

Express Web Application
Development

Learn how to develop web applications with the Express
framework from scratch

Hage Yaapa

BIRMINGHAM - MUMBAI

Express Web Application Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1190613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-654-8

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

Credits

Author
Hage Yaapa

Reviewers
Jim Alateras

Johan Borestad

Sinisa Vrhovac

Acquisition Editor
Erol Staveley

Lead Technical Editor
Dayan Hyames

Technical Editor
Dominic Pereira

Project Coordinator
Shiksha Chaturvedi

Proofreader
Chris Smith

Indexer
Monica Ajmera Mehta

Graphics
Hage Yaapa

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

About the Author

Hage Yaapa is a contributing developer of Express and the head of Web and
Node.js development at Sourcebits.

He joined one of the best medical schools in India, JIPMER, to become a doctor,
but dropped out to pursue his burning passion for computers and the Internet.
He has been creating websites and apps since 1999 using a very wide array of
web technologies. He is a self-taught programmer and everything he knows
about technology, he learned on his own from the Internet and books.

Yaapa blogs about Node.js, Express, and other web technologies on his website
www.hacksparrow.com, as Captain Hack Sparrow.

This will sound crazy, but I would like to first thank Khaled
Mardam-Bey, the creator of mIRC—the IRC software, which
started everything for me. I learned many of the important things
I know about computers and the Internet on IRC channels during
the transitioning of the century. The first programming language I
learned was mIRC Script, which helped me pick up JavaScript and
other programming languages rather easily.

Next, I would like to thank T. J. Holowaychuk for creating Express
and the unbelievable number of impressive Node.js packages he
has created.

Then, I would like to thank Ryan Dahl for creating Node.js, and
Isaac Schlueter for carrying it forward.

I would also like to thank Brendan Eich for creating JavaScript,
for there would have been no Node.js or Express, if there were
no JavaScript.

Last but not the least, I would like to thank my loving wife Kenyum
for putting up with me while I wrote this book.

http://www.hacksparrow.com

About the Reviewers

Jim Alateras is an independent consultant specializing in open source and
emerging technologies. He has a degree in Electrical/Electronic Engineering
and has been working in the software development space for more than 25 years.
Jim has participated in several open source projects, presented at open source
conferences, and has written several articles and contributed to books. Currently,
he is working on developing large-scale, real-time applications using Node.js and
the amazing number of great modules and frameworks.

Johan Borestad is a senior web developer, living together with his fiancée Sophia
in Stockholm, Sweden. He's a former CTO for Videofy.me and has been working
with several startup companies (Redbet.com, Reco.se) in the past from where he
has collected invaluable experience, both from backend and frontend. His main skills
lie within Test Driven Development and scalable cross-browser web applications. In
his daily work he prefers to work with Ruby and JavaScript.

Today he's working at Klarna—one of Sweden's most promising startup
companies—building the future e-commerce experience with Klarna Checkout.

I'd like to thank my fiancée Sophia and my soon-to-be-born daughter
Lilly for all the joy in life you give me. Without you, the passion for
my work wouldn't mean a thing.

Sinisa Vrhovac is a web developer and all-round Internet technology geek living
and working in Banja Luka with his family. While working with different companies,
he crafted his skills in web development always trying to go one step further in order
to improve user experience and comfort. Through engagement on many projects he
has gained experience in many technologies and software platforms.

Sinisa enjoys time spent with family, picnics and movies. He can be contacted via
LinkedIn, Facebook, or Google+.

I would like to thank my family for their support and understanding
in moments when work has priorities over time to spend with
family.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: What is Express? 5

What is Express? 5
The story of Express 6

Installing Express 7
The stuff that makes up Express 9

The application object 9
The request object 10
The response object 12

Concepts used in Express 13
Asynchronous JavaScript 13
Node modules 14
Express apps are Node modules 18
Middlewares 19
Request flow 22
Node HTTP/HTTPS API 24

Summary 25
Chapter 2: Your First Express App 27

Your first Express app 27
The Express manifest file 28
A very basic Express app 29

Starting and stopping the app 30
Analyzing the output 31

Express app with views 32
A public directory for the app 34

Auto-generating an Express app 36
Empowering Express with middlewares 39
Empowering Express with Node modules 44

Table of Contents

[ii]

Logging requests to the App 46
Using a configuration file 48
Setting and getting application options 49
Express in different environments 49
Summary 53

Chapter 3: Understanding Express Routes 55
What are Routes? 55

A quick introduction to HTTP verbs 56
Revisiting the router middleware 57
Defining routes for the app 58

Route identifiers 61
Order of route precedence 63

How to handle routes 65
How to organize routes 68

Using Node modules 69
Namespaced routing 71
Resourceful routing 73
Making a choice 76

Summary 76
Chapter 4: Response From the Server 77

A primer on HTTP response 77
HTTP status codes 78

1xx 80
2xx 80
3xx 80
4xx 80
5xx 81

HTTP response headers 81
Media types 81

HTTP response in Express 83
Setting the HTTP status code 84
Setting HTTP headers 86
Sending data 88

Plain text 88
HTML 89
JSON 91
JSONP 92
Serving static files 93
Serving files programmatically 94
Serving error pages 96
Content negotiation 100
Redirecting a request 102

Summary 102

Table of Contents

[iii]

Chapter 5: The Jade Templating Language 103
What is Jade? 103
Generating HTML tags 106

Hierarchy of HTML elements 107
Assigning IDs 109
Assigning classes 109
Specifying HTML attributes 110

Creating text content 111
Filters 113
Declaring the document's Doctype 114
Programmability in Jade 115

Variables 115
Interpolation 117
Control structures 119

JavaScript constructs 120
Jade constructs 121

Modularization 123
Includes 124
Template inheritance 125
Mixins 129

Escaping 131
Comments 131
Summary 132

Chapter 6: The Stylus CSS Preprocessor 133
Introduction 133
Enabling Stylus in Express 136
Selectors 137

Selector blocks 138
Hierarchy 138

Rules 139
@import 140
@media 141
@font-face 142
@keyframes 142
@extend 144
@css 145

Programmability 146
Variables 147

Literals 147
Lists 150
Tuples 151

Table of Contents

[iv]

Mixins 152
Functions 154
Comments 154
Operators 156
Conditionals 157

if, else if, and else 158
unless 158

Built-in functions 158
Summary 160

Chapter 7: Forms, Cookies, and Sessions 161
Using forms to submit data 161

Handling GET submissions 162
Reading form data 163
Reading URL query parameters 164
Handling multiple options 164

Handling POST submissions 166
Enabling POST data parsing 166
Reading form data 167
Handling text-only forms 167
Handling file uploads 168
More about file uploads 172

Submission via simulated methods 173
Data in named segments 174

Reading data 174
Using cookies to store data 176

Creating cookies 176
Reading cookies 178
Updating cookies 178
Session cookies 178
Signed cookies 179
Deleting cookies 180

Using sessions to store data 180
Cookie-based sessions 181
Session store-based sessions 182

MemoryStore 183
RedisStore 184
MongoStore 184

Session variables 185
Setting session variables 186
Reading session variables 186
Updating session variables 186
Deleting session variables 186

Table of Contents

[v]

Deleting a session 187
Deleting a cookie-based session 187
Deleting a session store-based session 187

Summary 188
Chapter 8: Express in Production 189

What the is production environment? 189
What changes in production mode? 190
Simulating production environment 190

Benchmarking the app 191
Creating an app cluster 193
Handling critical events 197

Closing the server 197
Handling uncaught errors 198

Using try-catch to catch uncaught errors 200
Using domains to handle uncaught errors 201
What to do in case of uncaught errors – to terminate the process or not to terminate? 203

Handling process termination 203
Ensuring uptime 204

Forever 204
Upstart 205

Using a reverse proxy 206
The trust proxy option 207

Summary 208
Index 209

Preface
This book is about Express, the popular web framework used by thousands of Node.
js developers around the world. It specifically covers the third major version of the
framework, commonly referred to as Express 3.

