the entity name values as parameters along with
the existing selection-set reference.

Listing 13.1 is a simple function that builds a selection set by reading through a drawing look-
ing for specific entities. (Note that this task can be performed using a better approach; this listing is
provided only as a simple example.)

The first step is to create a new selection set by calling SSADD with no parameters. In the WHILE
loop that reads through the drawing, SSADD is used again but this time with the entity name and
the selection-set reference.

The result returned from SSADD is the selection set, and thus the second occurrence could have
been used in a SETQ but that would have been redundant. SSADD and the other selection-set edit
tools are unique in Visual LISP in that they pass the reference, not the value. Therefore, changes
made to the reference are global. If both SS1 and SS2 point to the same selection set and a new

190 CHAPTER 13: Using Selection Sets and Tables

entity is added using the reference for SS1, accessing SS2 would also reflect the change. This is
unusual for LISP programmers, but the situation exists because of the special nature of selection
sets. Selection sets are AutoCAD objects, and Visual LISP is merely referencing a gateway to them.
When the contents of the selection set are altered at the AutoCAD level, all accesses through the
gateway show the same contents.

Another way to create a selection set is to use the SSGET subr. With no parameters, SSGET
prompts the user to Select objects. The operator is then free to select as many or as few objects
as desired using any valid object-selection mechanism in AutoCAD. SSGET returns a new selection
set every time unless there was a problem or the operator selected nothing.

SSGET has many options, such as filters for controlling what objects the operator selects. You
can also run SSGET in automatic mode, in which object selection is made using a wide range of
parameters supplied by your program. I only touch on a few of the aspects of SSGET in the exam-
ples and in this chapter. I strongly recommend that you refer to the online help to learn more about
this powerful tool.

Accessing a selection set

In addition to adding an entity object to a selection set, you need be able to retrieve entities,
remove them, and test them to see whether they are already included in the set. The SSNAME subr
extracts entity names given the offset as an integer. The SSDEL subr removes an entity object from
a selection set. SSMEMB determines whether a given entity object is already part of an existing set.
The syntax for SSMEMB and SSDEL resembles the SSADD subr. The entity name is supplied before
the selection set in the parameter list. For example, if you have an entity name in the EN symbol

Listing 13.1 Searching for circles.

(DEFUN LOOK_FOR_CIRCLES ()

 (SETQ SS1 (SSADD) ;emtpy selection start

 EN (ENTNEXT) ;first entity

)

 (WHILE EN

 (SETQ EL (ENTGET EN))

 (IF (= (CDR (ASSOC 0 EL)) "CIRCLE")

 (SSADD EN SS1)

)

 (SETQ EN (ENTNEXT EN))

)

 (IF (> (SSLENGTH SS1) 0) SS1)

)

Using Selection Sets 191

and a selection set in the SS1 symbol, the (SSMEMB EN SS1) expression returns true (T) if the EN
entity is part of the selection set. If EN is not in SS1, the SSMEMB expression returns NIL.

The (SSDEL EN SS1) expression removes the EN entity from the SS1 selection set. Note that
SSDEL removes the entity from the selection set, not from the drawing. Also, if the entity was high-
lighted at some point in the editing process, it is not regenerated. Highlighting and regeneration
are specific tasks performed by the AutoCAD editor under your guidance.

SSNAME retrieves entities from a selection set one at a time using an integer offset into the set.
The offset starts at 0 and increments by 1 for each object. The second element in the selection set is
at offset 1, the third element is at offset 2, and so on until the last element in the list, which is at an
offset determined by subtracting 1 from the total number of items in the selection set. Thus, to use
the SSNAME subr effectively, you need to know how many elements are in a given selection set.
That information is obtained from SSLENGTH, which returns an integer count of the total number
of entity objects in a set. Subtracting 1 from the result of SSLENGTH gives you the offset of the last
element in the set for the purpose of SSNAME.

Listing 13.2 shows the SSLENGTH, SSNAME, SSMEMB, and SSDEL subrs in use. This function fil-
ters entity objects out of an existing selection set. When the routine is finished, only entity-object
types identified in the KEEPTHESE list remain in the selection set. For example, to clean the SS1
selection set of everything but lines, arcs, and circles, you might call the function as follows:

(SS_CLEAN SS1 ("LINE" "ARC" "CIRCLE"))

The function starts by getting the length of the selection set and storing it in CNT1. The
KEEPTHESE parameter is tested to see whether it is a list. If not, it is converted to one. You are now
ready to process the contents of the selection set. You already know the total number of members,
and the total number to be processed will not change during the operation of this function, even

Listing 13.2 Filtering entity objects from a selection set.

(DEFUN SS_CLEAN (SS1 KEEPTHESE / CNT1 EL)

 (SETQ CNT1 (SSLENGTH SS1))

 (IF (NOT (LISTP KEEPTHESE))

 (SETQ KEEPTHESE (LIST KEEPTHESE)))

 (REPEAT CNT1

 (SETQ EL

 (ENTGET

 (SSNAME SS1

 (SETQ CNT1 (1- CNT1)))))

 (IF (NOT (MEMBER (CDR (ASSOC 0 EL)) KEEPTHESE))

 (SSDEL (SSNAME SS1 CNT1) SS1)))

 (IF (> (SSLENGTH SS1) 0) SS1)

)

192 CHAPTER 13: Using Selection Sets and Tables

though you may change the total number of entity objects in the selection set. As a result, the
REPEAT loop is perfect for your needs.

When processing a selection set with an operation that will result in the removal of entities
from the set, you should always start at the end of the set and work towards the front. Remember
that selection sets are global and that you use an offset into the set when processing. If you started
at the beginning and then removed an entity, the counter would skip the next entry, requiring addi-
tional logic to maintain the counter. However, if you start at the end and remove one, the next one
down is still there. It didn’t move; all the ones on top that are already processed moved instead.
The SS_CLEAN function in Listing 13.2 does just this. It starts at the end of the selection set and
works its way to the front.

In the REPEAT loop, the EL entity list is filled from the entity information stored at the location
indicated by CNT1 minus 1. To understand these expressions, go to the middle parentheses, where
CNT1 is decreased. CNT1 starts as the number of entity objects in the SS1 selection set. It is
decreased by 1 because it will now be an offset into the SS1 selection set. SSNAME retrieves the
entity name for ENTGET to use. ENTGET returns the entity data list to place in EL.

Given the entity list, the entity type (group code 0) is tested to see whether it is a member of the
KEEPTHESE list. If not, the entity object at position CNT1 is removed from the SS1 selection set.
This process is repeated for the entire selection set. At the end of the REPEAT loop, SS1 is returned
as a result of the function.

Listing 13.2 is just an example; there are much better ways to produce a purified selection set
using filters with SSGET. Next, you look at the power of SSGET.

Getting a selection set

The SSGET subr is a versatile tool. When used with any parameters, it displays the Select
objects: prompt and allows the operator to choose objects from the display in the same manner
as the COPY or MOVE command.

If the first parameter to SSGET is a filter list, the rules of the filter list are applied to the selection
process. This allows you to construct an input function that accepts only a particular entity type.
Listing 13.3, for example, allows for the input of only LINE objects. A filter looks just like a partial
entity data list. In this simple example, the function builds a filter list consisting of only the entry
for a LINE entity type.

Listing 13.3 Selecting only lines.

(DEFUN SEL_LINES (PRMPT / SS1 FLTR)

 (SETQ FLTR '((0 . "LINE")))

 (PROMPT PRMPT)

 (SSGET FLTR)

)

Using Selection Sets 193

Listing 13.3 also demonstrates a type of utility routine that can be created to make controlled
object selection easier. If your application calls the operator to select only certain types of objects,
this sort of utility function can greatly improve the readability of your program code.

When the function inListing 13.3 is evaluated, the PRMPT string is displayed followed by the
Select objects: command prompt. But instead of allowing operators to select anything, they
can select only lines. Anything else is rejected during the selection process.

You can use SSGET also to select objects in the drawing automatically, without operator con-
trol. If the first parameter to SSGET is a character string, the selection process is by parameter con-
trol only. Table 13.1 lists the most frequently used characters supported by SSGET.

The parameters that follow the character string depend on the character string used. In the case
of C or W, two point lists are needed to define the limits of the window. Use the online help system
to learn more about all the character-string options and parameters for SSGET.

The most powerful feature of the SSGET subr is the filter option. With filters, you can build
well-defined selection sets from a drawing. For example, suppose that you need to find all the cir-
cles on the POSTS layer that are 12 inches (drawing units) in diameter. The key to creating a filter
fitting these criteria is to construct a partial entity data list. For the type of entity and the layer, the
group codes are 0 and 8, respectively. The group code for the radius is 40. The filter list would
appear as follows:

((0 . "CIRCLE")(8 . "POSTS")(40 . 6.0))

This can be read as a logical AND sequence. For an object to be included in the selection process,
it must meet all these specifics. If any one of the specifics is not matched, the object is not added to
the selection set.

If you want to obtain all the circles on the POSTS layer that are 12 inches or greater in diameter,
the filter just described will not work because it returns only circles with an exact size match. You
need to add some logic to the filter for testing the parameters, and that is provided with the –4
group code. The –4 group code options are special parts of a filter intended to make the SSGET

Table 13.1 Common SSGET character-string options.

Character string Meaning

C Crossing

CP Crossing polygon

F Fence selection

I Implied selection

L Last entity

P Previous selection set

W Window

WP Window polygon

X Use filter

194 CHAPTER 13: Using Selection Sets and Tables

function more precise. Specifically, the –4 group code provides a mechanism for comparison test-
ing in the selection process. The following filter searches for all circles on the POSTS layer that are
8 inches or greater in diameter:

((0 . "CIRCLE")(8 . "POSTS")(–4 . ">=")(40 . 6.0))

Logic options in the –4 group code include all the basic numeric-relation tests, such as less
than, greater than, equal, and bit testing.

You can combine tests using Boolean combinations such as OR and AND with the –4 group code.
Suppose that you want to obtain all the circle objects as before, but this time within a range of 6 to
12 inches in diameter. The filter would be as follows:

((0 . "CIRCLE")(8 . "POSTS")(–4 . "<AND")(–4 . ">=")(40 . 3.0)(–4 . "<=")(40
. 6.0)(–4 . "AND>"))

The AND conjunction is used with two –4 tests of the radius settings.
To build complex filters, start by writing down the logic you want to apply to the search. For

example, you would start the circle search by saying that you want CIRCLE objects on the POSTS
layer. Those two are easy because you only need to add the group codes 0 and 8. The more difficult
part is the radius description. You want circles with a diameter of 6 inches to 12 inches, which
means you want a radius between 3 and 6. Expressed in logical terms, you seek circles with a
radius greater than or equal to 4 and less than or equal to 6. In pseudocode, you would write
(Radius >= 3.0) AND (Radius <= 6.0). Then, in typical LISP fashion, you move the AND to
the front, followed by the tests. Another AND appears at the end as well to balance the code and
allow for nesting of tests.

Filters are evaluated differently than LISP code itself. If the format is wrong, the entire expres-
sion is invalid. For easy testing and subsequent maintenance, I suggest that you isolate functions
involving filters. Filters are one of the more powerful tools in tasks related to automated editing,
data importing, and data exporting.

A simple filter that uses a combination test is shown in Listing 13.4, in which the operator is
asked to select arcs or circles. The example listing shows how the combination tests look using the
–4 group code. Another way to set up the filter shown in Listing 13.4 is to use a comma, as in the
following:

'((0 . "ARC,CIRCLE"))

This filter accomplishes the same thing but with fewer lines of code. It is nice to know that
Visual LISP often has more than one way to solve a problem.

To free selection-set memory when you are finished with it, set all references to NIL. This does
not automatically free the memory, but it does orphan the set. Orphaned sets are cleaned up when
the Visual LISP memory manager determines that it needs more memory for something. The oper-
ation of cleaning up memory, called garbage collection, is automatic. You can force a garbage col-
lection using the GC subr, but this practice is discouraged. Visual LISP cleans up after itself on a
regular basis and programs that invoke GC just slow things down.

Listing 13.5 demonstrates most of the selection-set subrs discussed in this chapter. This utility
routine merges two selection sets. The SS2 selection set is merged into the SS1 selection set, and
any objects not merged are retained in SS2. The routine operates the same as most selec-
tion-set-based functions. SSLENGTH gets the length of the merging selection set because that is the
one we need to operate on. A REPEAT loop is started to go through each member in SS2.

Using Selection Sets 195

Listing 13.4 Selecting with a filter.

(DEFUN SEL_ARCS-N-CIRCLES (PRMPT / SS1 FLTR)

 (SETQ FLTR

 '((-4 . "<OR")

 (0 . "ARC")

 (0 . "CIRCLE")

 (-4 . "OR>"))

)

 (PROMPT PRMPT)

 (SSGET FLTR)

)

Listing 13.5 Merging selection sets.

(DEFUN SS_MERGE (SS1 SS2 / CNT2)

 (SETQ CNT2 (SSLENGTH SS2))

 (REPEAT CNT2

 (IF (NOT

 (SSMEMB

 (SSNAME

 (SETQ CNT2 (1- CNT2))

 SS2)

 SS1))

 (PROGN

 (SSADD (SSNAME SS2 CNT2) SS1)

 (SSDEL (SSNAME SS2 CNT2) SS2)

)) ;end if progn

) ;end repeat

 (LIST SS1 SS2)

)

196 CHAPTER 13: Using Selection Sets and Tables

Inside the REPEAT loop, SSNAME extracts the entity name of a member of the selection set.
Because you are using an offset to access the list (base 0), 1 is subtracted from the counter. The
nesting of SETQ inside the SSNAME subr is a feature of Visual LISP, although some would argue that
it makes the code appear cryptic.

SSMEMB tests the entity name extracted with SSNAME against the SS1 selection set. If the entity
is not already a member of SS1, the SSADD subr adds the entity object to the SS1 selection set and
SSDEL removes it from the SS2 selection set.

The result of this function is a list containing the new SS1 and SS2 selection sets. As you can
see, selection-set manipulation is quite easy, which makes sense because it is such an important
aspect of Visual LISP programming.

The data in a selection set consists solely of entity names. You then use the entity name to
obtain the entity list, which contains the parameters of the entity. Some of the parameters, such as
the layer name, are just a name and do not contain any other information. For those details, such
as color and line type, you must turn to the tables in AutoCAD.

Using Tables

A table is a collection of similar items that are referenced more than once in the drawing. Layer
properties, line type descriptions, text styles, dimensions, and blocks are some of the tables in the
AutoCAD system. Table definitions exist for anything that has a one-to-many relationship. Chang-
ing the description of that one item will result in multiple graphics objects changing. If you change
the color of a layer, the objects on that layer change color because each object by default references
the table for that type of information. (You can set an object’s color code for an override value,
however, in which case the layer change would not change the object’s color.)

Like entity data lists, table data is manipulated using an association list structure. When you
access a table entry, it is formatted as an association list, with the primary data available by group
code. You retrieve these entries using the TBLSEARCH and TBLNEXT subrs. TBLSEARCH searches a
table for a given entry. The table name must be specified, such as “LAYER” or “BLOCK”, along with
a string containing the name of the entry, such as the layer name or block insert name. TBLSEARCH
returns NIL if it does not find a match or the association list of the entry if a match is found.

TBLNEXT steps through a table sequentially. The table name is the first parameter to the func-
tion. With an additional non-NIL parameter, TBLNEXT resets the sequential read of the table to the
beginning of the table. Subsequent TBLNEXT subr calls without the extra parameter (just the table
name) return each table entry one at a time in the order in which they were originally defined to
the drawing. Thus, (TBLNEXT "LAYER" T) returns the first table entry in the layer table.
(TBLNEXT "LAYER") returns the next entry in the table or has a value of NIL when the last table
entry has been processed.

TBLSEARCH and TBLNEXT access table entries. To update the data list back into the table, use
ENTMOD. To construct new entries, use ENTMAKE, although you must be precise, just as you are
when using ENTMAKE to create entities.

The contents of the AutoCAD drawing database tables can be found in the online help in the
DXF section for the tables. As in the entity data lists, group codes are associated with the names

Example: Finding Points in a Block Definition 197

and parameters that make up the table entry. For example, consider the layer table entries in Table
13.2. The layer table data list does not have nearly as many entries as a typical entity data list.

Example: Finding Points in a Block Definition

The block table is of particular importance in the creation of many applications. A block is a col-
lection of graphics that you can reuse in a drawing. In the drawing, a block is referenced as an
insert entity object. Insert entity objects contain insertion parameters, including the insert point,
layer, rotation angle, scaling factors, and name of the block. You use the block name to retrieve the
block definition from the block table. The block definition contains the graphics used to define the
block. Thus, if you need to locate a point inside a block, you must go through a series of references
to obtain the specific point.

Given a block name, you can use TBLSEARCH with the block table to find the table-record entry
for the block. The block-table record contains a –2 group code attached to an entity name. Use
ENTNEXT with this entity name to begin reading the entity names of the block-definition geometry.
When ENTNEXT returns NIL, you have reached the end of the definition for that block.

An example of accessing entities inside a block is provided in Listing 13.6 with the
DRILL_POINTS function. This function has one argument, the name of the block in which you
want to search. The search routine looks for circle entity objects inside the block definition and
returns a list containing the center point and radius of all circles found.

TBLSEARCH retrieves a block-table record containing the block name. If the search of the block
table is not successful, the value in EL is NIL and the function ends. Otherwise, EL references a data
list as returned from the table search activity, and in that data list is the –2 group code entry con-
taining the first entity name of the block definition. The EN symbol is set to the value of the –2
group code and is then used in a WHILE loop to iterate through the entire collection of entities for
the block. While EN has a value, the loop repeats.

Table 13.2 Entries for the layer table.