Express has matured considerably since it was first released exactly four years
ago. Today it is recognized as one of the best web frameworks for Node.js. Every
day new developers from varied backgrounds and experience come to Express for
developing their web apps. With its ever-growing popularity, it is about time we
had a book on Express.

I wrote a tutorial on Express some time ago that became quite popular online,
particularly with those new to Node.js and Express. Ever since, I had a dream of
writing a book on Express, which would make no assumptions about the reader's
prior experience and knowledge, and still be full of technical details wherever
required. The book you are holding in your hands is that dream realized—a book
on Express that is both beginner-friendly and technically deep at the same time.

This book covers everything a developer requires to get into serious web
development using Express.

What this book covers
Chapter 1, What is Express?, is a beginner-friendly but technically solid introduction
to Express and relevant topics for a strong base right at the start.

Chapter 2, Your First Express App, is a practical introduction to building an Express
app covering the basics that form the basis of every Express app.

Chapter 3, Understanding Express Routes, explains routes in Express in great detail.

Preface

[2]

Chapter 4, Response From the Server, covers the various ways an Express
app can respond to a request.

Chapter 5, The Jade Templating Language, covers the Jade syntax and its
programming capabilities.

Chapter 6, The Stylus CSS Preprocessor, covers the Stylus syntax and its
programming capabilities.

Chapter 7, Forms, Cookies, and Sessions, covers how to handle forms, and
create cookies and sessions.

Chapter 8, Express in Production, covers important areas to make Express
apps production-ready.

What you need for this book
Familiarity with JavaScript, the command line, and interest in the subject
are all you need to get the most out of the book. Any new and relevant
topics are introduced and explained in an easy-to-understand manner.

Who this book is for
This book is for anyone interested in knowing more about Express—either for
developing web applications or just for technical knowledge in general. It is
friendly enough for beginners to get started with, at the same time detailed
enough to make an excellent refresher for those already familiar with Express
who want to know more about it.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The router middleware is responsible for handling the requests to the app."

A block of code is set as follows:

app.get('/', function(req, res) {
 res.json({message: 'welcome'});
});

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

var not_found = function(req, res) {
 res.status(404);
 res.render('404', {title: 'Not Found'});
};

Any command-line input or output is written as follows:

$ sudo npm install express -g

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
server will respond with the appropriate data type based on the Accept header."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Downloading the example code
You can download the example code fi les for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the fi les e-mailed directly to you.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any
existing errata can be viewed by selecting your title from http://www.packtpub.
com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

What is Express?
This chapter is a beginner-friendly introduction to Express. Along with the basics,
you will learn about the core concepts and components that make up an Express
app. While we won't be doing a lot of coding in this time, the chapter will orient
and condition you to Express, which will prepare you for the upcoming chapters.

Do not skip this chapter, the material covered here provide the map and compass
to your journey of learning Express.

What is Express?
Express is a minimal yet flexible and powerful web development framework for
the Node.js (Node) platform.

What do we mean by minimal yet flexible and powerful?

Express is minimal because it does not come loaded with all sorts of functionality,
which makes it a bloat-free framework. Out of the box, it supports only the very
basic features of a web framework. Even the supported features are not all enabled
by default, you have the option to pick and use, according to your needs.

The flexibility in Express comes from the use of middlewares and Node modules.
Express middlewares and Node modules are pluggable JavaScript components,
which make Express apps very modular, flexible, and extensible.

Express is a powerful framework because it gives you complete access to the core
Node APIs. Anything you can do with Node, you can do it with Express too.

Express can be used to create very simple to very complex web apps. It provides
you all the tools required to create the most complex of apps, but does not force
you to use them when you don't need them.

What is Express?

[6]

Hearing someone tell you that Express is a minimal, flexible, and powerful web
development framework doesn't really help much in understanding it, does it?.
Many other frameworks probably claim the same thing. Let's find out what is
actually special about Express.

The story of Express
There is an interesting story behind the origin of Express. You will understand
Express better if you know the story, so let me share the story of how Express
came into being.

Sometime in February 2009, Ryan Dahl had an epiphany about combining JavaScript
and Google's V8 engine to create a new system-level programming platform. He
christened the platform as Node.js (Node), and released v0.0.1 in the same month.

Node was very well received by the web development community, and it started to
grow very rapidly in popularity.

Apart from being a general-purpose software development platform, Node provided
a web server API (Application Programming Interface), using which developers
could create web apps using JavaScript as the backend programming language.

However, there was a problem with Node's web server API: It was a little too low
level, and you had to write and re-write many of the web server functions in your
web apps. Modularity and extensibility became a problem for any project that was
even moderately big.

Within five months of Node's release, in June 2009, T.J. Holowaychuk, released an
open source project named Express to make web development a little easier in Node.

Express was inspired by Ruby's Sinatra and built on top of Node's web server API. It
was a little crude, but provided some of the niceties—such as a routing system,
session and cookie support, MIME helpers, RESTful interface, HAML-based views,
and so on—one might expect from a web development framework.

However, Express v0.0.1 was very different from what Express 3 is today. Perhaps,
the only thing common in between them is the name "Express".

In June 2010, Sencha, under its Sencha Labs, started an open source project named
Connect, to solve the modularity and extensibility issue in the Node web server API.
The project was inspired by Ruby's Rack web server interface. Tim Caswell, a Sencha
employee, and T.J. Holowaychuk, were roped in to lead the project.

Chapter 1

[7]

Like Express, Connect was also built on top of Node's web server API, and came
with a middleware system, which allowed small re-usable programs to be plugged
onto it to handle HTTP-specific functionalities.

Connect middlewares took care of many of the commonly required functionalities
in web apps for Node. On top of that, anyone could write their own middleware for
their apps. Connect considerably improved the modularity and extensibility of the
Node web server API.

By now, there were two different web development frameworks for Node: Express
and Connect—one was inspired by Sinatra, and the other by Rack. This caused a bit
of confusion in the Node community, especially with Holowaychuk working on both
of them.

But as luck would have it, it became obvious that Express and Connect were actually
complementary frameworks. So, in July 2010, Holowaychuk decided to re-architect
Express to run on top of Connect, effectively merging Connect with Express to create
a new incarnation of Express in v1.0.0.

With Express v1.0.0, there was no more confusion about which web development
framework to choose in Node. Express was Connect with additional functionalities
built on top of it. To this day it remains the same—Express continues to use the
Connect middleware, and any change in Connect is invariably reflected in Express.

So, that is the story of how Express came into being and how Connect is related to it.

As an Express developer, you might rarely deal with Connect directly, but you will
be using a lot of middlewares in your projects. Middlewares in Express are referred
to as Express middlewares and not Connect middlewares, although technically they
are Connect middlewares. You will learn more about middlewares in upcoming
sections in this and the next chapter.

Installing Express
Installing Express is pretty straightforward, especially if you have Node installed
already. Even if you don't have Node installed, you need not worry, because I will
show you how to install Express from scratch, and that includes installing Node.

If you are on a Windows or Mac machine, installing Node is very easy—just
download the respective installer from http://nodejs.org/download/. On Linux
machines, the installation process is a little more elaborate. I will show you how to
install Node on an Ubuntu machine.

What is Express?

[8]

For a relatively easier and cleaner installation of Node, you can use
Node Version Manager (nvm). Besides installing Node, it will help
you flexibly switch to any version of Node right on your machine. Read
more about nvm at https://github.com/creationix/nvm.

Before we go about installing Node, let's make sure we have the required
dependencies on the system by executing the following command:

$ sudo apt-get -y install build-essential g++ libssl-devpkg-config

With that, we are ready to start installing Node. Let's get the source code from the
Node download page located at http://nodejs.org/download/. At the time of
writing, the source code was located at http://nodejs.org/dist/v0.10.7/
node-v0.10.7.tar.gz. Let's download the source code archive to the /tmp
directory and install Node from there:

$ cd /tmp

$ wget http://nodejs.org/dist/v0.10.7/node-v0.10.7.tar.gz

$ tar zxvf node-v0.10.7.tar.gz

$ cd node-v0.10.7

$./configure

$ make

$ sudo make install

If everything went fine, you have Node installed on your system now. Let's confirm
it with a quick Node version check command:

$ node -v

> v0.10.7

Congratulations! Let's go install Express now.