Group Code Contents

0 Constant string value of "LAYER"

2 String value of the layer name; must be unique

70 Layer generation flags as a bitmap, as follows:
Bit 1: Layer is currently frozen
Bit 2: Layer will be frozen in all new viewports
Bit 4: Layer is locked
Bit 16: Layer defined due to XREF binding
Bit 32: XREF binding resolved properly if bit 16 also set
Bit 64: Layer is in use by at least one entity in drawing

62 Color code number for the layer

6 Line type name associated with the layer; this name must appear in the line type
table before being referenced in a layer table entry

198 CHAPTER 13: Using Selection Sets and Tables

In the loop, ENTGET retrieves the entity details, and ENTNEXT positions EN to the next entity
object in the block definition. Note that the values of point lists in entity data lists are relative to
the base point of the block. This is important if you are using the points to define locations in the
drawing after the block has been inserted. I return to this in the next example.

Given the entity list in EL, the type of object is checked to see whether it is a circle. If it is, the
center point (group code 10) and radius (group code 40) are saved in a list. These two data ele-
ments are merged into a single list that is added to the PTS master list. The resulting PTS list has
the following structure:

(((point-n) radius-n) ... ((point-2) radius-2) ((point-1) radius-1))

The first point and radius pair is added at the end of the list due to the use of the CONS subr to
construct the data list. The WHILE loop then continues in this fashion until it encounters the last
entity object in the block definition.

Listing 13.6 Finding points inside a block.

(DEFUN DRILL_POINTS (BLKNAM / EN EL PTS)

 (SETQ EL (TBLSEARCH "BLOCK" BLKNAM))

 (IF EL

 (PROGN

 (SETQ EN (CDR (ASSOC -2 EL)))

 (WHILE EN

 (SETQ EL (ENTGET EN)

 EN (ENTNEXT EN))

 (IF (= (CDR (ASSOC 0 EL)) "CIRCLE")

 (SETQ PTS

 (CONS

 (LIST

 (CDR (ASSOC 10 EL)) ;center

 (CDR (ASSOC 40 EL)) ;radius

)

 PTS))))

 PTS

)) ;end IF PROGN

)

Example: Converting Block Points 199

Example: Converting Block Points

When working with blocks and points inside blocks, you need to convert the data points stored in
the block to the coordinates inside the drawing where the block is inserted. The utility program in
Listing 13.7 is one possible solution for solving two-dimensional point conversions. Given an
entity name of a block insert and a list of data points, the function applies the rotation, scaling,
and translation needed to convert the points to match the insert point of the block.

A point is a list of two or three real numbers. You can rotate a point about some other point
(normally the origin), scale the axes of the point, or move the point to a new relative position
through translation. Performing each operation is a matter of applying some basic math.

 The translation is the easiest. Just add the point ordinate values to the offset values. For exam-
ple, shift point (10 15 0) by (5 –5 0), and you have (15 10 0). This is the same as the following
expression:

(MAPCAR '+ '(10 15 0) '(5 –5 0))

Scaling is only a matter of multiplying the value by the scale factor before applying the transla-
tion or rotation.

Rotation causes the most confusion. If you want to rotate a coordinate about the origin and
you know the angle from the positive x-axis direction (measured counterclockwise), it is a simple
formula series. To compute the new X-ordinate value, you multiply the cosine of the rotation angle
by the scaled X-ordinate. Then you subtract the value resulting from the multiplication of the sine
of the rotation angle by the scaled Y-ordinate. The Y-ordinate is computed in much the same man-
ner. Multiply the sine of the rotation angle by the scaled X-ordinate and then add to that the result
of multiplying the cosine by the scaled Y-ordinate. These equations can be expressed mathemati-
cally as follows:

New_X = (Cosine(Rotation) * X-scale * Old_X) - (Sine(Rotation) * Y-scale *
Old_Y) + Insert_X

New_Y = (Sine(Rotation) * X-scale * Old_X) + (Cosine(Rotation) * Y-scale *
Old_Y) + Insert_Y

Listing 13.7 applies the preceding transformation to a list of points in PTS after obtaining the
parameters from the insert-block-entity object. EN is either an entity name or the entity data list of
a block insert; the first section of code checks the data type of EN. If EN is an entity name, ENTGET
retrieves the entity data list and places it in EL. If EN is a list, it is set to EL. Otherwise, EL does not
have a binding because it is a local symbol with respect to the function and thus has an initial
value of NIL.

The program tests the EL value to see whether it contains an entity data list. First it checks to
see whether the EL symbol evaluates to something other than NIL. Next it checks to see whether an
association group 0 is in the list. If the list is not an association list, this test fails and the AND
expression fails immediately. Finally, the association group 0 is tested to see whether it contains the
string “INSERT”, indicating a block-insert object. If all these tests pass, the function proceeds to
transform the coordinates.

With a valid insert-object-entity data list in EL, the parameters for the insert point (code 10),
rotation angle (code 50), and scaling factors (codes 41, 42, and 43) can be retrieved and placed in

200 CHAPTER 13: Using Selection Sets and Tables

Listing 13.7 Converting block-definition points to insert parameters.

 (DEFUN INS_TRANS (EN PTS / EL RT XS YS ZS IP COSRT SINRT)

 (COND

 ((= (TYPE EN) 'ENAME)

 (SETQ EL (ENTGET EN)))

 ((LISTP EN)

 (SETQ EL EN)))

 (IF (AND EL

 (ASSOC 0 EL)

 (= (CDR (ASSOC 0 EL)) "INSERT"))

 (SETQ IP (CDR (ASSOC 10 EL))

 RT (CDR (ASSOC 50 EL))

 XS (CDR (ASSOC 41 EL))

 YS (CDR (ASSOC 42 EL))

 ZS (CDR (ASSOC 43 EL))

 COSRT (COS RT)

 SINRT (SIN RT)

 PTS (MAPCAR

 '(LAMBDA (PT)

 (LIST

 (+ (CAR IP)

 (* (CAR PT) XS COSRT)

 (* (CADR PT) YS SINRT -1.0))

 (+ (CADR IP)

 (* (CAR PT) XS SINRT)

 (* (CADR PT) YS COSRT))

 0.0))

 PTS)

) ;end SETQ

) ;end IF

 PTS ;return modified data list

)

Summary 201

local symbols. To save a little time during the next operation of the program, the cosine and sine of
the rotation angle are also computed and saved in local symbols.

The next step is the transformation of all the data points. MAPCAR loops through each point and
then applies the code in the LAMBDA expression. LAMBDA receives each data point in PT and then
performs the calculations described previously. The result of each calculation set is returned as a
result of MAPCAR to the PTS variable, which is returned as the result of the function.

This function converts a series of data points from the block definition (as in Listing 13.6) to
points that relate to where a given instance of the block is inserted. You can use this to create you
own intelligent object snaps for specialized blocks.

Summary

Selection sets and tables are collections of related information. You use selection sets to group
entity objects for common manipulation. Tables, on the other hand, store information referenced
elsewhere in the drawing. Both are equally important when working with AutoCAD applications
that involve entities.

The operator or a program can create selection sets. When created by the operator, the SSGET
subr allows for any style of object selection, including individual entities or polygon borders. You
can also apply a filter to SSGET to force the operator to select only specific entity types. Filters are
a powerful tool in selection-set building because they permit applications to dig out specific data
from a drawing automatically or with an operator’s assistance. You can use filters also with
parameter-driven selection-set methods by using a coded character, followed by the parameters
needed to fulfill the command requirements and an optional filter.

The SSDEL, SSNAME, and SSADD subrs are used to manipulate selection sets. These subrs remove
from, retrieve from, and add to a selection set, respectively. Selection sets only store entity-object
names; you must use the ENTGET subr to get the data for each under program control.

Tables are a little easier to manage. You use the TBLSEARCH and TBLNEXT subrs to retrieve data
from them. You use the ENTMOD and ENTMAKE subrs to update a table’s contents from within a pro-
gram, just as you use them to manipulate entity-object data in the drawing database. Table entries,
like entity data lists, are group-code-based association lists that use dotted pairs for non-list data.
Generally, table data lists are much shorter because they contain only common information refer-
enced by name elsewhere in the database.

The last topic you explored was the block table and how it points to entity data objects that
define the block. A few utility functions were presented to show you how to utilize the tables; you
can expand these functions to suit your application requirements.

Selection-set and table manipulations are frequently required when programming advanced
AutoCAD applications. Sometimes, you will need to be creative when saving selection-set informa-
tion and other data related to your program. Blocks and expanded data dictionaries (Chapter 14)
offer two possible ways you can save data in a drawing for use in multiple edit sessions.

202 CHAPTER 13: Using Selection Sets and Tables

This Page Intentionally Left Blank

203

CHAPTER 14

Saving and Sharing Data

Your applications will probably require data that extends beyond the basic geometry available in
AutoCAD drawings. In addition, you will probably need to preserve some data between multiple
drawing edit sessions. The normal operation of a Visual LISP program is to be loaded and then
evaluated. When the evaluation is finished, data may be left in global variables that can be
accessed immediately when the program is restarted.

But what happens to global data when a drawing is closed? In this chapter, you look at that sit-
uation and learn ways in which you can preserve data in a drawing to use in a later run of the
same program with the same drawing. Data can be stashed away in several different places in a
drawing, and each has its advantages and disadvantages.

Application Exposure

An application tied to a drawing most likely needs to store data associated with the drawing. For
example, suppose that you have an application involving components with parameters. In many
cases, you can use blocks with attributes to carry the parameters.

But what are your options when a block is not suitable, such as when you are using polylines to
define a path. As is typical of Visual LISP, you have several options. The option you choose
depends on how exposed you want your application to other applications and AutoCAD opera-
tors. An application is considered exposed if entities and data can be manipulated outside the pro-
gram using other tools.

Most Visual LISP applications that rely on or create AutoCAD entity objects are exposed to
AutoCAD command edits. That means an AutoCAD operator can change or remove entity
objects, possibly compromising the application’s integrity. Leaving global variables on the heap in
hopes that they will be proper when restarting the program later in the same edit session is another
area of exposure. Suppose that the operator runs a different macro that uses the same variable
names and is equally sloppy in leaving symbol references on the stack. The results will most likely
be erroneous.

204 CHAPTER 14: Saving and Sharing Data

Saving Data in User Variables

One method of saving data has the highest level of exposure but is the simplest: using specific
AutoCAD system variables provided for programmers. These system variables all start with the
letters USER followed by a letter indicating the type of data (I for integer, R for real, and S for
string) and a digit from 1 to 5. Thus, you can have five integers, five real numbers, and five strings
saved as system variables. Integer and real number variables are saved with the drawing.

String variables are not saved with the drawing, so you should use string variables (USERS1 to
USERS5) for temporary data during the program run. If you need to preserve data values for a later
edit session, use the USERI1 to USERI5 (integers) variables and the USERR1 to USERR5 (real num-
bers) variables. Of course, this leaves your data open to editing by the operator and other applica-
tions that may want to utilize the same variables. If your application is the only one being run by
the operator, however, you can get away with using these system variables. In that case, simply use
SETVAR and GETVAR to set up and later retrieve the values of the system variables used.

Saving Data in Attributes

Another place to store data is in attributes attached to blocks. An AutoCAD operator can easily
modify or erase a block to which you have attached variables that need saving, but it is less likely
that another program is using the same block name. Thus, the level of exposure for your data
remains high, but is not as random as using system variables alone.

When you want an operator to have direct access to these variables, an elegant solution is to
use an attribute sequence in a block. If you do not want an operator to have easy access, create the
attributes as invisible with a small text height and do not add graphics to the block definition.
Another solution is to use dictionary data objects, which you look at later in this chapter.

The manipulation of blocks and attributes is simplified by the use of utility routines that read
and write groups of attributes for a block. Then it is easy to use attributes for saving and retrieving
data.

Attributes are attached to block inserts as independent entity objects. When viewed in the
drawing database by Visual LISP, an INSERT entity object contains a 66 group code entry. If the
value associated with the 66 group code is 1, attributes follow the INSERT object in the drawing
database. ENTNEXT steps through the attributes until it encounters a SEQEND entity. Each ATTRIB
object contains a key (group code 2) and a data string (group code 1) that can be updated or
retrieved as called for by the function.

To update an ATTRIB object, the ENTMOD subr writes the modified entity data list to the data-
base. But the new text is not displayed until an ENTUPD or REGEN has been performed for the insert
object itself. That way, you can make many changes to the attributes and not be slowed waiting
for the display to update for each modification.

You can modify the location of an ATTRIB as well. And that location remains in the drawing
even after the drawing is regenerated or loaded from a file. ATTRIB is an entity object, and if the
location or other geometry properties are changed (text size, rotation, and so forth), the object is
stored in the drawing with those changes. This means your program can move an attribute to a

Examples: Handling Attributes 205

new location to make a drawing more presentable. The effect is the same as the operator changing
the attribute object using grips or the property list.

Examples: Handling Attributes

The use of utility routines to handle the grunt work of manipulating attributes has a significant
effect on your programming and the use of these data objects. Two example functions are pre-
sented in this section, and several more are provided on the CD for you to study and use. The first
example returns a list of attribute data associated with an inserted block object. The second exam-
ple updates one attribute attached to an inserted block object.

Listing 14.1 contains a function that gets all the attributes attached to a block given the entity
name of an INSERT object in the EN argument. An association list is returned with dotted pairs for
each attribute located. The resulting list format is (("tag" . "value") ...), which allows you
to pull attributes out of the list using a (CDR (ASSOC)) expression, just as you do with an entity
data list.

The function starts by getting the entity data list for the first attribute, which follows the insert
object. ENTNEXT skips past the INSERT, and then ENTGET reads the entity data list. A WHILE loop
then starts and iterates until the entity type is no longer ATTRIB.

In the WHILE loop, the tag name and attribute values are extracted from group codes 2 and 1,
respectively. CONS combines these values in a dotted pair, and then another CONS adds them to the
front of the RES result list. The process is repeated with the next attribute entity list, until all
ATTRIB objects have been read. At the end of the function, the contents of RES are reversed (CONS
builds lists by adding new members to the front) to serve as the returning value.

To use this function, supply the entity name of an inserted block. A list of attribute tags and
values are returned. Some variations of this function are supplied on the CD as companions to
Listing 14.1. Attributes can serve as a good storage medium for data that you want to preserve
from one drawing edit session to another.

Because the operator is still empowered to edit the objects directly, erasing and purging the
blocks can reset the entire system. This is a good compromise for many AutoCAD applications in
which the operator needs to be able to start over or try something different without recreating the
entire drawing. Blocks with attributes are easy for operators to manipulate, and with utility func-
tions, they are simple for the programmer as well.

The second utility, shown in Listing 14.2, updates an attribute entry in the drawing. The argu-
ments supplied to the function are the entity name of the base block, the tag string, and the string
value to place in the attribute object. The processing for attributes is basically the same from one
function to the next. Given the insert object, use ENTNEXT to move to the first attribute, and then
use ENTNEXT again to step through the sequence of ATTRIB objects. Attribute objects always follow
an insert object and have no other entity object types in between. A SEQEND object appears after
the last attribute object.

In ATT:UPDATE, you want to update just one attribute, so the WHILE loop is used to read the
entity data lists of the attribute objects and then test for a match with the TAG value. If a match is
not found, EN is moved to the next entity object (another attribute or the end of the chain). The
WHILE loop continues until the last attribute object has been processed or the tag is located.

206 CHAPTER 14: Saving and Sharing Data

After the WHILE loop, the value in EL is tested to see whether it equals an ATTRIB object, which
indicates that an attribute with a matching tag name was located. ENTMOD modifies the contents of
the attribute data list given the new data to substitute into the entity data list. ENTUPD forces a
regeneration of the entity on the screen so that the attribute update appears immediately in the
drawing.

You can optimize the program in Listing 14.2 for your application. Because most applications
update only one or a few attributes after they are stored, I used a single tag update example.

Attributes work well if you are willing to expose your data to the operator for editing as well as
possible deletion. If you want to shield your data from external edits but not from deletion, use
extended data, the topic of the next section.

Listing 14.1 Retrieving block attributes.

 (DEFUN ATT:GETS (EN / EL RES)

 (SETQ EN (ENTNEXT EN) ;;skip INSERT

 EL (ENTGET EN) ;;get ATTRIB

)

 (WHILE (= (CDR (ASSOC 0 EL))

 "ATTRIB")

 (SETQ RES

 (CONS ;;add to front of result list

 (CONS ;;build dotted pair

 (CDR (ASSOC 2 EL)) ;;tag

 (CDR (ASSOC 1 EL)) ;;value

)

 RES ;;result list

)

 EN (entnext EN) ;;next ATTRIB

 EL (entget EN)

)

)

 (REVERSE RES) ;;reverse result list

)

Saving with Extended Data 207

Saving with Extended Data

Extended data is programmer-defined data attached to an entity object and accessible only in a
programming environment such as Visual LISP. Operators cannot view or edit the extended data
unless they write a program as well. Operators can, however, move or erase an object with

Listing 14.2 Updating an attribute by tag name.

(DEFUN ATT:UPDATE (EN TAG NEW / EL)

 (SETQ EN (ENTNEXT EN) ;;skip INSERT

 EL (ENTGET EN) ;;get ATTRIB

)

 ;; Search attribs for match of tag name

 (WHILE (AND (= (CDR (ASSOC 0 EL))

 "ATTRIB")

 (/= (CDR (ASSOC 2 EL))

 TAG)

)

 (SETQ EN (ENTNEXT EN) ;;next ATTRIB

 EL (ENTGET EN)

)

)

 (IF (= (CDR (ASSOC 0 EL)) "ATTRIB")

 (PROGN

 (ENTMOD ;;modify entity data

 (SUBST ;;substitute in list

 (CONS 1 NEW) ;;new data

 (ASSOC 1 EL) ;;old data

 EL ;;list

)

)

 (ENTUPD EN) ;;force regen of entity

)

)

)

208 CHAPTER 14: Saving and Sharing Data

extended data, so your data still has a high degree of exposure. Do note that certain online utilities
allow operators to view and edit extended data, so the exposure is higher when the operator is
well versed in tools available online.

Extended data is nested in an entity data list in Visual LISP. But to have it present in the entity
data list, you must request the data by name. This name is called the application ID, or APPID.
Application IDs are maintained in a table and must be declared before they can be used. To regis-
ter or declare an application ID in the APPID table, use REGAPP with the name of the application
to register. If the application is already in the table, REGAPP returns immediately. Otherwise, the
name is appended to the list and you can use it when appending application data to entity data
lists. The APPID table contains only the names provided by applications and a bit-coded flag that
indicates whether the application came from an external reference or whether any entities are
known to contain this application ID as extended data.

Adding extended data to an object requires that you have the entity data list. Extended data is
found nested in a –3 group code structure. The first member of each list in the –3 sublist is the
name of the application ID. Following the application ID is the data associated with the applica-
tion. The lists are deeply nested so that multiple applications can apply extended data to an object.

Listing 14.3 shows a general description of extended data in an entity list. This example con-
tains two application ID entries called NAME1 and NAME2. Note how the –3 group can be accessed
using ASSOC in the entity data list, just like all other members. Removing –3 from the front of the
list and using an ASSOC with the name of the application ID provides access to the extended data.
If you remove the name of the application ID from the front of that list, the extended data can be
accessed using the group codes you defined for that purpose. This might seem complicated, but it
is basic list processing, which is easy for LISP.

The group codes used in extended data all number 1000 or greater. The group code number
indicates the type of data involved, such as an integer, a string, or a real number. The standard
group codes used in extended data are 1000 for strings, 1010 for points, 1040 for real numbers,

Listing 14.3 General format of extended data.

(...entity data list...

 (-3 ;start of extended data

 ("NAME1" ;start of extended data for application ID "NAME1"

 ...extended data...

)

 ("NAME2" ;start of extended data for application ID "NAME2"

 ...extended data...

)

)

)

Saving with Extended Data 209

and 1070 for integer numbers. You may want to investigate other 1000-series group codes in the
online help; the ones just mentioned are the principle codes your application will need.

For example, the following extended data list for an application named “TEST” contains a
string ("ABC"), a real number (1.25), and an integer (25):

(–3 ("TEST" (1001 . "TEST") (1000 . "ABC") (1040 . 1.25) (1070 . 25)))

Note that the data appears just like an entity data list consisting of dotted pairs with group
codes. Should you need to use more of a particular data type, repeat the group code. For example,
multiple 1040 list groups would be found for each real number to be stored. Your program has to
keep track of where a particular value resides in extended data, which can cause problems when
you are first developing a sophisticated program.

You are limited in the amount of extended data that you can attach to an entity object. That
limit, which is about 16 kilobytes of data, helps keep the database streamlined when used in an
interactive environment. Most applications come nowhere near the limit. Two subrs determine
whether data can fit in an entity object. XDROOM and XDSIZE report the amount of space available
in an entity and the amount of space consumed by an extended data list, respectively. To find out
whether there is enough room to spare, you generally test to see whether XDSIZE is less than
XDROOM. To use XDSIZE, the extended data list must be created first and it must be of the proper
format. Otherwise, an error results.

Extended data might seem difficult to use at first glance. You can greatly simplify things by
using utility routines. Remember that the purpose of extended data is to provide a place to store
data in the drawing. This does not mean the data should be manipulated in the same format. For
most applications, you should write a utility set that converts between the extended data stored in
the drawing and the data in your program. Next, you look at some example functions that do just
that. These functions also demonstrate how extended data is attached to objects as well as
retrieved from them.

Listing 14.4 contains the X_DATA_ADD function, which is a general-purpose utility for append-
ing extended data to an entity. It has three arguments: the entity name of the object to append the
data, the application ID string, and a data list populated with 1000 group codes ready to be used.
The –3 and application ID should not be part of the 1000 group code list. For example, the func-
tion could be called using the following expression, with EN containing an entity name:

(x_data_add EN "MYAPP" '((1000 . "Testing")(1040 . 37.5)))

Listing 14.4 demonstrates all the basic extended data handling performed in Visual LISP. The
first step is to register the application ID using REGAPP. If the application ID is already registered,
REGAPP returns immediately. Otherwise, it registers the ID in the APPID table for the drawing. The
next step is to use ENTGET to get the entity data list and then construct the extended data entry. To
construct the extended data component of the entity data list, you add the name of the application
to the front of the data list and then add –3 to the front of the resulting list. This creates the nested
structure needed for extended data entry.

Before adding the data to the entity, the function tests to see whether there is sufficient room.
XDSIZE is used against the extended data list, and XDROOM is used with the entity name. If XDSIZE
results in a smaller value, the data can be added. Your extended data list in TMP1 is appended as a

210 CHAPTER 14: Saving and Sharing Data

list to EL, the existing entity data list. That list is then supplied to ENTMOD to make the change in
the drawing database.

Retrieving extended data is even easier than writing it to the database. Because Visual LISP
excels at handling lists, the code is brief, as you can see in Listing 14.5. Given the entity name and
application ID string, the function uses ENTGET to retrieve the entity list plus the extended data.
The purpose of this function is to get the extended data as a list of 1,000 group codes. If the entity
contains extended data for the application ID supplied, EL has a –3 group code entry. Using CDADR
with the result returned from the ASSOC of the –3 group code results in only the 1000 group code
list.

CDADR is a composite primitive created by combining CDR and CAR, as in (CDR (CAR (CDR.
Thus, the first CDR removes the –3 group code. Extended data is nested in another association list
based on the application ID and, because you supplied only one application ID, CAR returns the
first and only member. Last, CDR removes the name of the application ID from the front of the list,
resulting in just the 1,000 group code list.

Again, remember that the purpose of these utilities is to demonstrate how to access data and
simplify your coding efforts. Using utilities can greatly enhance your ability to take advantage of
features such as extended data in the AutoCAD system.

You can use the companion utilities on the CD for extended data manipulations. For the most
part, extended data provides a good way to store data that is only marginally exposed to the oper-
ator. Because the data is attached to actual objects in the drawing, it is easy for the operator to

Listing 14.4 Adding extended data.

(DEFUN X_DATA_ADD (EN APID DLST / EL TMP1)

 (REGAPP APID)

 (SETQ EL (ENTGET EN)

 TMP1 (LIST -3 (CONS APID DLST))

)

 (IF (< (XDSIZE TMP1) (XDROOM EN))

 (ENTMOD (APPEND EL (LIST TMP1))))

)

Listing 14.5 Getting extended data.

(DEFUN X_DATA_GET (EN APID / EL)

 (SETQ EL (ENTGET EN (LIST APID)))

 (IF (ASSOC -3 EL)

 (CDADR (ASSOC -3 EL))) ;;return only data items

)

Saving Data in a Dictionary 211

reset the application by simply erasing these objects. Your application should be aware that this
could happen and react appropriately.

Saving Data in a Dictionary

To protect your data in a drawing from the majority of AutoCAD users, the object holding the
data cannot be visible for editing by the operator. This means you should store data in non-graph-
ical objects called XRECORD entity objects. These objects work best when you organize them in dic-
tionaries.

You can retrieve and add data using a variety of dictionary subrs. All subrs for dictionary
manipulation contain the characters DICT. For example, NEWDICT creates a dictionary, DICTADD
adds a member to an existing dictionary, and DICTSEARCH searches a dictionary for an entry.

An XRECORD object has significant advantages over extended data. First, an XRECORD object
does not have associated graphics for the operator to manipulate, thereby making your data rea-
sonably safe. Second, there are no restrictions as to the amount of memory that the XRECORD
object can consumes. If you need to store a lot of data and want to do it in the drawing, XRECORD
is the best solution. Third, normal group codes are used for housing the data in XRECORD. It is up
to your program to know what the group codes signify.

Power users, however, can use certain utilities to search dictionaries and make edits. If you
want protection from power users, use an encryption system to shield the data from all but the
most persistent users, from whom nothing can be considered entirely secure.

Creating and using a dictionary with XRECORDs involves more steps than all the other data stor-
age mechanisms, but you can accomplish the primary tasks using utility subroutines. In this sec-
tion, you go through the process of creating and accessing dictionary objects, and then you look at
a solution provided in Visual LISP that makes this much easier.

To use a dictionary, you must first create it. This is accomplished by defining a dictionary entity
object as an entity data list of the following form and then sending that list to the ENTMAKEX subr:

((0 . "DICTIONARY") (100 . "AcDbDictionary"))

ENTMAKEX is a special version of ENTMAKE for creating non-graphics objects such as dictionaries.
ENTMAKEX is different in that it does not define an owner for the object, thereby preventing the
object from being written to the output file when the drawing is saved. Only owned objects are
written to the file.

To provide proper ownership for the dictionary, it must be given a name and added to the
named object dictionary list for the drawing using NAMEDOBJDICT and DICTADD, respectively. The
resulting entity object name returned is used to reference the dictionary in subsequent DICTADD
calls while adding members to the dictionary. After the dictionary is added to the list, it is owned
by the named object dictionary and resides with the drawing.

You add XRECORD objects to dictionaries by creating XRECORD entity data lists, by using
ENTMAKEX to append them to the drawing, and by then adding the resulting entity to the dictio-
nary. For the object to remain in the drawing after it is saved, you must add the entry to the dictio-
nary to establish ownership. Be aware that if the name you use to add something to a dictionary

212 CHAPTER 14: Saving and Sharing Data

already exists in the dictionary, the value for that name is overwritten. Thus, you need to devise a
way to make names unique in your application as you add dictionary and XRECORD objects.

Several steps are involved in creating and accessing dictionary and XRECORD objects in the
drawing. You must follow these steps in the proper order to achieve the desired results. Following
are the steps for the primary functions you would perform involving dictionaries.

To create a dictionary:

1. Create a dictionary entity list.

2. Use ENTMAKEX to add the dictionary entity list to the drawing.

3. Use DICTADD to add the new dictionary entity object to the named object dictionary of
AutoCAD accessed using NAMEDOJBDICT. Supply a unique name for your dictionary.

To add an item to a dictionary:

1. Create a non-graphics object entity list.

2. Use ENTMAKEX to add the non-graphics object entity list to the drawing.

3. Use DICTADD to add the new object to the dictionary. Supply a unique name for your new entry
in the dictionary. This name is used to retrieve the associated entity name pointing back to the
non-graphics object.

To access an existing dictionary:

1. Use DICTSEARCH and NAMEDOBJDICT to access the named object dictionary so you can get the
object reference to your dictionary.

2. Access the dictionary object to get the entry of interest using DICTSEARCH.

To remove an entry from an existing dictionary:

1. Use DICTSEARCH and NAMEDOBJDICT to access the named object dictionary so you can get the
object reference to your dictionary.

2. se DICTREMOVE to remove the object in question from the dictionary. The ownerless object is
returned as a result of the DICTREMOVE subr. It is deleted from the drawing when the drawing is
saved and reloaded from the disk.

Dictionaries provide a powerful tool for storing data, but they do require some manipulations
as shown. Utility functions would assist greatly in this regard, and they are already provided in
Visual LISP. Run the VL-LOAD-COM subr to load more subrs that can be used for working with dic-
tionaries, as you will see next.

You can use VLAX-LDATA-PUT and VLAX-LDATA-GET to put data in and get data from, respec-
tively, a dictionary or an entity object. You usually use them with a named dictionary object, but
you can also establish a dictionary owned by an entity. If you use VLAX-LDATA-PUT with an entity
object, the data sent is attached as a dictionary owned by the object.

You can write any type of Visual LISP data to the dictionary, but remember that entity names
change between sessions, and using them in this manner is not acceptable. If you want to simply
keep track of another entity within a dictionary entry, use handles.

Summary 213

The beauty of using the VLAX-LDATA functions is that you don’t have to hassle with dictionary
objects. That work is performed inside the utility function. Simply supply a dictionary name, a key
name for the object you want stored, and the value to be stored when saving the data. To retrieve
the data value later, you need only the dictionary name and the key name. You do not have to open
the dictionary or do any other programming because that is accomplished in the VLAX-LDATA
functions.

Two subrs complement VLAX-LDATA-PUT and VLAX-LDATA-GET. VLAX-LDATA-DELETE deletes
entries from a dictionary when the data is no longer useful or needed by your application.
VLAX-LDATA-LIST returns a list of the data saved to a dictionary or attached to an entity object.
Each entry saved is returned as a sublist in the resulting list so that it appears as an association list.

As an example of the LDATA subrs, Listing 14.6 presents two functions that write and read
Visual LISP symbol data. SAVE_SYMBOLS accepts a list of symbol names and a string for the name
of the dictionary to use. The symbols in the list are evaluated and written to the dictionary one at
a time in a FOREACH loop. The VL-SYMBOL-NAME subr converts the name of the symbol to a string
to be used as a key. The second function, GET_SYMBOLS, uses the same dictionary name to read
back the list of symbols. Each element in the resulting list is processed in MAPCAR to convert the
name to a symbol name and then set the value to the data stored with the key.

With the LDATA feature of Visual LISP, the programmer can save data in a simple yet reason-
ably secure manner. And if more advanced data storage requirements are encountered, you can use
the dictionary objects.

Summary

Storing data in a drawing is part of any advanced application, and this chapter presented a set of
mechanisms for accomplishing the task. Which one you should use is based on the level of expo-
sure you are willing to provide to the operator.

At the highest levels of exposure are blocks with attributes and USER system variables. These
options allow the operator to view and edit values.

Dictionaries and extended data, which are at the lower levels of exposure, protect the data
from most AutoCAD operators but not from sophisticated programmers. If you have written
something so special that it deserves protection at the highest levels, consider using C++ instead of
Visual LISP, which goes only so far in protecting your data in a drawing environment.

214 CHAPTER 14: Saving and Sharing Data

Listing 14.6 Saving symbol values.

(DEFUN SAVE_SYMBOLS (SYMLIST DNAME / SYM)

 (VL-LOAD-COM)

 (FOREACH SYM SYMLIST

 (VLAX-LDATA-PUT

 DNAME

 (VL-SYMBOL-NAME SYM)

 (VL-SYMBOL-VALUE SYM)))

)

(DEFUN GET_SYMBOLS (DNAME / TMP)

 (VL-LOAD-COM)

 (SETQ TMP

 (VLAX-LDATA-LIST DNAME))

 (MAPCAR

 '(LAMBDA (SYM)

 (SET

 (READ (CAR SYM))

 (CDR SYM)))

 TMP)

 TMP

)

215

CHAPTER 15

AutoCAD Interface
Programming

The input system discussed thus far is based on the operator selecting objects from the drawing,
typing data, or interacting with a dialog box. But AutoCAD has much more: menus across the top,
sidebar menus, pop-up menus, toolbar icons, the text screen, and the graphics display. Each can be
controlled by Visual LISP programs. In addition, operating-system-level interfaces are provided
because AutoCAD runs in a Windows environment. Visual LISP programmers can exploit ActiveX
automation tools from other environments. This provides plenty of power for even the most
demanding applications.

In this chapter, you look at the AutoCAD menu system as seen from the Visual LISP program-
ming perspective and learn how to interface Visual LISP to ActiveX server systems. By controlling
the display system and menu contents, you provide operators with guidance that is less intrusive
than a dialog box.

Manipulating AutoCAD Menus

Most operators begin customizing AutoCAD through the menu system. By changing the layout of
the menu system, you can have a significant effect on productivity. And because Visual LISP inte-
grates well with the menu system, advanced control of the interface is possible.

When looking at menus in relation to Visual LISP, the first place to start is with the loading
functions. You can initiate your functions with a simple expression structure. Use a ^C sequence to
cancel any existing commands followed by ^P to turn off the echo of the menu to the command
line. Then use an IF expression to test the function name for a binding. If no binding exists, the
value of the function is NIL.

You can use the following to test the binding and then load the function library when needed:

(IF (NULL <FUNCTION_NAME>)(LOAD "<function_file>"))

216 CHAPTER 15: AutoCAD Interface Programming

Following the closing parentheses, add a semicolon (which is the same as pressing the Enter key
in a menu) and then the name of your function. The semicolon forces the evaluation of the previ-
ous IF expression, thereby ensuring that your function is loaded. Although the semicolon is not
needed when using normal LISP functions, its use is highly recommended when you use a com-
mand function (a symbol name starting with C:).

For example, suppose you have a function named C:COOL in the COOLTOOL.LSP source file,
which is located in the support directory of AutoCAD. The menu macro appears as follows:

^C^C^P(if (NULL C:COOL) (LOAD "COOLTOOL.LSP"));COOL

This expression tests to see whether C:COOL has a non-NIL binding. If the value of the symbol
is null, the function is loaded from the COOLTOOL.LSP source file located somewhere in the
AutoCAD program search paths. After the IF expression, a semicolon forces the evaluation before
the COOL command function is started.

When your Visual LISP programs are running, the operator can provide input to your prompts
through the menu system. Menu input is treated the same as keyboard input. In most cases, the
transparent commands of ZOOM and PAN operate from the menu without causing any problems for
your programs. You can use the menu system to your advantage in this regard by controlling the
content of pull-downs, icons, and even toolbars.

You control the menu system by using the MENUCMD subr with the same basic syntax used in
multiple-page menu programming. The (MENUCMD "P5=*") expression forces the current
pull-down menu at POP5 to unfurl. String command sequences are presented one at a time through
MENUCMD.