As I mentioned earlier, installing Express is very straightforward once you have
Node installed on your system.

Express is a Node module, and like any other Node module, it is installed using the
Node Package Manager (npm), which comes installed with Node by default. You
will learn more about npm and Node modules in a later section.

Node modules come in two variants: local and global. Local modules are meant to
be used in a specific project, and are available only for that particular project, while
global modules are installed system-wide, and are almost always available as a
command-line tool.

Chapter 1

[9]

Express is meant to be installed as a global module, so that we can use its express
command-line tool to generate Express app skeletons quickly.

Express is the web development framework. express is
the command-line tool to create Express app skeletons.

We specify the -g option in the npm install command to install Node modules as
global modules. Here is the command to install Express:

$ sudo npm install express -g

That command will install the latest stable version of Express. In case, you want
to install a specific version of Express, you can specify the version using the @
parameter in the module name. Here is an example of installing an older version
of Express:

$ sudo npm install express@3.0.5 -g

After the installation process is complete, confirm you are able to execute the
express command, with a version check:

$ express –V

> 3.2.6

Congrats! Your system is ready for Express development now.

The stuff that makes up Express
A good thing about Express is that there are only three core components to it, which
makes it relatively easy to know a lot about Express, if not master it entirely. In this
section, I will give a brief introduction about each of the core Express components, so
that you are not left disoriented when you come across them in the coming chapters.

The application object
The application object is an instance of Express, conventionally represented by the
variable named app. This is the main object of your Express app and the bulk of the
functionality is built on it.

This is how you create an instance of the Express module:

var express = require('express');
var app = new express();

What is Express?

[10]

The following is a brief description of all the properties and methods available on the
application object:

Property/Method Description

app.set(name, value) Sets app-specific properties

app.get(name) Retrieves value set by app.set()

app.enable(name) Enables a setting in the app

app.disable(name) Disables a setting in the app

app.enabled(name) Checks if a setting is enabled

app.disabled(name) Checks if a setting is disabled

app.configure([env],
callback)

Sets app settings conditionally based on
the development environment

app.use([path], function) Loads a middleware in the app

app.engine(ext, callback) Registers a template engine for the app

app.param([name], callback) Adds logic to route parameters

app.VERB(path, [callback...],
callback)

Defines routes and handlers based on
HTTP verbs

app.all(path, [callback...],
callback)

Defines routes and handlers for all HTTP
verbs

app.locals The object to store variables accessible
from any view

app.render(view, [options],
callback)

Renders view from the app

app.routes A list of routes defined in the app

app.listen() Binds and listen for connections

The request object
The HTTP request object is created when a client makes a request to the Express app.
The object is conventionally represented by a variable named req, which contains a
number of properties and methods related to the current request.

The following table lists all the properties and methods of the req object and
provides a brief description of them:

Chapter 1

[11]

Property/Method Description
req.params Holds the values of named routes

parameters
req.params(name) Returns the value of a parameter from

named routes or GET params or POST
params

req.query Holds the values of a GET form submission
req.body Holds the values of a POST form submission
req.files Holds the files uploaded via a form
req.route Provides details about the current matched

route
req.cookies Cookie values
req.signedCookies Signed cookie values
req.get(header) Gets the request HTTP header
req.accepts(types) Checks if the client accepts the media types
req.accepted A list of accepted media types by the client
req.is(type) Checks if the incoming request is of the

particular media type
req.ip The IP address of the client
req.ips The IP address of the client, along with that

of the proxies it is connected through
req.path The request path
req.host Hostname from the HTTP header
req.fresh Checks if the request is still fresh
req.stale Checks if the request is stale
req.xhr Checks if the request came via an AJAX

request
req.protocol The protocol used for making the request
req.secure Checks if it is a secure connection
req.subdomains Subdomains of the host domain name
req.url The request path, along with any query

parameters
req.originalUrl Used as a backup for req.url
req.acceptedLanguages A list of accepted languages by the client

What is Express?

[12]

Property/Method Description
req.acceptsLanguage(langauge) Checks if the client accepts the language
req.acceptedCharsets A list of accepted charsets by the client
req.acceptsCharsets(charset) Checks if the client accepts the charset

The response object
The response object is created along with the request object, and is conventionally
represented by a variable named res. While it may sound a little strange that both
of them should be created together, it is a necessity to give all the middlewares a
chance to work on the request and the response object, before passing the control
to the next middleware.

The following is a table of properties and methods on the response object:

Property/Method Description
res.status(code) Sets the HTTP response code
res.set(field, [value]) Sets response HTTP headers
res.get(header) Gets the response HTTP header
res.cookie(name, value,
[options])

Sets cookie on the client

res.clearCookie(name,
[options])

Deletes cookie on the client

res.redirect([status], url) Redirects the client to a URL, with an
optional HTTP status code

res.location The location value of the response HTTP
header

res.charset The charset value of the response HTTP
header

res.send([body|status], [body]) Sends an HTTP response object, with an
optional HTTP response code

res.json([status|body], [body]) Sends a JSON object for HTTP response,
along with an optional HTTP response
code

res.jsonp([status|body],
[body])

Sends a JSON object for HTTP response
with JSONP support, along with an
optional HTTP response code

res.type(type) Sets the media type HTTP response
header

Chapter 1

[13]

Property/Method Description
res.format(object) Sends a response conditionally, based on

the request HTTP Accept header
res.attachment([filename]) Sets response HTTP header Content-

Disposition to attachment
res.sendfile(path, [options],
[callback]])

Sends a file to the client

res.download(path, [filename],
[callback])

Prompts the client to download a file

res.links(links) Sets the HTTP Links header
res.locals The object to store variables specific to

the view rendering a request
res.render(view, [locals],
callback)

Renders a view

Concepts used in Express
There are a few concepts you should be familiar with before you start developing
in Express. It is important that you know them, because you will be able to come
up with creative and effective solutions to the challenges you might face in your
projects, if you are familiar with them.

These concepts will help you understand Express better, which means more power
and control to you.

Asynchronous JavaScript
Many beginners in JavaScript get stumped while using Node for the first time
because they are not familiar with asynchronous (async) JavaScript and callback
functions (callbacks). Node and Express are built on the concept of async operations,
so it is imperative that you understand the concept before you proceed any further.

If you have used AJAX in its default state, you are already familiar
with asynchronous JavaScript. On the client-side, AJAX and timer
functions are the only obvious instances where you get to see
JavaScript in async mode. On Node, they are all over the place.

What is Express?

[14]

Unlike the more common synchronous functions, asynchronous functions do
not return immediately; at the same time they do not block the execution of its
succeeding code. This means other tasks are not piled up waiting for the current
task to be completed. However, to resume control from the async operation and to
handle its result, we need to use a callback function. The callback function is passed
to the async function to be executed after the async function is done with its job.

Here is an example of using a timer to illustrate how callbacks work:

var broadcast = function(msg, timeout, callback) {

 // initiate an async call using a timer
 setTimeout(function() {
 // the first message
 console.log(msg);
 // execute the callback function
 callback();
 }, timeout);
};

broadcast('Is there anybody out there?', 1000, function() {
 console.log('Message sent');
});

We passed in a callback to the broadcast function, which will be executed after
the message is "broadcasted" after one second.

Though Node is synonymous with async operations, it still provides a sync
alternative to many of its operations. However, it is recommended to stick to the
async versions, else you will very likely lose the non-blocking advantage of Node.

Node modules
A Node module is a JavaScript library that can be modularly included in Node
applications using the require() function. What the module is capable of is
entirely dependent on the module—it can be simple helper functions to something
more complex such as a web development framework, which is what Express is.