If you want to change the contents and unfurl a menu, you need to use two MENUCMD expres-
sions. For example, suppose that your application wants to display the MYMENU menu at POP2 and
then unfurl it to point the operator towards those selections. Use the following expressions:

(MENUCMD "P2=MYMENU")
(MENUCMD "P2=*")

Menu groups can also be referenced in MENUCMD after the group is loaded. The MENUGROUP
subr verifies that a group has been loaded into memory before attempting any manipulation of the
group contents. If MENUGROUP returns NIL when given the group name, use the COMMAND subr to
issue the commands needed to load the menu group for your application.

After the group is available, you can reference it using the group name and name tag as in nor-
mal menu programming in AutoCAD. For example, if the MYGROUP menu group contains the ME
menu and you want to unfurl it, the menu command string is "MYGROUP.ME=*".

The MENUCMD subr can be used also to run DIESEL macros and to test the contents of menus. If
your application relies on a menu-based interface, MENUCMD will be an important tool.

Exploring AutoCAD Objects

Although you can write complex applications in Visual LISP without ever using objects, it is still
helpful to know what they can do for you. When looking at AutoCAD from an object-oriented
programming point of view, there are many objects — and not just the entity objects you have

Exploring AutoCAD Objects 217

already looked at in this book. The entire AutoCAD system is defined as an inverted object tree
rooted at the application object.

Visual LISP is fully capable of exploiting AutoCAD objects, but you must understand some
concepts to successfully navigate the object tree. First, VL-LOAD-COM is required before any object
handling can be enabled. The object tree is serviced through ActiveX, so the extended objects mod-
ule of Visual LISP must be loaded before any internal subrs are available.

Second, an application starts at the root and works its way down the tree to the data or func-
tion of interest. For the best performance, object links into the tree should be established only one
time in a program and then referenced from that point forward. A program that is adding entities
to the model space should establish a link to the model space at the beginning and use it instead of
rebuilding the link each time.

The VLAX-GET-PROPERTY and VLAX-PUT-PROPERTY functions retrieve properties and update
properties, respectively, for any object in the tree. In many cases in AutoCAD, the property name
already exists as a defined subr when concatenated to the end of the VLA-GET- or VLA-PUT- subr,
as in VLA-GET-MODELSPACE. To find out whether that is the case for a given property, type
VLA-GET- followed by the property name. The VLIDE identifies the subr as you type it. If the subr
does not exist, use the generic VLAX-GET-PROPERTY and VLAX-PUT-PROPERTY functions.

Access to the root of AutoCAD is provided with the VLAX-GET-ACAD-OBJECT subr. This subr
has no parameters and returns only the object reference for the root of the AutoCAD application.
The root is then used to navigate to any point in the drawing database and the AutoCAD system.
Where you go next depends on what you are looking for. All the details of the AutoCAD object
model are in the online help, but it is somewhat imposing. To help you understand the online help,
you look at a few objects here. Explore the rest in the online help when the interest strikes and
time is available.

First you should learn about a tool for exploring objects with Visual LISP called the
VLAX-DUMP-OBJECT subr. With VLAX-DUMP-OBJECT, you get a listing of an object’s properties and
their current values. Use VLAX-GET-PROPERTY to retrieve the values associated with a given prop-
erty, such as getting the path name from the AutoCAD application object:

(VLAX-GET-PROPERTY (VLAX-GET-ACAD-OBJECT) "Path")

Remember that if you will be getting a lot of data from an object, it is best to use SETQ to estab-
lish a reference to the object. While there is a binding from a symbol to an object, the object
remains open in AutoCAD. I recommend that your application free memory when it has finished
using VLAX-RELEASE-OBJECT. This is not required, but it does improve the overall performance of
AutoCAD when a lot of object manipulations are involved.

The most commonly used object links can be built using a utility function as in Listing 15.1.
You can then use the utility in Listing 15.2 to clear these links when the main program is terminat-
ing. Global symbols defined in these two functions can be part of the main program’s local symbol
list (recommended) or remain on the heap.

The LINKS2ACAD function in Listing 15.1 demonstrates the VLAX-GET-PROPERTY subr in
action retrieving properties from the Preferences object. The properties being accessed are objects
themselves, containing the User, Display, and Files objects. The VLA-GET- subrs are used to
retrieve properties directly for the model space, Preferences base object, and active document

218 CHAPTER 15: AutoCAD Interface Programming

Listing 15.1 Building links to AutoCAD’s object mode.

(DEFUN LINKS2ACAD ()

 (VL-LOAD-COM)

 (SETQ ACADAPPOBJ (VLAX-GET-ACAD-OBJECT)

 ACADDOCUMENT (VLA-GET-ACTIVEDOCUMENT ACADAPPOBJ)

 MODELSPACE (VLA-GET-MODELSPACE ACADDOCUMENT)

 OBJPREFS (VLA-GET-PREFERENCES ACADAPPOBJ)

 USERPREFS (VLAX-GET-PROPERTY OBJPREFS "User")

 DISPPREFS (VLAX-GET-PROPERTY OBJPREFS "Display")

 FILEPREFS (VLAX-GET-PROPERTY OBJPREFS "Files")

)

)

Listing 15.2 Releasing object links.

(DEFUN FREELINKS2ACAD ()

 (VLAX-RELEASE-OBJECT FILEPREFS)

 (VLAX-RELEASE-OBJECT DISPPREFS)

 (VLAX-RELEASE-OBJECT USERPREFS)

 (VLAX-RELEASE-OBJECT OBJPREFS)

 (VLAX-RELEASE-OBJECT MODELSPACE)

 (VLAX-RELEASE-OBJECT ACADDOCUMENT)

 (VLAX-RELEASE-OBJECT ACADAPPOBJ)

 (SETQ FILEPREFS NIL

 DISPPREFS NIL

 USERPREFS NIL

 OBJPREFS NIL

 MODELSPACE NIL

 ACADDOCUMENT NIL

 ACADAPPOBJ NIL

)

)

Exploring AutoCAD Objects 219

object. If given the choice, it is generally better to use the VLA-GET- style subrs instead of the
generic VLAX-GET-PROPERTY subr because they are a bit faster at retrieving the data requested.

At the end of a main program that used the links to AutoCAD established by (Links2Acad),
you can use the (FreeLinks2Acad) function (in Listing 15.2) to release the memory that housed
the object links. This function further sets the symbols to NIL, but this step may not be required if
the symbols are local to a function of higher scope than FREELINKS2ACAD (that is, if they appear
somewhere in the parameter list of a function that calls FREELINKS2ACAD).

In a new drawing in AutoCAD, load and run the LINKS2ACAD function in Listing 15.1. The
source code is on the CD provided with this book. At the VLIDE console ($ prompt) or the
AutoCAD command line, type the following expression:

(VLAX-DUMP-OBJECT FILEPREFS)

The result is a listing of file preferences for the current system. Here is a partial listing:

Note that the names of the properties are not case sensitive, but it improves readability to use
the mixed case shown in the object dump.

If your program needs to retrieve one of these values, use the name to the left of the equal sign.
For example, to learn the value of the automatic save path, use the following expression:

(VLAX-GET-PROPERTY FILEPREFS "AutoSavePath")

As you explore the object map of AutoCAD, you will encounter a new type of object called a
collection. A collection is a table of similar things such as layer or dimension-style table. The block
definitions, model, space, and layout space are collections of entity objects.

Collections are used in ActiveX for referencing groups of similar objects. Because Visual LISP
provides other tools to access tables and entity objects, you probably won’t need to work with

$ (vlax-dump-object fileprefs)

; IAcadPreferencesFiles: AutoCAD PreferencesFiles Interface

; Property values:

; AltFontFile = "simplex.shx"

; AltTabletMenuFile = ""

; Application (RO) = #<VLA-OBJECT IAcadApplication 00a7b334>

; AutoSavePath = "C:\\windows\\TEMP\\"

...

; TemplateDwgPath = "C:\\PROGRAM FILES\\AUTOCAD 2000I\\template"

; TempXrefPath = "C:\\windows\\TEMP\\"

; TextEditor = "Internal"

; TextureMapPath = "C:\\PROGRAM FILES\\AUTOCAD 2000I\\textures"

; WorkspacePath = "C:\\PROGRAM FILES\\AUTOCAD 2000I\\Data Links"

T

220 CHAPTER 15: AutoCAD Interface Programming

collections in those regards, but other collections may be of interest. For those, Visual LISP has
VLA-ITEM, VLA-GET-COUNT, VLAX-MAP-COLLECTION, and VLAX-FOR.

VLA-GET-COUNT gets the number of items in a collection object. VLA-ITEM retrieves individual
members of a collection object, using an offset index starting at 0 for the first item. VLAX-FOR and
VLAX-MAP-COLLECTION are like FOREACH and MAPCAR, except they are applied to each member of
a collection instead of a list. The subrs iterate through a collection, supplying the members one at
a time to the mapped function or expressions.

Listing 15.3 contains an example of VLAX-FOR handling a collection of data. In this case, the
collection is the set of open documents in the AutoCAD editor. The DOCUMENTS property returns a
collection of drawing or document objects. The function loops through each document and com-
pares the drawing name provided as an argument against the drawing name (along with the full
path name). If a match is found, the FLAG symbol is set to NIL. FLAG is returned as a result of the
function by being the last thing evaluated. Thus, the function returns T if a matching drawing
name was found or NIL otherwise.

ActiveX Automation

The AutoCAD object model demonstrates just one ActiveX automation server system. Others may
be stored in your computer, such as the integrated Microsoft Office software set (Word, Excel, and
Access). ActiveX is a Windows standard for interprocess communications in a computer (that is,
one program talking to another program), similar to a pipeline between two applications. ActiveX

Listing 15.3 Collection handling.

(DEFUN ISITOPEN (DWGNAME / DWGS DWG FLAG)

 (VL-LOAD-COM)

 (SETQ DWGS (VLAX-GET-DOCUMENTS (VLAX-GET-ACAD-OBJECT))

 DWGNAME (STRCASE DWGNAME))

 (VLAX-FOR DWG DWGS

 (IF (OR

 (= (STRCASE (VLAX-GET-PROPERTY DWG "Name"))

 DWGNAME)

 (= (STRCASE (VLAX-GET-PROPERTY DWG "FullName"))

 DWGNAME))

 (SETQ FLAG T)

)

)

 FLAG

)

ActiveX Automation 221

provides everything needed for one program to run another program or borrow some of the capa-
bilities of the other program.

The use of ActiveX automation in Visual LISP is almost identical to interfacing with the
AutoCAD object model just described. The first step is to establish a link to the application object.
From there, you follow the structure of the application to get where you want to go. If the applica-
tion is document based, the first route to follow is to the documents collection and then to a spe-
cific document. Be aware that different terms may be used. For example, Excel uses the term
worksheet instead of document.

A primary difference between interfacing with another ActiveX server and AutoCAD’s server is
that you know AutoCAD is up and running when your Visual LISP program is running. (Other-
wise, your program would not work.) But you may not always be sure of that situation with other
programs in the system, so Visual LISP provides object link routines.

VLAX-GET-OBJECT attempts to link with a running program. You use this subr when you
expect the operator to have already started an associated program and have a file loaded.
VLAX-GET-OBJECT returns NIL if the object cannot be located in the active memory of the com-
puter. Use the application name to tie into another program’s object server. The application name
is typically found in the online help of the server program.

After the application object is attached, use the VLAX-DUMP-OBJECT subr to explore the details
of the objects exposed for use by your program. Remember that VLAX-GET-OBJECT returns the
root of an object tree. You may have to climb up a few branches before finding the necessary
details.

VLAX-CREATE-OBJECT creates a new instance of the running program or object. This subr is
used when you need to initiate the application being interfaced from a fresh starting point. As in
getting a running application object, the program ID indicates which application you want to load.
Windows stores information about applications in the system registry. It uses the program ID to
locate the name of the object server, which can then be used to start a new run.

Use VLAX-GET-OR-CREATE-OBJECT when you want to only attach to the application, running
or not. If an existing instance is running, this subr attaches to the root of that object. Otherwise,
the subr creates a new instance of the object as if you had used VLAX-CREATE-OBJECT. The
VLAX-GET-OR-CREATE-OBJECT subr is often used when you want the other application to solve a
problem using the objects it defines, or when multiple users are sharing a common application
server (such as in a database environment). If you are the first user for the day, the object is cre-
ated. If you log on later, you are sharing the object already loaded.

After you get your hands on the root object of a system, such as Access, Excel, or Word, the
VLAX-DUMP-OBJECT subr reveals all the details that your application can exploit. If you do not
already know the application you are interfacing with or are learning the object system it supports,
plan to spend some time finding out how to navigate the object tree.

ActiveX interfaces are typically documented for the Visual Basic programmer — that is, the
examples and syntax are all in Visual Basic. Visual LISP can use the same methods and properties
but in a slightly different format. To help the Visual LISP programmer decipher the syntax, special
tools are provided.

The VLAX-PUT-PROPERTY and VLAX-GET-PROPERTY subrs retrieve and update properties for
objects. VLAX-INVOKE-METHOD runs a method attached to an object. The parameters to the subrs

222 CHAPTER 15: AutoCAD Interface Programming

include the object reference followed by the name of the property or method as a string. When set-
ting a property value or invoking a method, there are usually additional parameters, which follow
in the same order as documented. On the way into an ActiveX method or property, be sure to con-
vert the data types to the proper format for ActiveX.

Before you look at a data-type conversion, note that some methods return values in parameters
that mean a call-by-reference approach is needed instead of the normal call-by-value approach. In
Visual LISP, call by reference is accomplished using a quoted symbol. For methods that return
more than one data element through parameter references, include a quoted symbol where needed.
An example is the bounding box method, in which two points are returned given an entity object
reference:

(VLAX-INVOKE-METHOD MYOBJ "GETBOUNDINGBOX" 'MINP 'MAXP)

The GETBOUNDINGBOX method returns a point in MINP and another in MAXP for the bounding
points around the object referenced by MYOBJ. The GETBOUNDINGBOX method is accessed through
ActiveX, so the data returned for the points is not a data list. Instead, the data is returned in a safe
array (described in Chapter 12). Use the VLAX-SAFEARRAY->LIST subr to convert a safe array
variable type to a list that can be manipulated in Visual LISP.

Other conversion subrs include VLAX-3D-POINT to convert a three-dimensional point list into a
variant safe array for sending to one of the methods, VLAX-MAKE-SAFEARRAY to create a multidi-
mensional array, and VLAX-SAFEARRAY-PUT-ELEMENT to populate it. There are conversions for
safe arrays and variants so that you can convert the data types in Visual LISP to and from those
supporting the ActiveX interface.

A couple of constants that bear mention are :VLAX-FALSE and :VLAX-TRUE, which are used as
arguments to and from Boolean methods and properties. They stand for FALSE and TRUE in the
ActiveX system. NIL and non-NIL are used in LISP programming and will not operate correctly
with ActiveX.

Another way to work with an ActiveX server system is to import the library. The
VLAX-IMPORT-TYPE-LIBRARY subr reads in the method and properties library for an object family
and creates VLA functions for use in your programs for the entire group. When you import a type
library, you must provide a prefix string to apply to all the methods and another for the properties.
You can then use the apropos feature in the VLIDE to view information about the various methods
and properties imported. A subr such as VLA-ADDLINE or VLA-GETBOUNDINGBOX is the result of a
type library import in AutoCAD. (The AutoCAD type library is imported when VL-LOAD-COM is
issued.)

Summary

This chapter introduced interfacing with the operator and computer in ways that go beyond the
keyboard and dialog boxes. Menus are the first place where most users begin customizing
AutoCAD. If you are a commercial developer, you should use menus sparingly so as not to
interfere with user menus. That doesn’t mean that commercial applications should do away with
any form of menu interface. Menus are still the easiest way for users to launch applications. But
developers should strive to use an isolated menu system and not replace the user’s interface. In this

Summary 223

case, developers include anyone writing code for use by other people, not just commercial
developers.

Menus are part of the AutoCAD object tree, an extensive structure of data that includes the
application as well as the drawing data. The chapter covered several Visual LISP subrs for manip-
ulating objects in the tree. You also saw how to navigate the tree efficiently through the use of glo-
bal variables pointing to various levels in the tree. The object system in AutoCAD is powerful and
opens the door for many things that you may need to have happen in an advanced application.

The discussion of objects led to a more general discussion of objects in the Windows environ-
ment and how Visual LISP programs can use ActiveX. Due to the diversity of potential applica-
tions, nothing was covered in detail or with examples.

The goal of this chapter was to open doors to other ideas and ways of doing things in Visual
LISP. Programming is an art that uses tools, and the objects in ActiveX are just some of the won-
derful tools provided in the AutoCAD Visual LISP programming environment.

224 CHAPTER 15: AutoCAD Interface Programming

This Page Intentionally Left Blank

225

CHAPTER 16

Event Programming

After you are comfortable writing Visual LISP functions based on command type structures and
dialog boxes, you are ready to begin exploring the next level of interactive programming:
event-based programming. Event-driven programs respond to things as they happen in the com-
puter and thereby represent a high degree of integration between the application and AutoCAD.
Event-driven programs consist of a set of reactor functions. Each function will react to a particular
event in the system.

Event programming is not well suited for all applications and can be difficult to pull off cor-
rectly using Visual LISP. So, although you explore the concepts behind events and writing pro-
grams for them in this chapter, keep in mind that the best strategy is to start with simple concepts
and be pleasantly surprised as they evolve into a deeply integrated application.

What Are Events?

An event is something noteworthy that is happening in the computer, such as opening a new file or
adding an entity object to a drawing. Some applications may want to know about these sorts of
things going on in the computer, and it is through events that an application learns of them.

The supplier of the environment determines exactly what events are considered noteworthy. In
Visual LISP, the environment is AutoCAD, so Autodesk has determined which the events you can
be notified about. Events occurring at the Windows level are not exposed to Visual LISP because
they are generally not important to AutoCAD-based applications. (If they are important, you must
use C++ and either set up an ActiveX server to communicate with Visual LISP or utilize the
ObjectARX library.)

AutoCAD events are divided into groups, such as database, editor, and command reactors, as
shown in Table 16.1. Reactor names all start with the :VLR- character sequence followed by the
reactor group name. In some cases, the reactor groups overlap. For example, the insert reactor and
the database reactor are both available when a block is inserted. Variations are provided so that
your applications can have access to AutoCAD at various levels, focusing access to the location of
critical interest.

226 CHAPTER 16: Event Programming

Table 16.1 Categories of events.

Reactor name Reactor group Trigger event(s)

:VLR-ACDB-Reactor Database reactor Adding, removing, or modifying
objects in the drawing

:VLR-Command-Reactor Command system
reactor

Starting and either terminating (due to
an error) or completing an AutoCAD
command

:VLR-DeepClone-Reactor Custom objects reactor Cloning (copying) a custom object;
used not in Visual LISP but in
ARX-type development work

:VLR-DocManager-Reactor Document manager
reactor

Opening or closing a drawing

:VLR-DWG-Reactor Drawing reactor Saving, closing, or loading the current
drawing

:VLR-DXF-Reactor DXF reactor Starting or ending DXF (Drawing
eXchange Format) file transfer opera-
tions (importing or exporting)

:VLR-Editor-Reactor Editor reactor Combination of the command, draw-
ing, and other reactors as used by the
editor system in AutoCAD

:VLR-Insert-Reactor Block reactor Inserting a block into a drawing, and
whether or not that was successful

:VLR-Linker-Reactor ARX reactor Loading or unloading an ARX module

:VLR-LISP-Reactor LISP reactor Starting or stopping LISP evaluation

:VLR-Mouse-Reactor Mouse reactor Clicking (right button) or double-
clicking the mouse

:VLR-Object-Reactor Object-level reactor Changing or erasing a particular
object; can be tied to any individual
object in the database

:VLR-SysVar-Reactor System variable reactor Changing system variables in AutoCAD

:VLR-Toolbar-Reactor Toolbar reactors Changing a toolbar in AutoCAD; this
notification allows your program to
update related display information

:VLR-Undo-Reactor Undo system reactor Activating the UNDO mechanism in
AutoCAD

:VLR-Wblock-Reactor WBLOCK reactor Writing block definitions to a new
drawing

:VLR-Window-Reactor Window reactor Changing the size of the AutoCAD
window

:VLR-XREF-Reactor External references
reactor

Manipulating an external reference
block or inserting it into the drawing

Setting Up a Reactor 227

You use the VLR-REACTION-NAMES subr to find out what events are available in a group. Type
the subr name followed by the reactor group name (be sure to include the colon). For example, the
following displays the database reactor events. Your programs can be notified whenever any one
or more of these events takes place in AutoCAD:

Figuring out exactly when an event happens is easy when you become familiar with the termi-
nology. Understanding the basic structure of the AutoCAD database also helps. Using the database
events in the preceding as an example, an object is appended to the database when it is added for
the first time. If an UNDO operation removes the object, it is UnAppended. But if the object is
removed as a result of the ERASE command, the objectErased reaction takes place. If REDO is
used after an UNDO when an object was unappended, it is ReAppended. But if you UNDO an erase
operation, the object is UnErased. This means the same function might have to service multiple
reactions to achieve predictable results.

To use reactors, you must consider exactly what your application will react to, when it will
react, and why it will react. Suppose you have an application that makes use of certain entity
objects. Would it be best to attach entity-object-level reactors to just those objects, or should you
use database-level reactors? The answer depends on what you want to be able to accomplish with
the objects. If you need to only keep track of them, entity object reactors are fine because you don’t
need to slow the process by reacting to any and all database changes. You want to react only if one
of the critical objects is touched. On the other hand, if you are keeping track of a certain type of
object, such as lines on a particular layer, a database reactor is the easiest to implement.

Setting Up a Reactor

Programming a reactor is a lot like programming dialog boxes. In both cases, you prepare callback
functions. Callback functions are called by the event-handling system, not by your program. In the
case of a dialog box, the callback functions are invoked when one of the tiles or controls is manip-
ulated. Reactor callback functions are invoked when an event takes place. Thus, before you can
use a reactor, it must be defined and announced to the event-handling system.

A reactor callback is defined by creating a function and setting up an association of that func-
tion with an event in the handling system. The function must be created with the correct number

Command: (vlr-reaction-names :VLR-ACDB-REACTOR)

(:VLR-objectAppended

 :VLR-objectUnAppended

 :VLR-objectReAppended

 :VLR-objectOpenedForModify

 :VLR-objectModified

 :VLR-objectErased

 :VLR-objectUnErased

)

228 CHAPTER 16: Event Programming

of arguments. Each reactor sends a specific number of parameters to the callback function, includ-
ing the symbolic name of the reactor or the owner of the reactor. Additional data includes related
parameters. For example, in a command-level reactor, the names of active commands are supplied.
In an object-level reactor, the object reference is included in the parameters.

To learn what parameters will be passed to a callback function, see the online help provided in
Visual LISP. Go to the AutoLISP Reference, select the V function list, and then page down to the
VLR functions. Now select the reactor group of interest, such as VLR-OBJECT-REACTOR,
VLR-COMMAND-REACTOR, or VLR-ACDB-REACTOR. In the paragraphs detailing the callback func-
tions, you will find information about the types of parameters passed to each callback function.

In this section, you work with a simple example by setting up a reactor that keeps track of how
many times a new command is started. The callback function increments a counter each time a
command is started. Therefore, it is attached to the command notification reactor set using the
VLR-COMMAND-REACTOR subr. Two parameters are supplied for the reactor setup: a string of your
own design that identifies that reactor as one of yours and a list of dotted pairs. Each dotted pair
contains the name of an event (such as :VLR-CommandWillStart) and the name of the function to
evaluate when the event occurs.

Listing 16.1 contains two functions. The first, CMD-COUNTER, is the callback function. The
REFOBJ and CMDLIST arguments contain the reference object and a list of commands. Normally,
the command list has one member. In this example, that one member is the command just started
because this callback function is associated with the “command will start” event. You are not
using the parameters, but they are still required. You instead use a global symbol named
CMD-COUNT-VALUE. The function first tests to see whether this symbol has a binding. If not, it is set
to 0. Then the function increments the counter and ends. The best callback functions are short and
quick like this one. They are called into action, take care of business as quickly as possible, and fin-
ish.

Listing 16.1 Counting commands with a reactor.

(DEFUN CMD-COUNTER (REFOBJ CMDLIST)

 (IF (NULL CMD-COUNT-VALUE)

 (SETQ CMD-COUNT-VALUE 0))

 (SETQ CMD-COUNT-VALUE

 (1+ CMD-COUNT-VALUE))

)

(DEFUN C:CMDCNT1 ()

 (VL-LOAD-COM)

 (VLR-COMMAND-REACTOR

 NIL

 '((:VLR-COMMANDWILLSTART . CMD-COUNTER))))

Setting Up a Reactor 229

The second function in Listing 16.1 sets up the callback reactor association with the command
notification system. Note that VL-LOAD-COM loads the component object manager. The callback
system works through the ActiveX interface, so the extended Visual LISP function set must be in
memory. The next expression, VLR-COMMAND-REACTOR, attaches the CMD-COUNTER function to the
“command will start” event notification list in the command reactor set. After CMDCNT1 is acti-
vated, the CMD-COUNTER function counts every command that is started .

Events are specified using a colon before the VLR name. When the colon is present, the value is
actually a constant that signifies a particular standard value in AutoCAD. (Like :VLAX-TRUE, the
VLR constants begin with a colon.) The :VLR and function name are symbols, not strings. The sin-
gle quote mark at the start of the nested list definition allows for the use of the names directly
without further notations.

To disable reactors, you use the VLR-REMOVE subr. Given the reactor reference, this subr shuts
off the specific reactor. You can turn it back on using the procedure in the previous example. To
disable all reactors for a given category, use the VLR-REMOVE-ALL subr. If you use
VLR-REMOVE-ALL without parameters, all reactors in the system are disabled.

Within a callback function, do not modify the reactor system that called the function because
this can confuse both you and the operator. All reactor-based activities should be defined while
your application is loading or getting started. It cannot be emphasized enough that you must be
careful when developing reactor-based programs. You can change the way AutoCAD is expected
to work at a fundamental level, resulting in problems in the system. Autodesk has taken precau-
tions to ensure that a crash resulting from Visual LISP does no permanent damage to the
AutoCAD system. In the worst case, you will have to restart the Windows system and then restart
AutoCAD. If your program is tied into an automatic startup feature or suite, remove it until you
have corrected all the problems causing the crash.

Although your program should ideally know whether it has a reactor present and running, that
may not always be the case. The reactor may be something that comes and goes or is loaded on
demand. Or you may need to know about reactors currently programmed in the system. Whatever
the reason, you can use several subrs to find out about active reactors in the system. Start with
VLR-REACTORS, which returns a list of all the reactors active for a category. Use the colon-start-
ing-name of the group, such as :VLR-COMMAND-REACTOR, to obtain a list of all reactors currently
attached to that notification group. Given the group of reactors (which are dotted pairs consisting
of the event name and the function symbol), you can now interrogate each one separately for a
match.

Listing 16.2 contains an example function that checks the command reactors to see whether
the callback function from Listing 16.1is defined as part of a reactor. The function starts by using
VLR-REACTORS to obtain all the command reactors in the system. CRL is a list, the first member of
which is the category code, such as :VLR-COMMAND-REACTOR. Each member in CRL is put into CR in
the outermost FOREACH loop. The reactors are supplied as a list; the first member is the code type
(as in :VLR-COMMAND-REACTOR) followed by the command reactor objects. There could be one or
many command reactors in this list, so CDR is used to supply a list to the inner FOREACH loop.

The VLR-REACTIONS subr returns a list containing groups of events and callback function links
given a valid reactor object. This function streams through the list using the third FOREACH loop.

230 CHAPTER 16: Event Programming

The CDR of the reactor linkage data is checked for a match to the CMD-COUNTER function. If a
match is made, the FND symbol is set to True.

Keeping track of reactors is the responsibility of your application. It is easy to have multiple
reactor definitions for the same thing cluttering your system and causing “interesting” results. As
such, I strongly recommended that you create housekeeping utilities such as the one shown in List-
ing 16.2.

One way to keep track of an application full of reactors is to use the data option when defining
reactors to the system. The first parameter sent to the VLR-*-REACTOR subrs is the data option.
This can be NIL if you don’t need to keep track of the reactor, or it can be any LISP data item such
as a string. The VLR-DATA subr then retrieves this data after you have the reactor object. Listing
16.3 demonstrates the use of VLR-DATA for housecleaning. Any reactors with data matching the
parameter are disabled.

It is easy to get things muddled in the system if you are not careful. By using data traces and
keeping track of running reactors in your program, your reactors can work properly with others
and with AutoCAD.

Listing 16.2 Determining whether a reactor is attached

(DEFUN CMDCNTACTIVE (/ CRL CR RL RE FND)

 (SETQ CRL (VLR-REACTORS :VLR-COMMAND-REACTOR))

 (FOREACH CR CRL

 (FOREACH RE (CDR CR)

 (FOREACH RL (VLR-REACTIONS RE)

 (IF (EQ (CDR RL) 'CMD-COUNTER)

 (SETQ FND T)))))

 FND

)

Listing 16.3 Disabling reactors by name.

(DEFUN CLEANREACTORS (NAM)

 (SETQ CRL (VLR-REACTORS))

 (FOREACH CR CRL

 (IF (= NAM (VLR-DATA (CADR CR)))

 (VLR-REMOVE (CADR CR)))))

Object-Level Reactors 231

Object-Level Reactors

Object-level reactors are essentially the same as the command and database types of reactors
except they are used only when a specific object is manipulated. Database reactors run every time
the database is changed and provide a powerful way to keep track of objects on a global level.
They also slow things in AutoCAD because they must be serviced every time the database is
updated. If you want to keep track of only a few objects, this is not the right way to proceed.
Instead, you should set up specific object reactors.

The reactor can be tied to a single object or a set of objects. When called, the object reactor
function is passed three parameters: a reference to the object causing the notification, the reactor
object link, and a list containing additional parameters. The content of additional parameters var-
ies based on the reactor being serviced. For entity objects, only the VLR-COPIED and
VLR-SUBOBJMODIFIED events send parameters, specifically the new entity object references. The
other entity object events send an empty list as the last parameter.

When an entity object reactor is notified, the entity object causing the notification is supplied as
an argument to the callback function. Properties and methods for the entity object are available
immediately. In many cases, objects that cause a notification event are related to other entity
objects. The idea is that if one entity object changes, the others must change or at least be aware of
the change. An example, which you will program shortly, is to associate text to a property of
another object, such as the area.

The act of attaching a notification event and an associated function reactor to an entity object
establishes the entity object as an owner of the reactor. Multiple entity objects can share ownership
of a reactor. When the reactor object is first defined, a place is provided for a list of VLA entity
objects that claim ownership of the reactor object. Following is the syntax for defining an entity
object reactor:

(VLR-OBJECT-REACTOR owners data callbacks)

Owners is a list of VLA entity objects and may be one or many. data is NIL or contains some
Visual LISP data that you can use to identify this reactor as yours. callbacks is a nested list of noti-
fication events and associated functions to call when the event takes place.

Inside the callback function, the reactor object is provided as the second argument. Several
expressions can be used with the reactor object beyond VLR-DATA. VLR-OWNERS returns a list of
VLA entity objects that own the reactor. VLR-REACTIONS returns a list of reactions defined for the
reactor. VLR-TYPE reports the type of reactor. VLR-DATA-SET allows you to change the data associ-
ated with an object.

Next, you focus on the owner concept because that is an important feature of reactors. In a
way, the relationship of objects from a reactor is a lot like a relationship of objects from a selection
set. When the reactor is established in the system, a set of entities is related to it. These entities own
the reactor. That is, when the entity changes, the reactor is told about it. If the reactor is changed,
the entities do nothing; it is a one-way street in that regard. Another way that an ownership group
is similar to a selection set is that the group exists only in the current drawing edit session (under
normal circumstances).

VLR-OWNERS returns a list of owner object references. You can modify the set of owners stored
with a reactor by using VLR-OWNER-ADD or VLR-OWNER-REMOVE to add or remove, respectively,

232 CHAPTER 16: Event Programming

entity objects one at a time after the reactor has been established. These subrs are similar to the
SSADD and SSDEL subrs for selection set handling. Objects are added and removed one at a time
from the ownership group just as they are with a selection set.

When building an ownership group, it is critical to consider what the different owners mean to
the callback function. In some cases, you will want to skip the entity objects because changes to
them will not modify other entities. And keep in mind how changes to objects in the ownership list
will cause the reactor to fire again should the routine modify the entities.

The primary advantage to having an ownership group is that it makes it easy to find objects
related to each other as they are changing. As an example of how these concepts work, Listing
16.4 starts the Visual LISP code for a reactor that ties a text string to an entity object. The basic
application is that a text entity object houses the area of the attached objects in the text string. As
the entity object is modified, the area value updates automatically. On the other hand, as the text is
changed, the object with the area property remains untouched by the reactor.

Listing 16.4 contains the callback function for the reactor. The parameters to the callback
function are the notification object (NOBJ), the reactor object (ROBJ), and the parameter list
(PLIST). The parameter list is empty because this reactor function is called for an object-modified
event. Parameters are passed only for copy and submember change events.

The first expression in the reactor function is a conditional expression to see whether the
object that caused the notification is the area object. For each area reactor, there are two entity
object owners: one owner is the entity from which the area value is derived, and the other is the

Listing 16.4 Reactor for updating the display of the area.

(DEFUN AREALINKFIX (NOBJ ROBJ PLIST

 / NEWAREA OBJS VOBJ TOBJ)

 (IF (VLAX-PROPERTY-AVAILABLE-P NOBJ "AREA")

 (PROGN

 (SETQ NEWAREA (VLA-GET-AREA NOBJ)

 OBJS (VLR-OWNERS ROBJ))

 (FOREACH VOBJ OBJS

 (IF (VLAX-PROPERTY-AVAILABLE-P

 VOBJ "TEXTSTRING")

 (SETQ TOBJ VOBJ)))

 (IF TOBJ

 (VLA-PUT-TEXTSTRING TOBJ

 (STRCAT "Area = "

 (RTOS NEWAREA))))))

)

Object-Level Reactors 233

text displaying the area value. Thus, this test determines whether the object in question is the text
or the one with the area. Because text objects do not have area, only the data source object is
selected.

If the object supplying the area is the reason for the callback function being started, the code in
PROGN is evaluated. The first step is to extract the area value and place it in the NEWAREA local sym-
bol. Next, the list of entities that are considered owners of the reactor object is placed in OBJS. A
FOREACH loop is started in which each entity object is placed in VOBJ. This object is checked to see
whether it contains a TEXTSTRING property. If so, it must be the text object, and you want to save
that link in TOBJ. Each object in the OBJS list is tested in this manner to locate the text object
where the area will be displayed.

After the objects have been processed through the loop, the TOBJ symbol is checked to make
sure you found a text object that can be updated. If so, the TEXTSTRING property is updated with
the new area value.

Listing 16.4 contains the reactor function. Listing 16.5 contains the setup for the reactor. In
this function, the operator is asked to select an object that has area. If a successful selection is
made, the object’s area is used to create a text entity object to be output at an operator-selected
location. Both the text and selected objects are then defined as owners of a new reactor.