If you have used npm to install something, you have used a node module. A lot
of them are installed as command-line tools, such as the express command.
A lot more of them are installed as libraries to be used with a Node program.

Chapter 1

[15]

npm is a command-line tool for installing Node modules. It comes
installed with Node by default. Type npm help at the command line to
see its various options and commands.
The official website of npm is located at https://npmjs.org/, and
you can find a huge list of Node modules at https://github.com/
joyent/node/wiki/modules.

The bulk of web server-related functionality in Express is provided by its built-in
middlewares. Features not supported by Express out of the box are implemented
using Node modules.

Since Express provides just the bare minimum functionality of a web server, it
does not support some common but crucial functionality, such as connecting to
a database, sending e-mails, and so on. In such cases, you will need to find and
install the appropriate Node modules and use them to get your task done.

The fact that Express does not come baked in with opinionated modules or methods
to accomplish tasks beyond handling HTTP requests is a good thing, because it keeps
the framework bloat-free and gives its users the freedom of choice to use any module
or method according to their specific requirements.

The Node community is very active and has developed modules for almost every
requirement on a typical web project. So remember, if you are looking to do something
tricky or complex, probably there is a Node module for it already, if it does not exist,
probably you should create it and share it with the Node community. If you are in no
mood for sharing with others, make it a private Node module and keep it to yourself.

If it makes you wonder what is the difference between a public and a private
module: public modules can be published on the npm registry and installed by
the general public, whereas private modules remain private.

As you start working with Express, you will realize that writing your own modules
will greatly help in modularizing your app. So, it is essential that you learn how to
write them.

There are two approaches to writing Node modules: one involves attaching
properties and functions to the exports object, the other involves assigning
JavaScript objects to the module.exports property of a module.

The attachment to exports approach is pretty straightforward, as you can
see from the following example:

var name = exports.name = 'Packt';
var secret = 'zoltan';

What is Express?

[16]

exports.lower = function(input) {
 return input.toLowerCase();
};

exports.upper = function(input) {
 return input.toUpperCase();
};

exports.get_name = function() {
 return name;
}

exports.get_secret = function() {
 return secret;
}

Anything attached to the exports objects is available as a public property or method
of the instance of the module. Any variable defined with the var keyword and not
attached to the exports object becomes a private variable of the module. Save the
preceding example code in a file named mymod.js, and include it in a file named
test.js with the following code:

var mod = require('./mymod.js');

console.log(mod.name);
console.log(mod.lower('APPLE'));
console.log(mod.upper('mango'));
console.log(mod.get_name());

Execute test.js to see the module in action:

$ node test.js

Packt

apple

MANGO

Packt

The assignment to module.exports approach is straightforward too. If you were
to implement the previous module using the assignment method, this is how it
would look like:

var secret = 'zoltan';

module.exports = {

Chapter 1

[17]

 name: 'Packt',

 lower: function(input) {
 return input.toLowerCase();
 },

 upper: function(input) {
 return input.toUpperCase();
 },

 get_name: function() {
 return this.name;
 },

 get_secret: function() {
 return secret;
 }

};

There is an interesting thing about the second method of writing Node modules:
you can assign any valid JavaScript object to the module.exports property, and it
becomes the module. In the following example, we assign a function to the module.
exports property:

module.exports = function(word) {

 var reversed = '';

 var i = word.length - 1;
 while (i> -1) {
 var letter = word[i];
 reversed += letter;
 i--;
 }

 return reversed;
};

Save the preceding code in a file named reverse.js. You can include it in the test.
js file and use if for reversing text:

var reverse = require('./reverse.js');
console.log(reverse('hippopotamus'));

What is Express?

[18]

Execute test.js again to see reverse.js in action:

$ node test.js

sumatopoppih

Using the assignment method, you can create Node modules to be of any valid
JavaScript object type.

If you ever happen to have both the attachment and assignment methods defined
in the same module file, the assignment method will take precedence.

Express apps are Node modules
It might sound a little strange, but every Express app is also a Node module.
You might rarely use your web app like a regular Node module and include
them in other apps, but there is something which will be an indispensable part
of your app—its manifest file, package.json.

A manifest file is a file which contains meta data about some software.
The content of the file may be used by the software to customize itself.

Node modules come with a manifest file named package.json, which contains
details, such as its name, version, dependencies, and so on about the module.

Node modules, such as Express, which come with a package.
json file and can be installed using npm are formally called Node
packages. However, we will use the terms modules and packages
interchangeably in the book without getting too pedantic.

Here is an example of an Express app's package.json file:

{
 "name": "application-name",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node app"
 },
 "dependencies": {
 "express": "3.2.6",
 "jade": "*",
 "stylus": "*"
 }
}

Chapter 1

[19]

Among the various fields, dependencies is what would be of your prime interest.
For an interactive guide to all the possible fields in a package.json file, visit
http://package.json.nodejitsu.com/.

Any time you install a Node module in the application directory, the module will
get added to the dependencies list with the version you specified. Of course, you
can manually make new entries or update the version numbers of existing
dependencies if you want to.

You may wonder what is the point of adding the modules in the dependencies when
you already are installing them using npm. Well, if you start using a version control
system such as Git or SVN, it doesn't make sense to include the installed Node
modules in the repository. However it makes sense to include the package.json file,
because with a simple npm install command in the app directory, you can reinstall
the dependencies in one go.

It is advisable to use all other fields of the package.json file, but you certainly can't
do without the dependencies key, if you are serious about your app.

By convention, the main file of the Express app is named app.js. You can rename it
to anything you want, but it is generally not recommended to do so.

Middlewares
A middleware is a JavaScript function to handle HTTP requests to an Express app. It
can manipulate the request and the response objects or perform an isolated action, or
terminate the request flow by sending a response to the client, or pass on the control
to the next middleware.

Middlewares are loaded in an Express app using the app.use() method.

Following is an example of a middleware. All it does is print the IP address of
the client that made the request. Although it may seem like a trivial middleware,
it gives you a very good overview of how middlewares work:

app.use(function(req, res, next) {
 console.log('Request from: ' + req.ip);
 next();

});

What is Express?

[20]

As you can see, a middleware is just a function that accepts three parameters: req,
res, and next. The req parameter is the request object, the res parameter is the
response object, and the next parameter is a reference to the next middleware in
line. Any middleware can end a request by sending a response back to the client
using one of the response methods on the res object. Any middleware that does
not call a response method must call the next middleware in line, else the request
will be left hanging in there.

Even though our middleware in the previous example was pretty simple, in most
practical cases, middlewares will be created in a more complex fashion—they
could be a JavaScript object defined right in the file, or might be included as a
Node module.

This is how a middleware would look like if it were defined first and then passed to
the app.use() method:

// define the middleware
var forbidder = function(forbidden_day) {

 var days = ['Sunday', 'Monday', 'Tueday', 'Wednesday', 'Thursday',
'Friday', 'Saturday'];

 return function(req, res, next) {

 // get the current day
 var day = new Date().getDay();

 // check if the current day is the forbidden day
 if (days[day] === forbidden_day) {
 res.send('No visitors allowed on ' + forbidden_day + 's!');
 }
 // call the next middleware
 else {
 next();
 }
 }
};

// use the forbidder middleware
app.use(forbidder('Wednesday'));
// the router middleware goes here
app.use(app.router);

This middleware forbids visitors on your website on a certain day. Probably not a
very useful middleware, but the intent is to show you how a middleware works.

Chapter 1

[21]

One thing you might have noted is that we included the forbidder middleware
before the router middleware. Does it make any difference? Oh yes, it does! A
middleware included earlier takes precedence over those included later. So be
careful about the order of inclusion.