Next, you walk through the code in Listing 16.5 to see how the reactor is established with the
object ownership. The first step is to call the LINKACTIVEX function, defined in Listing 16.6, which
sets up the ActiveX interface reference symbols ,such as the one for model space.

Back in Listing 16.5, ENTSEL is then called for the operator to select an object. If a good selec-
tion is made, ENP contains a non-NIL binding and the code continues by setting the V_ENP symbol
to the VLA object for the entity in ENP. Next, the V_ENP object is tested to see whether the AREA
property is available.

With the AREA property available, the next question to the operator is where to locate the text
point. The ENT symbol is set to the data point input as a result of GETPOINT. VLA-ADDTEXT adds a
new text object to the model space. This subr is one of the automation extensions in Visual LISP,
and the parameters are the entity space into which the object will be added, the text string, the
location, and the text size. Your new text object is being added to model space, and the object link
for that was established in the (linkActiveX) function. The string for the new text entity is the
result of combining the “AREA = ” string constant with the string representation of the AREA prop-
erty. To use VLA-ADDTEXT, the point location in ENT must be converted from a three-dimensional
point list to a safe array for ActiveX processing. The VLAX-3D-POINT subr does the conversion.
Last, the text height is extracted from the system variables and supplied directly to the
VLA-ADDTEXT subr.

VLA-ADDTEXT returns an entity object reference, which is saved in V_ENT. This entity object plus
the one selected and saved as V_ENP are the owners of the reactor built in the
VLR-OBJECT-REACTOR expression. The first parameter to the object reactor build subr is a list con-
taining the two object references, thereby establishing the ownership of the reactor by these two
objects right away. The next two parameters passed to VLR-OBJECT-REACTOR are optional data
and the list of reactions. This example function uses the “AreaConnect” string as the attached
data for identification by other processes or modules. You are programming only one reaction, and

234 CHAPTER 16: Event Programming

Listing 16.5 Setting up the area reactor.

(DEFUN C:AREALINK (/ ENP ENT V_ENP V_ENT)

 (LINKACTIVEX) ; set link to model space

 (SETQ ENP (ENTSEL "\nSelect object "))

 (IF ENP (PROGN

 (SETQ V_ENP

 (VLAX-ENAME->VLA-OBJECT (CAR ENP)))

 (IF (VLAX-PROPERTY-AVAILABLE-P

 V_ENP "AREA")

 (PROGN

 (SETQ ENT

 (GETPOINT "\nText point: "))

 (IF ENT (PROGN

 (SETQ V_ENT

 (VLA-ADDTEXT

 MODELSPACE

 (STRCAT ;Text

 "Area = "

 (RTOS

 (VLA-GET-AREA V_ENP)))

 (VLAX-3D-POINT ENT)

 (GETVAR "TEXTSIZE")))

 ;

 (VLR-OBJECT-REACTOR

 (LIST V_ENP V_ENT)

 "AreaConnect"

 '((:VLR-MODIFIED . AREALINKFIX))

)))))))

 (PRINC)

)

The Life of a Reactor 235

that is in response to any changes to the objects. If either the text or the area data objects are
changed, the (AreaLinkFix) function is called.

That concludes the setup of the reactor. All you did was select one entity, build a second based
on information from the selected entity, and then create a reactor owned by the two objects. The
reactor launches the (AreaLinkFix) routine when either entity is modified. The next step in the
program is to wait for the event just set up to take place.

One thing that amazes me about Visual LISP is how few lines of code are needed to set up such
a complex interaction between AutoCAD objects. The power of object manipulation and the lan-
guage itself combine well in this regard to deliver a succinct and elegant solution.

The Life of a Reactor

After you define a reactor, it remains active until it is removed using VLR-REMOVE or the drawing
ends. When you leave that drawing, the reactor is no longer active. If you start a new drawing,
load an older drawing, or close the existing drawing and reload it, the reactor is not available and
the setup function is missing — unless you take extra steps to preserve it.

Reactors can be either persistent or transient. By default, all reactors are transient, which
means they go away at the end of the drawing edit session. The VLR-PERS subr changes a reactor
from transient to persistent. Persistent reactor links are stored when the drawing is stored. Note
that only the links, not the reactor functions, are stored with the drawing. Should these drawings
end up at a workstation that does not have the functions available and loaded, error messages will
indicate that the reactors are missing. To work seamlessly with the CAD system, drawings contain-
ing persistent reactors must have the functions installed and set up for loading with the drawings.

Callback functions can be loaded as part of the AutoCAD startup suite. I recommend that you
compile the program into a VLX file for faster loading and force the VL-LOAD-COM call during the
loading. By setting up a VLX file, you can better integrate into the AutoCAD environment and
make use of faster processing. (To set up a VLX file, use the Make Application option in the File
menu of the VLIDE.)

Listing 16.6 Setting up some reference symbols.

(DEFUN LINKACTIVEX ()

 (VL-LOAD-COM)

 (IF (NULL MODELSPACE)

 (SETQ

 ACADAPP (VLAX-GET-ACAD-OBJECT)

 DOCOBJ (VLA-GET-ACTIVEDOCUMENT ACADAPP)

 MODELSPACE (VLA-GET-MODELSPACE DOCOBJ))))

236 CHAPTER 16: Event Programming

Rules and Suggestions for Working with Reactors

A reactor is like a dialog box in that it requires some setup work before it is operational. After
that, the similarities end. A dialog box is put up on the screen, filled in, and processed. When the
operator clicks a retirement button such as OK or Cancel or a DONE_DIALOG is processed, the dia-
log box completes and the callback functions are no longer part of the application picture. That is
not the case in with reactors. A reactor remains active until it is removed using VLR-REMOVE. You
may have a command running and the reactor suddenly runs because the command triggers an
event. That command may be running inside another Visual LISP function or a VBA macro, and
the reactor function suddenly pops in for evaluation. Because of this type of situation, reactors
must not interact with the operator or change the flow of command sequence.

Although you might think that reactors give you supreme power over the system, they do not.
Instead, you must adhere to a set of rules that help keep things running in good order. These rules
and some suggestions follow.

Rule 1: You cannot cancel or overrule the cause of the reaction

A reactor should not try to cancel or overrule the activity that caused the reaction. This is espe-
cially true for command-based reactions. Suppose that an object is to be moved, and your reactor
moves it back to where it started. By moving the entity object, your reactor causes another move
reaction to take place. If you are not careful, this could result in a reactor that keeps running until
the system runs out of memory.

Rule 2: You can not access a deleted object

When an object is being deleted, you can no longer access it inside the reactor. Instead, you are
told that the object is tagged for deletion. The VBA object reference cannot be converted to an
entity name, and attempts to access this object will be futile. There are clever ways to program
around this by storing the entity data elsewhere in the system, but the key is that you cannot stop
the delete operation from finishing. Ideally, this is the time when your application would clear any
related data or update LISP variables based on the changing object.

Rule 3: Do not modify the object causing the event notification

Object-level reactors should not attempt to modify the object that caused the event notification.
Doing so presents problems, even if you try to trick the event handler by causing another event
with a different object. It is best to simply work with the data as the object is changing, such as in
the area example.

Rule 4: Reactors must not interface with the operator

Do not attempt to perform user interface work in a reactor. Subrs such as ENTSEL and GETPOINT
should not appear in a reactor callback function because they modify the sequence of input for a
command in AutoCAD. Do not display a dialog box because this greatly changes the interface

Rules and Suggestions for Working with Reactors 237

flow from a user’s point of view. Reactors should be free of user input. Instead, the object causing
the reaction should be considered the input.

Suggestion 1: Do not change objects in a reactor

In a reactor function, try to not trigger the same event by changing an object that also owns the
same reactor. If you are not careful, you could trigger an infinite loop in your program as the reac-
tor calls on the reactor and so on.

If you do trigger the same event, use a test to avoid changing things you don’t want to change,
as in the area link example. Another way to prevent reactor functions from ending up in an infinite
loop is to use global flags that indicate whether the reactor is already busy and whether this itera-
tion of the function is due to changes to a related object in the ownership group.

Suggestion 2: Check before defining an event

You should verify that an event is not already defined before defining another instance of one.
Otherwise, you could end up cluttering memory and causing delays in the way AutoCAD runs.
The other way to keep memory under control is to keep track of reactors in your application.

Suggestion 3: Keep reactors fast and error free

Reactors should be quick and as free of errors as possible. More than one reactor may be attached
to an object, so you may have to service more than one reactor in an advanced environment. The
reactor that behaves best does the least. Reactors are for data gathering more than graphics manip-
ulation. Although you can do graphics manipulations, as demonstrated in the example functions,
that is not a reactor’s strong point. Graphics-manipulation-based functions that are completely
error-free can be difficult to write, especially if you try to keep the user in mind at all times.

The real power of reactors is in fact gathering and checking. As data is entered, you can check
it and monitor the operator’s performance. The latter is not of interest unless you time operators
to check productivity or bill by the hour for CAD time. The next level up in complexity is the use
of reactors to set up an intelligent system by “learning” as you draw. Consider an application that
designs bridges. It starts by drawing a polyline representing the centerline of the highway, and then
inserts a rectangular polyline representing the bridge limits. The reactors could sense the addition
of the bridge limits and suggest a next step or an alternative alignment.

Suggestion 4: Make reactors self-contained

You cannot anticipate the sequence of reactor calls. Just because your computer runs a particular
sequence does not mean that my computer will run the same sequence when a complex series of
reactors is involved. As such, each reactor should be self-contained and not expect to see data from
other reactors in the system. The only exception is reactors tied to the start and stop of related
events, such as the LISP command starting and ending events.

238 CHAPTER 16: Event Programming

Summary

Event-driven programming is becoming more common in interactive environments. You have
already seen some event-driven programming in the form of dialog boxes. The preparation steps
are roughly the same for dialog boxes and event-driven programs: Define some functions to serve
as callback functions, and then link them to the notification management system. After the func-
tions are linked, they are on their own to run whenever a particular event takes place.

This chapter discussed the types of reactors available to the Visual LISP programmer, starting
with the global, or general, reactors and leading to the object-level reactors. You looked at a com-
mand-level reactor that simply counted the number of commands started by the operator. The
example showed what was required to set up a basic reactor function and have AutoCAD make
use of it as events take place.

You learned how to manipulate reactor objects using a variety of VLR subrs in Visual LISP. An
example utility was presented that demonstrated the use of the optional data attribute for reactor
management. You then followed the steps involved in setting up a reactor group and attaching
entity objects. An example showed the LISP code required for pulling off some reactor “magic.”
The reactor example changed text as the area of a linked object was adjusted due to changes
caused by operator edits.

Reactors are a powerful tool in the Visual LISP programmer’s toolbox. But with this tool comes
more responsibility than with other Visual LISP programming tools. Reactors can change the way
AutoCAD runs and can have a great effect on operators as a result. Follow the guidelines for pro-
gramming good reactors as closely as possible to avoid having reactors that go out of control.

239

CHAPTER 17

Working with the
Computer

The traditional place for storing data in a computer is in a file. Files can be on a disk, on backup
media (such as a tape or CDR), in the computer’s memory, or elsewhere across a network. In most
cases, a file is a simple sequence of bytes that means something to a program. That sequence may
consist of ASCII characters, binary representations of numbers, or other data types.

A typical integrated application environment gathers data from one source, manipulates it, and
then stores it in a file to be processed later by another application that reads the file. That other
application may report on the data or use it for something else, such as verifying an external refer-
ence. In other words, files are used for communication between processes as well as a place to
house data while it is not in active use.

In Visual LISP, programming files are used to read data from other sources and to store data for
other applications. Visual LISP file accessing is powerful but also has limitations. This chapter
explores the subrs provided in Visual LISP for file processing and also points to where you should
go next depending on your interface or integration needs.

Types of Data Files

You have worked with LSP and DCL files, the source code files for your Visual LISP program mod-
ules using the VLIDE. But a computer has many other types of files. Most have a file type, which is
considered the file name extension in Windows. For example, an EXE file is an executable binary
file, a VLX file is a compiled Visual LISP project, and a DLL file is a dynamic link library. Most file
types in Windows have an associated application, such as DWG for AutoCAD drawings and TXT
for Notepad. An application can declare a file extension to be associated with the application.

Thus, when you think of a type of data file, you often think of associated data files for applica-
tions. But there are only two types of data files, regardless of their extension: ASCII files and
binary files. The difference between the two is simply whether or not an elementary text editor can
read them. ASCII text file examples include LSP and DCL files. They can be viewed not only in the

240 CHAPTER 17: Working with the Computer

VLIDE but also using a simple text editor such as MS-DOS EDIT or Windows NOTEPAD. DWG
files are examples of binary files. You can view them only with AutoCAD or in a program written
specifically to read and display DWG files. Visual LISP applications that involve files will most likely
use ASCII text files.

Visual LISP has subrs for reading and writing sequential text files. In a sequential file, you start
at the beginning and proceed through the file until either the end is reached or the item being
sought is located. (With a random access file, you can back up or jump around in a file. The Visual
LISP subr library does not support random access because Visual LISP it is not a file manager or
database system.) When accessing files, you will be either reading a stream of text or working with
an external database system (such as Access).

Database systems in Windows can be programmed through ActiveX automation or by using a
driver system. You looked at the basics behind ActiveX automation in Chapter 15 (attach the
application object and then use methods and properties), and it should be clear that the tools used
to run another program are documented in the other application’s help system. Database systems
such as Microsoft Access use ActiveX automation for external process interfaces, and Visual LISP
works quite well with that tool.

Database system suppliers adopted the SQL standard several years ago. As far back as
AutoCAD Release 12 with the ASE (AutoCAD SQL Extension), database access has been available
from inside AutoCAD. For more information about attaching a database to AutoCAD, see the
DBCONNECT information in the main AutoCAD online help, because the ASE routines are no longer
supported.

Disks, Files, and Directories

Files are organized in directories, which are on disks or some other storage device. When accessing
a file, the program normally must supply the complete path — unless the file is in the same search
path as AutoCAD or in the default current directory. Even if a file is located in a local directory,
you may need to supply the complete path, name, and extension so that subrs can locate the file.

In Windows, directories are called folders. A folder name can consist of most characters,
including spaces. The name cannot contain colons and slashes because these characters are used to
separate the device (drive) and folders so that the system can find a particular file. The
“C:\Program Files\Acad2000\test1.txt” file name string means that the file is located on the
local C device in a folder named Acad2000, which is in a folder named Program Files. This
method of designating files and directories has been used in computer programming for a long
time and continues today.

In Visual LISP, the backslash character has another purpose in string handling. Visual LISP
interprets the backslash as the first character of a control sequence, as in “\n” for a new line or
“\e” for the Escape key. Thus, Visual LISP would send an ASCII 27 (character code for the escape
key) instead of “\e” to another device or program. There are two ways to get around this problem
with file and external device handling. The first is to use a forward slash in place of the backslash.
The file name “C:\TEMP\TEST1.TXT” would be written as “C:/TEMP/TEST1.TXT”. The other
option is use a double backslash character sequence, as in “C:\\TEMP\\TEST1.TXT”. A double
backslash tells Visual LISP that the slash is not a control character but rather a slash in the string.

Processing Files 241

To locate a file using Visual LISP, use the FINDFILE subr. FINDFILE searches the AutoCAD
search paths defined in the preferences for a particular user profile. (User profile objects are
accessed in the AutoCAD application root object.) FINDFILE returns NIL if it cannot locate the file
in question. Otherwise, it results in a string that contains the complete path and file name plus the
extension. The string contains double backslash characters for the directory separations and is
suitable for use in any Visual LISP subrs that uses file names. FINDFILE has one parameter, the file
name to seek. If the file name supplied contains a directory path, that is the only place FINDFILE
looks. When the file name contains no path or folder information, the entire AutoCAD search path
is checked.

Another way to locate a file is to have the user point it out with a file browser. A file browser is
a dialog box that appears for the purposes of navigating devices and folders to locate a file. The
GETFILED subr displays a browser dialog box with defaults based on the parameters supplied to
the subr. There are four parameters: three strings and an integer flag. The first string is the title for
the dialog box, such as Select my file. The second and third strings contain a default file name
and default file extension to display, respectively. The last parameter is an integer indicating what
kind of file the operator can select.

GETFILED can be used when you want the operator to select new or existing files. When set up
for new files, any selection of an existing file results in a message telling the operator that the file
will be overwritten. For existing files, you can prohibit the input of a file name, forcing the opera-
tor to select an existing file instead. Both GETFILED and FINDFILE return NIL if no file is selected
or found. If the file is found, they return a string, which can be used to further process the file.

Processing Files

File processing in Visual LISP is straightforward. The first step is to open the file. When a file is
opened, you must declare whether you intend to write a new file, append to an existing file, or read
an existing file. After the file is opened, you read it or write to it, but not both at the same time. If
you open a file twice at the same time, once for reading and again for writing, the results will most
likely not be what you want because the file transactions are buffered in memory.

Because all files processed by Visual LISP are ASCII text files, strings are used to send and
receive data. Strings can be handled one character at a time or as a complete set of characters.
After the file processing is finished, the file must be closed before it can be used again. Thus, the
steps for processing a file are to open it, read it or write to it, and then close it.

The OPEN subr opens a file and returns a file handle, which is a special data type in Visual LISP
for communicating with the operating system. The operating system is responsible for handling all
file-based transactions between computer memory and the disk system (or network). When a file is
opened, a place in the operating system’s memory is reserved and assigned an ID. The controlling
program uses that ID when referencing the open file.

In Visual LISP, the file handle is used to get file ID information. This is why it is important to
close files when you are finished with them. Even though your Visual LISP program may have fin-
ished, AutoCAD cannot be sure you are finished with the file. After all, another module may start
and expect to find that file open and ready for processing. If the file handle is no longer available
but the file is left open, no other programs can access the associated file until the drawing is closed.