If we were to rewrite the forbidder middleware as a Node module, we would
need to first create the forbidder.js module file with the following content:

module.exports = function(forbidden_day) {

 var days = ['Sunday', 'Monday', 'Tueday', 'Wednesday', 'Thursday',
'Friday', 'Saturday'];

 return function(req, res, next) {

 // get the current day
 var day = new Date().getDay();

 // check if the current day is the forbidden day
 if (days[day] === forbidden_day) {
 res.send('No visitors allowed on ' + forbidden_day + 's!');
 }
 // call the next middleware
 else {
 next();
 }
 }
};

Then, the module would be included in the app, and an instance of the module
would be created:

var forbidder = require('./forbidder.js');

And the middleware would be added to the chain:

app.use(forbidder('Wednesday'));

The majority of top-level Express functionality is implemented via its built-in
middlewares. An indispensable component of Express is the router middleware,
which is responsible for routing the HTTP requests to your Express apps to the
appropriate handler functions.

What is Express?

[22]

Request flow
One might be tempted to think that when you make a request to your web app,
there would be a corresponding JavaScript file that would be executed by Node.
For example, to load the home page, there would be a file named home.js, for the
contact page, contact.js, and so on.

That's not the case in an Express app. There is a single entry point for all the requests
coming to the app—via app.js—which bootstraps the Express framework.

When an HTTP request arrives at your app, it goes through a stack of middlewares.
All the middlewares in the chain have the capacity to modify the request and the
response object in any form and manner, and that's how they work, as we learned
in the last section.

Among the middlewares, which are include in Express, the most important is
the router middleware, which gives Express the capability to define routes and
handle them.

Here is a conceptualized representation of routes and their handlers:

Chapter 1

[23]

The destinations of the HTTP request URIs are defined via routes in the app.
Routes are how you tell your app "for this URI, execute this piece of JavaScript
code". The corresponding JavaScript function for a route is called a route handler.
It is the responsibility of the route handler to respond to an HTTP request, or pass
it on to another handler function if it does not. Route handlers may be defined in
the app.js file or loaded as a Node module.

Here is a working example of some routes and their handlers defined right in the
app.js file:

var http = require('http');
var express = require('express');
var app = express();

app.get('/', function(req, res) {
 res.send('Welcome!');
});

app.get('/hello.text', function(req, res) {
 res.send('Hola!');
});

app.get('/contact', function(req, res) {
 res.render('contact');
});

http.createServer(app).listen(3000, function(){
 console.log('Express server listening on port ' + 3000);
});

Defining the routes and their handlers in the app.js file may work fine if the number
of routes is relatively few. It becomes messy if the number of routes starts growing.
That's where defining the routes and their handlers in a Node module comes in
handy. If we were to modularize the routes we defined earlier, here is how it would
look like.

The reason I used a strange looking route /hello.text is to show that
route names can be anything and have no inherent meaning in Express.
It is up to the route handler to give meaning and purpose to the routes.

The following is the content of the routes.js Node module:

module.exports = function(app) {

 app.get('/', function(req, res) {

What is Express?

[24]

 // Send a plain text response
 res.send('Welcome!');
 });

 app.get('/hello.text', function(req, res) {
 // Send a plain text response
 res.send('Hola!');
 });

 app.get('/contact', function(req, res) {
 // Render a view
 res.render('contact');
 });
};

The modified app.js file would look like the following now:

var http = require('http');
var express = require('express');
var app = express();
var routes = require('./routes')(app);

http.createServer(app).listen(3000, function(){
 console.log('Express server listening on port ' + 3000);
});

A request handler can send a response back to the client using one of the response
methods in the response object. The act of sending a response effectively terminates
the request flow to any other route handler.

Views are special files in an Express app, which are sent as an HTML response
after Express processes them. Express views support multiple layout and CSS
preprocessor engines. In this book, we will focus on Jade for HTML and Stylus
for CSS.

Node HTTP/HTTPS API
Express is built on top of Node's HTTP/HTTPS API. When one hears something like
that, often it so happens that the underlying API is insulated by the framework, but
it is not the case in Express. The Node HTTP/HTTPS API is very much accessible
from the Express framework—the req and res objects are extensions of the req and
res socket objects in a plain vanilla Node HTTP server.

So, anytime you feel the need to hack a little deeper, you can go ahead and work on
the original Node objects and their properties and methods.

Chapter 1

[25]

While we are at it, I would like to stress the point that not only is the HTTP/
HTTPS API available for Express, but the whole of Node API is available from
Express. Reading up the complete Node documentation will help you become a
more efficient Express developer—you will understand the underlying mechanism
better, write better middleware and modules for your apps, and have more control
over the framework.

Downloading the example code
You can download the example code fi les for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you

Summary
In this chapter, we learned about the core concepts and components in Express. We
were also introduced to some example Express code, which prepared us for what
we will be coming across in the coming chapters.

We now know what the omnipresent req, res, and next objects are in an Express
application. We learned how to write middlewares and Node modules to extend
the capability of our Express app. We are now ready get hands-on with a real
Express app.

In the next chapter, we will get coding and create our first Express app. We will
start from the very basics and learn about the various aspects that make up an
Express app.

Your First Express App
This chapter is about understanding the core structural and functional aspects of an
Express app. We will start with a very basic app and proceed to make it gradually
more complex by introducing the components of a relatively advanced Express app
one after another.

This chapter is essential to develop a very good understanding of what an Express
app is made up of, and how it works.

You will learn the following in this chapter:

• How to create a very basic Express app
• How to define basic routes and handle them
• How to use views
• How to include CSS, JavaScript, and images in the app
• How to use middleware
• How to include Node modules in the app
• How to log requests to the app
• How to configure the app
• How to run the app in different modes

Your first Express app
The best way to learn any new technology is to try it out using some practical
examples. So, let's go ahead and build an Express app and find out how it works.

Your First Express App

[28]

To ensure our experiments do not mess up our filesystem, let's create a directory
named express-app in your home directory and build our app there:

$ cd ~

$ mkdir express-app

$ cd express-app

The app directory is ready and we can start building our first Express app.

The Express manifest file
In Chapter 1, What is Express?, we learned that Express apps are actually Node
modules, which means our app also would need a manifest file. So, create a file
named package.json in the app directory.

The package.json file can have more than a dozen fields, but for the sake for
brevity, let's keep it minimal. Here is what it should look like:

{
 "name": "test-app",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node app"
 },
 "dependencies": {
 "express": "3.2.6",
 "jade": "*"
 }
}

The fields used in the manifest file are explained in the following table:

Field Description
name The name of the module.
version The version of the module.
private Indicates whether this module is meant to be published on the

npm registry or not.
scripts npm commands for the module. In our case, we will support only

the start command. npm start will call the node app.
dependencies A list of other Node modules this module depends on. In our

case, we specify that it depends on only two modules: express
at version 3.0.1 and the latest version of jade.

Chapter 2

[29]

For an interactive guide to all the possible fields in a package.
json file, visit http://package.json.nodejitsu.com/.

We have the manifest file ready now. Executing the npm install command in the
directory will install all the dependencies in the directory:

$ npm install

You will see a huge wall of scrolling text, that's the dependencies being installed.
Once it's done, you will find a new directory named node_modules in the directory;
that's where all the dependencies are installed. Because the directory is created and its
contents generated by the npm install command, you can safely delete this directory
any time you need to for whatever reason, and regenerate it using the same command.

With the dependencies installed, we are now ready to start building out first Express
app—from scratch.

Each Express app hosts its own copy of Express framework in a directory
named express, under the node_modules directory. You can safely
play around with the framework files without affecting other apps. If you
ever mess something up, just reinstall it by running npm install in the
app directory.

A very basic Express app
Let's create a very basic Express app to get us started. Create a file called app.js and
put the following code in it:

// Include the Node HTTP library
var http = require('http');
// Include the Express module
var express = require('express');
// Create an instance of Express
var app = express();

// Start the app
http.createServer(app).listen(3000, function() {
 console.log('Express app started');
});

// A route for the home page
app.get('/', function(req, res) {
 res.send('Welcome!');
});

Your First Express App

[30]

The app will listen on port 3000 and will have a very limited functionality. It will print
"Welcome" when you load its home page, and return a 404 error for all other requests.

HTTP 404 and 500 error handling is built into the router
middleware. The details about customizing these error handlers are
covered in Chapter 4, Response from the Server.

You might have noticed that the route in the app is defined after the code for starting
the server, but it works anyway. Isn't it shocking that it should even work?

The reason it works is because routes are defined on the app object, which is passed
to the HTTP API as a reference—any time you make a change on the app object, it is
reflected on the server.

Logically, it makes sense to defined the route first and then pass the app object to the
HTTP API, but I did afterwards to disruptively bring it to your attention about how
the app object is passed to the HTTP API—it is passed as a reference and its methods
and properties can be accessed any time. Routes can be defined dynamically, but
once defined cannot be redefined.

So much for its being the most important middleware; router wasn't even
mentioned in the app. So how does this app work at all?

The mere definition of a route implicitly adds the router middleware at that point of
the middleware stack. This feature might be acceptable in simple apps like ours, but
in more complex apps, you will need to include the router middleware explicitly,
to ensure the proper order of middlewares in the stack. You will learn more about
Express middleware in an upcoming section.

Starting and stopping the app
Since Express apps are Node programs, starting an Express app is similar to
executing a Node program. In our case, the program resides in a file named app.js,
so this is how you will start the server:

$ node app

> Express app started

To stop the server, press Ctrl + C.

Chapter 2

[31]

Analyzing the output
Start the app and load http://localhost:3000 on your browser to see the output:

If you view the source of the web page and you will find that the server has sent the
response in plain text.

How about sending some HTML in the response?

To send HTML response, just change res.send('Welcome!') to res.
send('<h1>Welcome!</h1>'), and restart the server. Refresh the page to see the
HTML formatted text, as shown in the following screenshot:

For the changes made in application files to reflect, you need to restart
the server. This can be a tedious process; you can make it easier for
yourself by using supervisor, a Node module that will watch the
application files and restart the server when any one of them changes.
You can learn more about supervisor at https://github.com/
isaacs/node-supervisor.

Your First Express App

[32]

Now, how do we send a whole HTML page?

Express apps have a special component called views, wherein you write the
necessary HTML using a templating language, which helps in separating HTML
from the core app. Also, any changes made in the views will be reflected in the
HTML output without requiring the server to be restarted.

Express app with views
Let's rewrite the app to use views. The view files can reside in any conveniently
named directory on the filesystem, but it makes sense to have it right in the
application directory.

So, let go ahead and create a directory for our views, named views:

$ mkdir views

Now create two view files in the views directory: one named index.jade for the
home page, another named hello.jade for the hello web page.

The first thing you might notice about the view files is that they have the .jade
extension. This unfamiliar extension might make it look a little intimidating, but you
will discover that it is very intuitive once you start using it.

Note that Jade is just one of the many templating languages that is
supported by Express. It is not mandatory to use Jade with Express.
However, we focus on it especially because it was created keeping
Express in mind, and is a natural fit for it. If you want to learn more about
Jade, you can take a quick look at Chapter 5, The Jade Templating Language.
Express supports all templating languages that work with Node. It is just
a matter of installing the right module and configuring your app to use it.

Let's familiarize ourselves with Jade by creating the content of the view files:

Here is the content for index.jade:

html
 head
 title Welcome
 body Welcome!

And here is the content for hello.jade:

html
 head

Chapter 2

[33]

 title Hello
 body
 b Hello!

As you can notice, indentation is the key in Jade. You use consistent space- or tab-
based indentations to nest HTML elements. We don't need to use the overly verbose
HTML opening and closing tags. There is much more to Jade than this, but for now,
you should be good to go with it. You will learn more about Jade in Chapter 5, The
Jade Templating Language.

Make sure to consistently use spaces or tabs for indentation, or else Jade
will throw an error.

Let's update app.js to use our newly created views. The following code is
commented well to help you understand what each relevant line of code is doing:

var http = require('http');
var express = require('express');
var app = express();

// Set the view engine
app.set('view engine', 'jade');
// Where to find the view files
app.set('views', './views');

// A route for the home page - will render a view
app.get('/', function(req, res) {
 res.render('index');
});

// A route for /say-hello - will render a view
app.get('/say-hello', function(req, res) {
 res.render('hello');
});

app.get('/test', function(req, res) {
 res.send('this is a test');
});

http.createServer(app).listen(3000, function() {
 console.log('App started');
});

Your First Express App

[34]

In the updated app.js, we have declared that we will be using the Jade templating
engine, and have specified the views directory for Jade. You can see we are using
res.render() for two of the routes to render views.

For a matched route, res.render() will look for the view in the views directory and
render it accordingly

Restart the server and load http://localhost:3000, http://localhost:3000/
say-hello, and http://localhost:3000/test in the browser to see the new
additions made to the app.

If you view the source of these web pages, you will find that the ones using views
have generated complete HTML.

Make some changes in the view files and refresh the browser to see the changes.
You don't need to restart the app to see the changes made in the view files, they are
reflected instantly when you refresh the browser.

So far you have only seen a preview of Jade, you will learn much more in Chapter 5,
The Jade Templating Language. Till then, let's continue understanding an Express
app better.

A public directory for the app
We are now quite close to having a fully functional website, albeit a simple one.
What remain now are CSS, JavaScript, images, and other files for the app. Where do
we keep these files?

Express has a middleware called static, using which we can mark a directory in the
filesystem for serving static files for the app. Any file kept in these directories can be
directly accessed via the browser.

This is how you use the static middleware to set a directory for static resources:

app.use(express.static('./public'));

It is worth noting that you can set multiple static directories, if you need to:

app.use(express.static('./public'));
app.use(express.static('./files'));
app.use(express.static('./downloads'));

Let's create a static directory named public and use it for our static content:

$ mkdir public

$ mkdir public/images

Chapter 2

[35]

$ mkdir public/javascripts

$ mkdir public/stylesheets

These directory names are chosen by convention, you can name them anything you
want; as long as the static directory is set, they will work as expected. However, it
is a good idea to stick to what I suggested, because those names are very commonly
used by web developers around the world.

Create a nice looking image named logo.png and keep it in the images directory.
I am using the following Packt logo:

Create a file named main.js in the javascripts directory with the
following content:

window.onload = function() {
 document.getElementById('smile').innerHTML = ':)';
};

Create a file named style.css in the stylesheets directory with the
following content:

#content {
 width: 220px;
 margin: 0 auto;
 text-align: center;
 border: 1px solid #ccc;
 box-shadow: 0 3px 4px #ccc;
 padding: 5px;
}

Update index.jade to include the newly added files:

html
 head
 title Welcome
 script(src='javascripts/main.js')
 link(rel='stylesheet', href='stylesheets/style.css')
 body
 #content
 img(src='images/logo.png')
 p WELCOME
 #smile

Your First Express App

[36]

Update app.js to set a static directory:

var http = require('http');
var express = require('express');
var app = express();

app.set('view engine', 'jade');
app.set('views', './views');

// Mark the public dir as a static dir
app.use(express.static('./public'));

app.get('/', function(req, res) {
 res.render('index');
});

http.createServer(app).listen(3000, function() {
 console.log('App started');
});

Restart the app and load the home page:

Congrats! Your first full-fledged Express app is up and running.

Auto-generating an Express app
The process of creating the manifest file, the app.js file, the views, and other
directories and files can become a tedious chore as we start to work on multiple
projects. To automate this process, we can use the express command-line tool.

Chapter 2

[37]

To refresh you memory, we first encountered the express command-line tool while
learning how to install Express. We were told that it generates Express app skeletons;
now we have a fairly good idea what it might do.