242 CHAPTER 17: Working with the Computer

OPEN has two arguments: the file name and the processing mode, which are both provided as
strings. The file name should include the complete path and extension of the file using either
forward slash or double backslash characters for the dividers between the folder (directory) names.
The processing mode options are “a” for append, “r” for read, and “w” for write. If OPEN is
successful, a file handle is returned; otherwise, the result if NIL. The result returned from OPEN
must be saved in a symbol reference using SETQ for further references to the file.

OPEN should always be used with SETQ, as in the following expression:

(SETQ FH (OPEN "MYFILE.TXT" "r"))

This expression opens the MYFILE.TXT file in read mode. The file is expected to be located in
the current directory or search path for AutoCAD. The result of the OPEN expression is saved using
the FH symbol for further access to the file just opened. The next step in any program is to test the
binding of FH. If NIL, the OPEN did not succeed.

OPEN can fail for a variety of reasons, depending on the open mode used. When reading files, a
failed open signifies that the file is missing, the file is not where you told the system to get it, the file
name is invalid, the path is invalid, the extension is wrong or missing, or the file is locked by
another program. When writing files, errors vary from being out of disk space, an invalid file
name, invalid path information, or a locked file. Appending to a file is just like writing to the file.
In fact, if the file does not exist and you’ve requested to append data to the file, a new file is created
for output just as if you had requested to write data.

When you have finished processing a file, you use the CLOSE subr to release memory and finish
any remaining tasks with the file. Visual LISP files are buffered in memory, so they are not updated
every time you write something to them. The act of closing a file that has been opened for writing
flushes any unwritten data from memory to the disk file. For example, Listing 17.1 contains a
function that records events to the EVENT.LOG text file in the current directory. The function starts
by opening the EVENT.LOG file in append mode. This means that if the file exists, new data in the S
string is written to the end of the file. If the file is not found, a new one is created in the current
directory.

WRITE-LINE outputs a string to a file given the file handle. At the end of the string, an Enter
keystroke is added. WRITE-LINE is like typing into a text editor and then pressing the Enter key.
The characters for a newline are appended to the string, forcing the next output to a new line
when displayed in a text viewer. A new line is character code 10 (line feed) or the combination of
codes 13 and 10 (carriage return and line feed). Visual LISP uses the latter. These values become
important when you process the file in another application.

Listing 17.1 Logging an event.

(DEFUN EVENTLOg (S / FH)

 (SETQ FH (OPEN "EVENT.LOG" "a"))

 (WRITE-LINE S FH)

 (CLOSE FH)

)

Writing Data 243

The last action in the function is to close the file. Closing the file sends the string to the disk so
that, when the function returns, the file is not left open and data is not left in memory.

The function in Listing 17.1 represents the sort of routine that you can use in advanced and
time consuming applications. An event-logging system assists in tracking down problems in a pro-
cess or in updates later in the life cycle of the software. Because this function opens and closes the
file each time, the processing is slightly slower, but the tradeoff is that the information in the log is
always current, containing the last message processed by the function.

Writing Data

You can use the PRINT, PRINC, and PRIN1 expressions along with WRITE-LINE and WRITE-CHAR to
output data to files one you use depends on the type of data you are writing to the file. String data
is best handled with WRITE-LINE. The newline character sequence is automatically appended to
the string with the output. PRINT also outputs a newline sequence but at the front of the string. In
addition, it adds a space at the end of the string and outputs the double quotes.

PRIN1 outputs the string with double quotes, but no new line at the beginning and no space at
the end. PRINC, on the other hand, removes the double quotes for output and provides no extra
characters at the front or back. The choices are varied because your needs are varied.

WRITE-CHAR uses integers representing the ASCII character values of the string to be output.
You use this subr when you need exact format control or are outputting exceptionally long strings
of data.

In most Visual LISP file output situations, you can use the WRITE-LINE or PRIN subrs.
WRITE-CHAR is for situations requiring special characters or control characters from the ASCII set,
such as the tab character. Writing ASCII value 9 is the same as a tab in a text file.

Listing 17.2 demonstrates how to write a tab-delimited file, where a tab character (ASCII 9)
separates each item of data. The TabFileOut function takes a list and writes it to the file with a
tab character between each element. The function starts by opening a file in append mode, and
then it writes the first element from the list to the file. To complete the output of the list, a FOREACH
loop goes through the remaining items in the list. Inside the FOREACH loop, a tab character is out-
put using WRITE-CHAR and the list item is output using PRIN1. After exhausting the list, an ASCII
code 10 is sent to the file. This character causes the carriage return (code 13) to be output as well
because a text file under MS-DOS and Windows normally uses the codes 13 and 10 as a pair.

Writing data to a file is easy as long as you don’t try to do too much. Visual LISP’s file output
capabilities are intended for report generation and interfacing to other applications. If you need
random access file writing, Visual LISP is not the solution unless the file output can be accom-
plished using ActiveX-type interfaces or unless an ObjectARX extension can be custom written to
interface with the files you need. For most applications involving Visual LISP, sequential file output
is sufficient.

Reading Data

Reading data from files also involves working with ASCII text files. You can use only two subrs to
read data from a file after it is opened in read mode: READ-LINE for reading a string and

244 CHAPTER 17: Working with the Computer

READ-CHAR for reading a character as an ASCII value. READ-LINE reads the characters of a file
until a newline sequence is encountered. In most cases, READ-LINE works fine for reading data
from a file. READ-CHAR is required when you are working with very long lines of text or using spe-
cially formatted strings in files.

When reading data from a file that is destined for a list, the READ subr can be used to quickly
convert everything to numbers and strings. To convert the input to strings, the double quotes and
delimiters must be consistent with what Visual LISP normally recognizes. That is, delimiters can be
any white space such as the space character, a tab, or a newline. Normally when reading from a
text file, the delimiter is a tab or a space. Newline-delimited files are read by simply issuing
repeated calls to READ-LINE. (An example of a newline-delimited file is the AutoCAD DXF file.)

You’ll frequently encounter comma-delimited files. Although you might be tempted to use the
string search-and-replace utilities provided in Visual LISP to replace commas with spaces, keep in
mind that those utilities replace legitimate commas in the data strings as well. Thus, a more robust
parser that knows when to convert a comma may be required. An example is provided on the CD
as part of Listing 17.3. Listing 17.3 contains a function that reads a comma-delimited data file into
a list.

READ-LINE pulls each line from the file. The text lines are converted using the (COMMA_PARSE)
utility, which is on the CD as part of Chapter 17’s example functions. The result from
(COMMA_PARSE) is a string with the commas replaced by spaces. This string is passed to STRCAT
with an open and closing parentheses pair, making the string suitable for processing by the READ
subr. READ converts the string to a data list that is added to the RES result list. After the file is read,
it is closed, and the RES result list is reversed to return the list data in the order in which it was
encountered in the file.

Although reading a file has fewer options than writing to a file, your applications will often
have to do more work to convert the data to something usable. The ideal situation is when you are
the programmer of both the output and the input formats. But with increased advances in integra-
tion concepts and tools for computers, it is unlikely that such a luxury will exist for all applica-
tions that you will write.

Listing 17.2 Writing to a tab-delimited file.

(DEFUN TABFILEOUT (FILENAM ALIST / FH ITEM)

 (SETQ FH (OPEN FILENAM "a"))

 (PRIN1 (CAR ALIST) FH)

 (FOREACH ITEM (CDR ALIST)

 (WRITE-CHAR 9 FH)

 (PRIN1 ITEM FH)

)

 (WRITE-CHAR 10 FH)

 (SETQ FH (CLOSE FH))

)

Visual LISP File Management Tools 245

Visual LISP File Management Tools

Rounding out the file tools in Visual LISP is a set of basic file management subrs. Actions such as
renaming and deleting files are accomplished using these utilities, which mimic the original
MS-DOS or UNIX commands. Table 17.1 lists only a portion of the subrs supplied in Visual LISP
for file manipulation.

Most of these subrs use file name strings of the type that appear in an OPEN expression — fold-
ers are separated with double backslashes or a forward slash, and the extension appears after the
last period in the file name. For example, VL-FILE-RENAME accepts two strings representing file
names. The first is the original file name and the second is the new file name. If you supply path
names, they are used. This means you can use VL-FILE-RENAME to move files from one directory
to another by simply changing the path name of the destination but keeping the file name the
same. Listing 17.4 demonstrates this feature of VL-FILE-RENAME by using several VL-FILE subrs
to define a utility function that moves a file from one directory to another.

Listing 17.4 has two arguments: the file name to be moved and the name of the new directory
to which the file will be moved. FINDFILE is used to locate the exact position of the source file. If
it is successful, the last character from the new directory is extracted for testing. If that character
does not equal a slash (either a forward slash or a double backslash), a double backslash is added
to the end of the directory string. At this point, VL-FILE-RENAME has everything it needs and can
start. The source file name is used along with the result of concatenating the new directory string
plus the file base name and extension from the original source file.

Listing 17.3 Reading a comma-delimited file.

(DEFUN READCOMMALIST (FILENAME / FH LN LS RES)

 (SETQ FH (OPEN FILENAME "r"))

 (IF FH

 (PROGN

 (WHILE (SETQ LN (READ-LINE FH))

 (SETQ RES

 (CONS

 (READ

 (STRCAT

 "("

 (COMMA_PARSE LN)

 ")"))

 RES)))

 (SETQ FH (CLOSE FH))))

 (REVERSE RES))

246 CHAPTER 17: Working with the Computer

You can use the file manipulation tools in Visual LISP to build a variety of utilities to match
your application. For example, suppose that you want to insert a line in an existing file. You could
use VL-FILENAME-MKTEMP to create a new file name for temporary use, and then rename the old
file to this new name. As a result, the original file no longer exists and can be created again. Open
the temporary file for processing and copy the lines or records from the original file to the new file
until the point where you want to insert the new line(s). Write the new lines, and then continue

Table 17.1 Common file management tools.

Subr Description

VL-FILE-COPY Copies a file to a new location

VL-FILE-DELETE Removes a file from the directory

VL-FILE-RENAME Renames a file or moves it to a new directory

VL-FILE-SYSTIME Gets the file creation specifics

VL-FILENAME-BASE Returns just the base file name from a file string

VL-FILENAME-DIRECTORY Returns just the path or directory from a file string

VL-FILENAME-EXTENSION Returns just the extension from a file string

VL-FILENAME-MKTEMP Creates a temporary file name

VL-FILESIZE Reports the byte size of a file

Listing 17.4 Moving a file.

(DEFUN FILE_MOVE (FILENAME NEWDIR / CH)

 (SETQ FILENAME (FINDFILE FILENAME))

 (IF FILENAME

 (PROGN

 (SETQ CH (SUBSTR NEWDIR (STRLEN NEWDIR)))

 (IF (AND

 (/= CH "/")

 (/= CH "\\"))

 (SETQ NEWDIR (STRCAT NEWDIR "\\")))

 (VL-FILE-RENAME FILENAME

 (STRCAT

 NEWDIR

 (VL-FILENAME-BASE FILENAME)

 (VL-FILENAME-EXTENSION FILENAME))))))

Visual LISP File Management Tools 247

copying the old file to the new location. When the operation is finished, delete the temporary file.
This sort of file and data manipulation takes a long time when dealing with vast amounts of data,
but it is fast when working with small data sets.

VL-FILE-DELETE erases a file. The file is removed from the system entirely, and you must use
an undelete utility to recover it. Visual LISP does not provide such a utility because that is the
realm of the operating system.

Two subrs deal with the creation and listing of directories. VL-MKDIR creates directories, and
VL-DIRECTORY-FILES returns a list of file names. The list of directory files is based on wildcard
selections defined by the calling routine. For example, you can request that VL-DIRECTORY-FILES
return a list of only DWG (drawing) type files. Or you can have the subr return a list of directories
instead of file names. This powerful subr can be used to populate a list box in a dialog box to cre-
ate your own browser, giving you more control over the operator’s selections.

An example of the VL-DIRECTORY-FILES subr in action is provided on the CD. The
FileSelect function demonstrates a custom browser dialog box from which an operator may
select more than one file name. Listing 17.5 shows only a portion of the code; the remainder is on
the CD itself.

The DIR symbol contains a string with a directory name. IEXT is an integer offset into a list of
strings named PAT with the file extension patterns from the FILESELECT function on the CD.
Thus, the first expression with VL-DIRECTORY-FILES returns a list containing the file names in the
DIR directory with an extension as selected from the PAT list. The code value 1 as the last parame-
ter indicates that you are interested only in file names. The list of files matching the pattern string
is placed in FL at the end of this expression.

The second time VL-DIRECTORY-FILES is used in the example listing, it obtains a list of direc-
tory names to be placed in the DR symbol. NIL is used as the extension name when searching only
for directories.

The last two expressions call the Visual LISP sort utility to put the file and directory names in
order. The STR_COMPARE function is provided on the CD. VL-SORT accepts a list and a subr name.
The subr must be defined in a proper format with two arguments. The function returns T (true) if
the value of the first argument appears in front of the value in the second element. The function
returns NIL (false) if the first argument’s value must be swapped with the second. Because the com-
parison function is your own design, you can use VL-SORT to work with all types of lists.

Listing 17.5 Preparing to browse for files.

(SETQ FL (VL-DIRECTORY-FILES

 DIR (NTH IEXT PAT) 1)

 DR (VL-DIRECTORY-FILES

 DIR NIL -1)

 FL (VL-SORT FL 'str_compare)

 DR (VL-SORT DR 'str_compare))

248 CHAPTER 17: Working with the Computer

See the source code on the CD for the remainder of the multiple-selection dialog box example.
Note that a DCL file must accompany the LSP file and must be located in the search directory of
AutoCAD.

Summary

Visual LISP provides a robust set of file manipulation and management tools, although they are
not as sophisticated as other programming environments for data file control. A basic set of Visual
LISP subrs are dedicated to file output and input for string data. Because a wide variety of tools are
available for converting data to and from strings, a string-based system serves most applications
quite well.

File interfaces are an important way to integrate various tasks and jobs in a computer network.
Examples of file interfacing for Visual LISP are reading the input coordinates from a measuring
machine and obtaining a list of notes to be placed in a drawing. Output files may be used, for
example, in a finite element analysis or downloaded to a machine tool for creation of the part
drawn. To perform these tasks, you can use sequential text files.

Visual LISP can also speak with database engines running with an ActiveX automation inter-
face. If the database system has an exposed ActiveX interface, such as Access does, Visual LISP can
attach to the database and take advantage of any methods and properties.

Using the Visual LISP file management tools, a program can perform elementary directory
operations such as creating new directories and navigating through a hierarchy programmatically.
Most of the time, such searches are based on operator directions, but you can write a Visual LISP
program to search an entire drive or network system.

Remember that searching through a file takes significantly longer than searching through a list.
As such, you should use files for storing information that you read or write once during an appli-
cation run. If you need random access to a data structure, load it into a large list, process the data
in that fashion, and then write it to the disk. Visual LISP and the power of list processing make
such applications feasible; you might be surprised to see how large a list Visual LISP handles with
ease.

249

Epilogue

After reading a book like this, you are probably asking, “Where do I turn next?” Technology is
always changing, so there will always be more to learn — and exploit. Even after working with
LISP for more than 15 years, I continue to learn on a regular basis.

So where do you go next? The best place is the keyboard or your desk to start writing and
designing applications. Start small and dream big. Begin with a small part of the project and solve
it. You will learn from that experience and be better prepared to solve the next small part of the
dream. Do not throw away the dream just because it seems to be something that will take years to
achieve at your current skill level.

Caesar would have made a good applications designer. “Divide and conquer” is a good philos-
ophy not only for the deployment of armies but also for the design of a complex application.
When confronting a large application, divide it into many pieces by creating a hierarchy of con-
nected modules with some command and communication between them. And then further divide
those until you begin to define chunks that you can “see” as program code. This hierarchy of com-
mand and logic will allow you to keep your application connected as you create the various mod-
ules and utilities that make up the application.

The following are some books that you might find helpful along the way:

• Visual LISP: A Guide to Artful Programming by Phil Kreiker (2000, published by Autodesk
Press)

• AutoCAD Database Connectivity by Scott MacFarlane (1999, published by Autodesk Press)

• AutoLISP Treasure Chest by Bill Kramer (1997, published by CMP Books)

• ObjectARX Primer by Bill Kramer (2000, published by Autodesk Press)

• Programming AutoCAD 2000 Using ObjectARX by Charles McAuley (2000, published by
Autodesk Press)

250

There is no substitute for trying, which is why I end every article I write about programming with
the simple message, “Keep on programmin’.”