Using its help option (-h), let's ask express how it works and what its options are:

$ express –h

 Usage: express [options] [directory]

 Options:

 -h, --help output usage information

 -V, --version output the version number

 -s, --sessions add session support

 -e, --ejs add ejs engine support (defaults to jade)

 -J, --jshtml add jshtml engine support (defaults to jade)

 -H, --hogan add hogan.js engine support

 -c, --css <engine> add stylesheet <engine> support (less|stylus)
(defaults to plain css)

 Directory:

An optional directory where to create the app (defaults to pwd)

I have added the description for the [directory] parameter myself,
it is missing in the official express help screen. If you don't specify a
directory, the current directory is assumed to be the target directory.

So, the express command accepts some options and an optional directory to auto-
generate an app. Let's create a new app using our newfound knowledge of express:

$ express --sessions ~/auto-express

create : /Users/yaapa/auto-express

create : /Users/yaapa/auto-express/package.json

create : /Users/yaapa/auto-express/app.js

create : /Users/yaapa/auto-express/public

create : /Users/yaapa/auto-express/public/javascripts

Your First Express App

[38]

create : /Users/yaapa/auto-express/public/images

create : /Users/yaapa/auto-express/public/stylesheets

create : /Users/yaapa/auto-express/public/stylesheets/style.css

create : /Users/yaapa/auto-express/views

create : /Users/yaapa/auto-express/views/layout.jade

create : /Users/yaapa/auto-express/views/index.jade

create : /Users/yaapa/auto-express/routes

create : /Users/yaapa/auto-express/routes/index.js

create : /Users/yaapa/auto-express/routes/user.js

install dependencies:

 $ cd /Users/yaapa/auto-express && npm install

run the app:

 $ node app

You can see that the command created a bunch of file and directories, and exited
with the instructions for installing the dependencies and starting the app.

On running the npm install command in the app directory, you will see the
familiar dependency installation process seen earlier at the beginning of the chapter.
Once the dependency installation process is completed, take a look at the content of
the directory:

That's exactly what we already created! Well, almost, except for a new directory
named routes, and a file named layout.jade in the views directory. Don't be too
bothered by them at this stage. The routes directory will become clear to you in
Chapter 3, Understanding Express Routes and the layout.jade file in Chapter 5, The
Jade Templating Language.

Chapter 2

[39]

So now you know, you don't have to sweat creating all the files and directories for
each of your apps, the express command is there to take care of them for you.

The auto-generated files, directories, and the directory structure
created by the express command is called a skeleton app. It is
called so, because it is a barebones app, upon which you can start
building your app.

Manually creating the files and directories is the way to go when starting to learn
Express, but once you know what you are doing and start working on real projects,
you should use the express command to save yourself a lot of time.

One thing to note about express-generated files, directories, and the directory
structure is that, they are just suggestions—you are free to modify them to fit
your needs anytime and however you want them.

Even though we created a new app directory called auto-express,
to maintain continuity, all upcoming examples will be continued in our
original app directory express-app.

Empowering Express with middlewares
In Chapter 1, What is Express?, we learned about Express middlewares and saw how
to create one. Now, let's go find out how to include one in our app. Remember we
use app.use() for including middlewares.

Though we can write our own middlewares, we will focus on using one of the
middlewares that comes bundled with Express.

For your reference, the following is the list of the middlewares that are available in
Express, by default:

Middleware Description
router The app's routing system
logger Log requests to the server
compress gzip/deflate support on the server
basicAuth Basic HTTP authentication
json Parse application/json
urlencoded Parse application/x-www-form-

urlencoded

Your First Express App

[40]

Middleware Description
multipart Parse multipart/form-data
bodyParser Parse request body. Bundles json,

urlencoded, and multipart middlewares
together

timeout Request timeout
cookieParser Cookie parser
session Session support
cookieSession Cookie-based sessions
methodOverride HTTP method support
responseTime Show server response time
static Static assets directory for the website
staticCache Cache for the static middleware
directory Directory listing
vhost Enable vhost
favicon Favicon for the website
limit Limit the size of request body
query The GET query parser
errorHandler Generate HTML-formatted stack trace of

errors in the server

So there you have it, the list of middlewares available to you by default.
For this example, we will use the responseTime middleware.

Modify app.js to use this middleware:

var http = require('http');
var express = require('express');
var app = express();

app.set('view engine', 'jade');
app.set('views', './views');

app.use(express.static('./public'));
// Add the responseTime middleware
app.use(express.responseTime());

app.get('/', function(req, res) {
 res.render('index');

Chapter 2

[41]

});

http.createServer(app).listen(3000, function() {
 console.log('App started');
});

Restart the server. Load up the app in the browser and look at the HTTP
response headers in any network traffic analyzer (I am using Google
Chrome's Developer Tool):

When we enable the responseTime middleware, Express sends the time taken to
process a request in the HTTP response header (X-Response-Time). You can see it
highlighted in the preceding screenshot.

Now let's try using the errorHandler middleware. For test purposes, we will
generate an error in the home page's route handler by calling an undefined function.
According to the errorHandler middleware's description, it should format the error
into a nice looking HTML page.

Edit app.js to include the middleware and generate the error:

var http = require('http');
var express = require('express');
var app = express();

app.set('view engine', 'jade');
app.set('views', './views');

app.use(express.static('./public'));
app.use(express.responseTime());

Your First Express App

[42]

// Add the errorHander middleware
app.use(express.errorHandler());

app.get('/', function(req, res) {
 // Call an undefined function to generate an error
 fail();
});

http.createServer(app).listen(3000, function() {
 console.log('App started');
});

Restart the server and load the home page, you'll get an error message, as shown in
the following screenshot:

The output doesn't look like an HTML page at all! In fact, you can confirm it is
not HTML by looking at the source code. Why is the errorHandler middleware
not working?

In the beginning of this chapter, I mentioned that unless you add the router
middleware explicitly, it will be added at the point where a route is defined. The
most important requirement of errorHandler is that it should be added after the
router middleware. No wonder it didn't work as expected.

So now it makes sense to explicitly add the router middleware if we want to use
errorHandler productively. You never know which other middleware might
require router to be defined beforehand, so let's modify app.js to include the
router middleware explicitly:

var http = require('http');
var express = require('express');

Chapter 2

[43]

var app = express();

app.set('view engine', 'jade');
app.set('views', './views');

app.use(express.static('./public'));
app.use(express.responseTime());
// Explicitly add the router middleware
app.use(app.router);
// Add the errorHander middleware
app.use(express.errorHandler());

app.get('/', function(req, res) {
 // Call an undefined function to generate an error
 fail();
});

http.createServer(app).listen(3000, function() {
 console.log('App started');
});

Now restart the server, refresh the home page, and see the output:

This time the errorHandler middleware is doing what it is supposed to do.

Like errorHandler, you can use other middlewares whenever you might need
them. By default, Express doesn't do a lot, but using its middleware you can make
it do many other useful things.

As we saw earlier, you can write you own middleware, if you want. Anything you
want to do with req and the res object, middleware is the way to go.

Your First Express App

[44]

Empowering Express with Node modules
Express does not come packed with a huge bunch of built-in libraries to perform
tasks that are beyond a basic website. Express is very minimal. But that does not
mean that it is not capable of performing complex tasks.

You have a huge collection of Node modules on the npm registry that can be easily
plugged in to your app and used for performing all sorts of tasks in the app.

In Chapter 1, What is Express?, we were introduced to Node modules, and we learned
how to write them. We also found out that they can be used to modularly extend the
power and capability of Express.

You could write your own Node modules to accomplish many things, but anything
you are trying to achieve, probably there is an excellent open source Node module
out there already. You just need to find the right module, install it, and use it in
your app.

The npm registry/network in a publicly available online resource
where Node developers publish their Node modules. These modules
are installed using the npm command.
You can find a huge list of Node modules at https://github.com/
joyent/node/wiki/Modules. From the command line, you can use
the npm search command or use a module such as npm-search or
npm-research to search for modules of your interest.