251

Index

Symbols
$key 164
$value 164, 169, 171–172
ERROR 42–44
:LEX-COMM1 15
:LEX-PAREN 15
:LEX-STR 15
:LEX-SYM 15
:VLAX-FALSE 222
:VLAX-TRUE 222
:VLR 225
= 28, 43, 46–48, 50
\n 47, 50, 135
_$ prompt 12, 18, 27, 41
_LS 15

A
ABS 72, 75
action 163, 173

settings 163
string 164

action 171–172
ACTION_TILE 157, 163, 173
activate 19–20
ActiveX 181–184

server 215, 221–222
ADD_LIST 165
ADS 3
ALERT 130, 158
AND 43, 78–80, 122
ANGBASE 88
ANGLE 121
angles 83, 85–88, 91
ANGTOF 87–88
ANGTOS 87–88, 131, 146
APPEND 110–111, 126
APPID 208–209

Application ID 208
APPLOAD 15, 20–21
APPLY 76
Apropos window 10, 17
arcsine 71
area 231–233, 235–238
arguments 2
ASCII 58–60, 63–64
ASSOC 117, 124–125
association list 116–117, 125
ATAN 72, 75
ATOF 84
ATOI 83–84
ATOM 98–99
atoms 30, 98
attributes 152–154, 158–159,

162–166, 169, 203–206,
213

AutoLISP 3, 5, 7

B
backslash 240–242, 245
balance parentheses 21
bit shifting 78
bits 77–80
Blocks 4
BOOLE 78–80
Boolean logic test 79
bound variable 36
BOUNDP 98–99
boxed_column 154–155,

160–161, 171–172
boxed_row 154
breakpoint 19, 22
busy icon 11
button 151, 155–156, 158,

161–162, 164–168
tiles 156–157

button 152–155, 172
byte 69

C
C++ 2, 5–6
CAAR 114–115
CADR 47, 115, 117, 121, 125
calendar 136
callback 150–151, 157–158,

163–168, 173–174
CAR 48, 50, 112–115, 118,

121, 125
CDR 112–114, 124–125
characters 53, 56–58, 60–65,

67–68
child window 12
CHR 60
CLOSE_LIST 165
CMDECHO 43
color coding 9, 14
column 153–155
COMMAND 131–133
command line 5, 14, 41
commands 127–128, 131–

134, 137
comments 28–29, 34, 46
Complete word icon 16
compliment 78
composite primitives 114–115
COND 46–49, 95, 100
conditionals 46
cons cell 112–114, 116, 125–

126
Console window 10–15, 18–

19
conversion 53, 56, 62, 68
coordinates 125

transformations 123

252 Index

copying
files 246

cos 76
customization 1, 4
CVUNIT 72, 77

D
data types 31

testing 98–99
database 240, 248
DCL 15–16, 23, 151, 162
DCL window 10
Debug toolbar 19, 22
debugging 9, 21
decimal 69–70, 74, 78, 81
defun 33, 35, 37, 39, 43–44,

47, 50
degrees 87

and angles 87–88
delete

file 247
denominator 72, 74
dialog box 149–174

See Chapter 11
creating 151
design 159
programming 162

DICTADD 211–212
dictionary 204, 211–213
DICTSEARCH 211–212
DIESEL 4–5, 216
direct effect 30
directory 240–242, 245–248
DISTOF 84–85
DLL 239
DONE_DIALOG 164, 168, 173,

236
dotted pair 116

E
ECS 124
edit_box 155, 158, 160–

161, 171–172

else 100–102, 107
ENTGET 177–178, 180, 184,

192, 198
entity list 179–180, 184
entity name 175–177, 179,

181, 183, 185, 187
ENTLAST 177
ENTMAKE 181, 196
ENTMAKEX 211–212
ENTMOD 180, 184
ENTNEXT 177, 180, 185, 197–

198
ENTSEL 144, 146
ENTUPD 181
EQ 98–99
EQUAL 70, 96–98
errors 25, 42–44

recovering 42
trapping 43–44

ESC 123
EVAL 30, 33, 48
evaluator 2, 25–27, 29–30,

32–34, 39, 43, 48, 50
event-driven programming

150
events 225, 227, 229, 231–

232, 237–238
exclamation point 41
EXP 71–72
exponential notation 70
exposure 5
expressions 2, 26

reading 26
EXPT 72–73
extended data 206–211

F
FAS 15–16, 20, 23
files 239–245, 247–248
filter 190, 192–194, 201
Find and Replace 17
FINDFILE 241, 245
FIX 70–71, 74

FLOAT 70–71
FOREACH 46–47
format 20

operation 18
options 15

FORTRAN 1–2
fractions 69, 73–74
function 9, 12–14, 16–17,

19–20, 22
reserved 29

further reading 249
fuzz factor 70, 96–97

G
GCD 72, 74–75
GET expression 141
GET_ATTR 165, 174
GETANGLE 144, 146
GETCORNER 144–145
GETDIST 141, 144
GETFILED 106
GETINT 69
GETKWORD 140–142
GETORIENT 144
GETREAL 140, 142–143
GETSTRING 54, 140–141, 148
GETVAR 47–48
global

heap values 40
memory 44
names 34
symbols 35–36, 40
values 40
variables 42–44

bindings 41
GRAPHSCR 128
group codes 179

H
HANDENT 177
heap values 39–40

Index 253

I
icons 9, 16–20
IDE 9–15, 21

See Chapter 2
IF THEN 94–95
importing

text 104
INITDIA 133
INITGET 141–142, 144, 148
input 139–142, 144–146, 148
integer 69–71, 73–74, 78–80
IS_CANCEL 157
IS_DEFAULT 157
ITOA 54, 83, 131

J
Julian date 136

K
key 152, 160–161, 163
keyboard

input 140, 144–145, 148
Kramer, Bill 249
Kreiker, Phil x, 249

L
label 152–157, 160–162,

171–172
LAMBDA 120, 122, 125, 165,

201
language 1–4, 6
LAST 114
length 117, 121–122
LINE 192
line

code 29
logical 29

LISP 1–7
LIST 109–110, 125, 128
list_box 156
LISTP 98

lists 30, 109–126
See Chapter 8
adding to 110
association 116
creating 109
dotted pair 116
looping 118
point 120, 122
sorting 119
storing and accessing 112
tiles 159

LOAD 15, 20
LOAD_DIALOG 162, 172
local

symbols 35–36, 46
variables 38, 40–42, 44

LOG 71–72
LOGAND 78–80
logic 93–95, 101, 103
logical line 29
LOGIOR 78–80
loops 31, 46, 102–105
LSP 14–16, 20, 23
LSP window 10
LUNITS 85–86
LUPREC 85–86

M
MacFarlane, Scott 249
make 16
MAPCAR 76, 122, 165, 186,

201, 213
MAX 72, 76–77
McAuley, Charles 249
MDI 5
member 111–114, 118
MENUCMD 216
MENUGROUP 216
menus 4
MIN 72, 76
MINUSP 96
MODE_TILE 157–158, 163,

165, 173–174
modulo 73

N
NAMEDOBJDICT 211
NENTSEL 144
nested expression 39, 48
NEW_DIALOG 163, 173
NEWDICT 211
NIL 31, 49, 95–96
NOT 43–44, 66, 78, 100
NULL 98
number root 73
NUMBERP 99–100

O
object

ID 175–177, 183, 187
links 217
reactors 227, 231
tree 217, 221, 223

ObjectARX 3, 5–6
object-oriented programming

216
ok_cancel 152–155, 161,

172
OPEN 242, 244–245
OPENGETFILED 241
operators 81
OR 74, 78–80, 100
otherwise 49, 101
output 127–131, 137

See Chapter 9
owner 228, 231

P
parameter 33–41
parentheses 2, 21–22
pattern 56–58, 60–62, 67
persistent

reactors 235
physical line 29
Pi 27–28, 34, 75
point list 116, 120–122
POLAR 27–28, 121
polar expression 27

254 Index

precision 69–70, 74, 81
predicate 96, 101–103, 105,

107
prefix notation 2
primitives 114–115
PRIN1 40, 130–131, 243
PRINC 40, 49, 130–131, 243
print 37–39, 49, 131, 243
print formatting 23
PROGN 47, 49
programming 2–6

options in AutoCAD 4
project

closing 11
compiled 16
creating 16
files 23
manager 17

PROMPT 13, 35, 47, 50, 130,
136

prompt 10, 41
command 27, 29

Q
QUOTE 28, 30, 32, 109–110

R
radians 87–88, 91
radio buttons 155–156, 158,

163
random access 243, 248
reactor 225, 227–233, 235–

238
read 53, 57, 61–62, 66, 243
READ-CHAR 244
READ-LINE 243–244
REAL 31, 43
REGAPP 208–209
REM 72–73
remainder 72–73
RENAME 245
REPEAT 102–103, 192, 194,

196

repeating tasks
See loops

result 25–27, 30–33, 36–37,
39–42, 45, 48, 50

retirement 151, 164
REVERSE 110–112
ROUND 70
row 153–156, 171
RTOS 85–86, 131

S
SAFEARRAY 31
scalars 84
scope 35, 39, 42

symbols 35–36
script files 4
scripts 4–5
Search toolbar 17
selection sets 176, 187
semicolon 29, 34
sequential access 240, 248
server 220–221
SET 32
set 25, 31, 33, 39–44, 46, 49
SET_TILE 157, 163, 165, 167,

173–174
SETQ 28, 32–34, 44, 48, 55,

66, 117, 196
SETVAR 43
shift operations 78
side effects 40–41
SIN 72, 75
SQL 240
SQR 72–73
square root 72–73
SSADD 189–190, 196, 201
SSDEL 190–191, 196, 201
SSGET 144, 190, 193, 201
SSLENGTH 191, 194
SSMEMB 190–191, 196
SSNAME 190–192, 196, 201
stacks 2
START_DIALOG 168
START_LIST 165

STRCASE 55–56
STRCAT 47, 50, 55–56, 136,

146
string 25, 29, 31, 40–50, 53–

65, 67–68
See Chapter 4
comparisons 99
converting to real num-

bers 84
searches 59
values 99

STRLEN 55–56, 68
subr 26, 29–30, 32–33, 43–

44, 48–50, 78
subroutine 14
SUBST 55–56, 114
SUBSTR 57
symbolic expression 30
symbols 10–11, 14, 16, 18,

20, 22, 28, 32, 42
defining 33
inspecting 41
naming 34
scope 35
setting 28

T
tab 243–244
tables 175–176
tangent 76
task bar 11–12
TBLNEXT 196, 201
TBLSEARCH 196–197, 201
testing numeric values 96
text

importing 106
tiles 157

text editor 9–10, 13, 15, 17–
18, 20–21

TEXTSCR 128
tile 150–158, 162–169, 174
toggles 158
toolbars 16
Trace Stack window 10

Index 255

Trace window 10–12
TRANS 121, 123–124
transient

reactors 235
trig 76
true-false 31
TYPE 48, 98

U
UCS 123–124
UNDEFINE 34–35
UNITS 85
UNLOAD_DIALOG 164, 173
user variables 204

V
variable names 39, 45
variables 36
variants 31
VB 5–6
VBA 3, 5–6
Visual BASIC 2, 5–6
Visual LISP 1, 3, 5–6
VLA-ADDTEXT 233
VLA-GET 182
VLA-GET-AREA 232, 234
VLA-GET-COUNT 220
VLA-ITEM 220
VLA-object 31
VLAX 181–182, 187
VLAX-3D-POINT 183
VLAX-CREATE-OBJECT 221
VLAX-DUMP-OBJECT 217, 221
VLAX-ENAME->VLA-OBJECT

181, 183
VLAX-FOR 220
VLAX-GET-ACAD-OBJECT 186
VLAX-GET-ACTIVEDOCUMENT

186

VLAX-GET-OBJECT 221
VLAX-GET-OR-CREATE-OBJEC

T 221
VLAX-GET-PROPERTY 182,

184, 217, 221
VLAX-INVOKE-METHOD 182–

184
VLAX-LDATA-GET 212–213
VLAX-LDATA-LIST 213
VLAX-LDATA-PUT 214
VLAX-MAP-COLLECTION 186
VLAX-PROPERTY-AVAILABLE

186
VLAX-PUT-PROPERTY 182,

217, 221
VLAX-VLA-OBJECT->ENAME

183
VL-CMDF 132
VL-DIRECTORY-FILES 247
VL-FILE-COPY 246
VL-FILE-DELETE 246–247
VL-FILENAME 246
VL-FILE-RENAME 245–246
VL-FILESIZE 246
VL-FILE-SYSTIME 246
VLIDE 9–17, 20–23, 235
VLISP 10
VL-LIST->STRING 59–60
VL-LOAD-COM 181–182, 185,

187
VL-MKDIR 247
VL-PRINC-TO-STRING 131
VLR-DATA 230–231
VLR-DATA-SET 231
VLR-OBJECT-REACTOR 228,

231, 233–234
VLR-OWNER-ADD 231
VLR-OWNER-REMOVE 231
VLR-OWNERS 232
VLR-PERS 235

VLR-REACTION-NAMES 227
VLR-REACTORS 229
VLR-REMOVE 230, 236
VLR-REMOVE-ALL 229
VLR-TYPE 231
VL-SORT 119–120
VL-STRING-MISMATCH 60–62
VL-STRING-POSITION58–59,

63–66
VL-STRING-SEARCH 58–60
VL-STRING-TRANSLATE 56
VL-STRING-TRIM 57
VL-SYMBOL-NAME 62
VL-VBALOAD 133
VL-VBARUN 133
VLX 15–16, 20, 23, 235

W
Watch window 19–20, 22
WCMATCH 43–44, 66, 99
WCS 123–125
WHILE 64–65, 67, 102–105,

189
windows 9–12, 20

VLIDE 9–10
write 241–243, 246, 248
WRITE-CHAR 243
WRITE-LINE 130, 243

X
XDROOM 209
XDSIZE 209
XLISP 3
XRECORD 211–212

Z
ZEROP 96–97

Design with Authority
Tools for your success

Cadenceweb.com
Your daily resource for:

■ CAD news

■ Searchable database of CADENCE magazine features and reviews

■ Discussion forums for CAD Managers and Technical Questions

■ Links

■ Downloads

■ And more CAD community resources…

CADENCE Newsletters
Delivered directly to your desktop – bi-weekly or monthly sources of professional information

about your CAD specialty, from the experts at CADENCE magazine. Sign up now – FREE – at

www.cadenceweb.com.

Robert Green, noted

expert and

management

consultant, explores

the ins and outs of

both the finanacial

and technical

aspects of managing

a CAD group.

Author and

researcher Lachmi

Khemlani writes

about the impact of

CAD on architecture,

engineering and

construction.

Joe Greco, an MCAD

consultant and

contributor to

CADENCE

magazine, reports

on software,

hardware and

industry

developments that

impact MCAD

professionals.

CADENCE Senior

Technical Editor

Peter Sheerin,

known for his

stringent benchmark

testing and hard-

hitting reviews, talks

about the latest

hardware products

and the CAD

standards that your

hardware should

meet.

CAD Manager’s

Newsletter

Sheerin

Hardware Report

AEC Newsletter

MCAD Newsletter

Get the latest CAD information every month in

the pages of CADENCE magazine

to join thousands of your colleagues who read CADENCE for the latest product reviews,
news and technical information. Read CADENCE and you’ll keep up with exciting
innovations and hot topics in the rapidly evolving CAD industry. You’ll get everything from
broad industry analysis to monthly software and hardware product reviews to how-to
tutorials from the leading CAD experts.

CADENCE – the CAD industry’s most unbiased and comprehensive resource for

CAD information.

a $39.95 value – is waiting for you.
Don’t miss out on a single month of CADENCE – respond now!

You are invited…

Your FREE subscription…

Go to http://www.cadenceweb.com/freebookoffer

AutoLISP Treasure Chest
by Bill Kramer

This book with disk is the definitive guide

for achieving maximum AutoCAD ef-

ficiency through AutoLISP. Expert-tested

tips and techniques help readers create

enhanced AutoCAD edit tools; program

engineering and design intelligence into

AutoCAD; improve productivity with tools

for operations management; effectively use

dialog boxes; and more. Disk included, 396

pp, ISBN 0-87930-518-5

Order direct 800-500-6875

fax 408-848-5784

e-mail: cmp@rushorder.com

www.cmpbooks.com

Find CMP Books in your local bookstore.

AC2798 $39.95

Mechanical Desktop 5
by John E. Wilson

3718 $59.95

Master Autodesk’s best-selling 3D

solid modeling program with this

thorough description of all of the

principles and techniques related

to parametric modeling. Step-by-

step instructions and hands-on

exercises demonstrate the 120+

commands that enable you to create

solid models that are flexible and

readily modified. 515pp, CD-ROM

included, ISBN 1-57820-065-2

AutoCAD Inside & Out
Second Edition

by Lynn Allen

Make everyday work faster, easier, and

more productive! Renowned columnist

Lynn Allen explains difficult concepts with

technical insight and her trademark humor,

propelling you to in-depth AutoCAD

mastery. This extensively illustrated book

goes from fundamental concepts through

increasingly complex features, leading to

maximum AutoCAD proficiency. 261pp,

ISBN 0-87930-517-7

AutoCAD VBA Programming
Tools & Techniques

by Bill Kramer and John Gibb

Harness the power of VBA to automate

and customize AutoCAD! This complete

guide explains the vital concepts of Visu-

al Basic for Applications (VBA) specific to

AutoCAD programming and provides ex-

amples. The companion CD-ROM is packed

with sample applications, macros, and

utilities. 366 pp, ISBN 0-87930-574-6

AC3095 $39.95

AC2797 $29.95

Order direct 800-500-6875

fax 408-848-5784

e-mail: cmp@rushorder.com

www.cmpbooks.com

Find CMP Books in your local bookstore.

Other books in
the CADENCE
Master’s Series

What’s on the CD-ROM?

The companion CD-ROM for The AutoCADet’s Guide to Visual LISP includes ...chapter-related
LSP and DCL files. The examples in the book have fewer comments than the listings on the CD.
This way, you can concentrate on the code itself while reading the book, and then review and use
the functions on the CD without having to reference the text to find out how something is work-
ing.

Also included:

• Compiled Hole Chart function set and source code. A $75 value!

• Compiled Astrological Chart generator and source code — a great example of a parametric
application.

• AUTO-CODE NC/CNC application in evaluation mode. Supplied as an EXE, unpacks itself to
hard drive where AutoCAD is stored and turns AutoCAD into a CAD/CAM system. Full-fea-
tured demonstration requires authorization code from AUTO-CODE Mechanical to be fully
enabled.

• Dimension break utility — this popular utility has been updated for AutoCAD 2000+. Breaks
lines inside dimension objects, source code provided.5

For more information ... see the Readme file on the CD.