Let's find out how we can install and use a Node module from the NPM registry. We
will install a .ini file parsing module named iniparser and use it in our app:

$ npm install iniparser

npm WARN package.json application-name@0.0.1 No README.md file found!

npm http GET https://registry.npmjs.org/iniparser

npm http 304 https://registry.npmjs.org/iniparser

iniparser@1.0.5 node_modules/iniparser

The module has been installed successfully. Create config.ini in the app directory
with the following content:

title = My Awesome App
port = 3000
message = You are awesome!

You might have guessed it already, we are going to use this as the configuration file
for our app.

Chapter 2

[45]

Now edit app.js to include the module and use it in our app:

var http = require('http');
var express = require('express');
var app = express();
// Load the iniparser module
var iniparser = require('iniparser');
// Read the ini file and populate the content on the config object
var config = iniparser.parseSync('./config.ini');

app.set('view engine', 'jade');
app.set('views', './views');

app.use(express.static('./public'));
app.use(express.responseTime());
app.use(app.router);
app.use(express.errorHandler());

app.get('/', function(req, res) {
 // Pass two config variables to the view
 res.render('index', {title:config.title, message:config.message});
});

http.createServer(app).listen(config.port, function() {
 console.log('App started on port ' + config.port);
});

While we are at it, we'd like to increase the complexity of the view a little bit more, so
go ahead and edit index.jade too:

html
 head
 title #{title}
 script(src='javascripts/main.js')
 link(rel='stylesheet', href='stylesheets/style.css')
 body
 #content
 img(src='images/logo.png')
 p WELCOME
 p #{message}
 #smile

Your First Express App

[46]

Restart the app and load it in the browser to see the "drastic" changes:

So, you see Express does not come with the inherent ability to parse .ini files, but
has the extensibility to be able to do almost anything with the correct Node module,
because of which we can parse .ini files and use one in our app.

Logging requests to the App
Express comes with a built-in logging module called logger, it can be a very useful
tool while you are developing the app. You enable it like any other Express module:

app.use(express.logger());

Without any options, the logger middleware will log a detailed log. You can
customize the details with the following tokens in the format option of the
logger middleware:

Token Content
:req[header] The specific HTTP header of the request
:res[header] The specific HTTP header of the response
:http-version The HTTP version
:response-time How long it took to generate the

response
:remote-addr The user agent's IP address
:date Date and time of request

Chapter 2

[47]

Token Content
:method The HTTP method used for making the

request
:url The requested URL
:referrer The URL that referred the current URL
:user-agent The user-agent signature
:status The HTTP status

And this is how you specify the log format using the tokens:

app.use(express.logger({ format: ':remote-addr :method :url' }));

After adding the logger middleware, you can see the log details in the console,
when requests are made to the app:

127.0.0.1 GET /

127.0.0.1 GET /favicon.ico

By default the logger outputs the log to the console. We can make it log to a file by
specifying the stream option, as shown here:

var http = require('http');
var express = require('express');
var fs = require('fs');
var app = express();

app.use(express.logger({
 format: 'tiny',
 stream: fs.createWriteStream('app.log', {'flags': 'w'})
}));

...

The logger middleware supports four predefined log formats: default, short,
tiny, and dev. You can specify one of them this way:

app.use(express.logger('dev'));

If you need to quickly check some aspects of the requests that are being made, the
logger middleware is the way to go.

Your First Express App

[48]

Using a configuration file
We actually don't need to use an .ini file for configuring our apps, as shown in a
previous example. The purpose of the example was just to show you how to use a
Node module, not the recommended practice.

As a side effect of how require() works, Node supports JSON-based configuration
files by default. Create a file with a JSON object describing the configurations, save it
with a .json extension, and then load it in the app file using require().

It is important to ensure that the file extension is .json and the JSON
object confirms to the JSON specification, or else it will throw an error.

Here is an example of a JSON-based config file:

{
 "development": {
 "db_host": "localhost",
 "db_user": "root",
 "db_pass": "root"
 },

 "production": {
 "db_host": "192.168.1.9",
 "db_user": "myappdb",
 "db_pass": "!p4ssw0rd#"
 }
}

This is how you would load it:

var config = require('./config.json')[app.get('env')];

Now the environment-specific configuration details will be available on the config
object. Assuming your app is running on production, the following would be the
result of using the configuration file:

console.log(config.db_host); // 192.168.1.9
console.log(config.db_user); // myappdb
console.log(config.db_pass); // !p4ssw0rd#

A configuration file is not mandatory for an Express app, but it helps in making it
modular and maintainable.

Chapter 2

[49]

Setting and getting application options
An Express application has a set of predefined application variables that are used
to configure various options of the app. These variables are used for setting various
dynamic aspects of the app and can be set using the app.set() method. So far we
have used two of them:

app.set('view engine', 'jade');
app.set('views', './views');

The values of application variables can be retrieved using the corresponding app.
get() method.

The following table lists all the options that can be configured in an Express app:

Option Purpose
env The environment the app is running on. Not

recommended to set manually. You will read
more about this in the next section.

trust proxy Enables reverse proxy.
jsonp callback name Callback name for JSONP requests.
json replacer The JSON replacer callback.
json spaces The amount of space for indenting JSON

responses.
case sensitive routing Makes route names case-sensitive.
strict routing Trailing slash at the end of a route name

should be treated as separate from that
without.

view cache Cache views. Enabled in production by
default.

view engine The engine for processing view files.
views The directory of view files.

Express in different environments
In a software release process, we designate systems for development, UAT, staging,
production, and so on for different stages of product release. Technically, these
contexts of application execution are called environments.

Your First Express App

[50]

It is very common that we want our software to execute differently on different
environments. For example, in a development environment, we would like to see
a very verbose detail about any error our software might encounter, but we might
not want to do so in the production environment. Express has a very simple
mechanism to let us do that. Let's find out how it works.

Express' app.get('env') method returns the current environment of the app.
Based on this value, you can configure your app to use different middlewares,
Node modules, and so on; effectively changing the behavior of the app based
on the environment.

Before we go about configuring our app based on its environment, let's find out how
app.get('env') works.

When an Express app starts, it looks for an environment variable called NODE_ENV
at the process.env object, if it finds it, the value of NODE_ENV is assigned to the app
variable env, or else it is assigned development. This app variable can be read by
app.get() and written by app.set().

If NODE_ENV is not set on your machine, it will be assumed to be a development
environment. If it is really intended to be used as a development machine, you need
not set any value, but for anything else, especially production, it is required to set the
environment name.

This is how you create the environment variable and set it to production:

$ export NODE_ENV=production

Now when you start your app, it will detect the NODE_ENV environment variable and
kick in the production mode.

However, the variable will only last as long as your current shell session does. To
"permanently" mark a system as a production environment, it makes sense to set the
NODE_ENV value to production every time you log in. This is how you can do that:

$ echo export NODE_ENV=production >> ~/.bash_profile

Now, this system will be marked as a production server.

As I mentioned earlier, you can overwrite the value of the env app variable
using app.set() anytime you want. Using this capability, you can hardcode
the environment name in your application file. But it is not recommended; one
unfortunate day when you misspell the environment name or forget to change it,
you will be in big trouble.

Let the system tell Express what environment it is executing in, don't let the app
decide what environment it is executing in.

Chapter 2

[51]

Now what happens if you want to see how the app would behave in the production
environment, while still being on the development server? Do you have to upload
the app to the production server? That doesn't sound effective at all, does it?

Worry not. You can temporarily set any value to NODE_ENV in your shell, and start
the app, to simulate any environment you want. This is how you can do so:

$ NODE_ENV=production node app

Now the app will run in production mode. The good thing about this method is that
the value of NODE_ENV lasts only as long as the app is running. Once you stop the app
and start it the regular way, it will run in the system's default mode again.

Now that we know how app.get('env') works, let's configure our app to work
according to the environment it is in.

Edit app.js to conditionally add or enable features according to the environment, as
shown in the following code:

var http = require('http');
var express = require('express');
var app = express();
var iniparser = require('iniparser');
var config = iniparser.parseSync('./config.ini');

app.set('view engine', 'jade');
app.set('views', './views');

app.use(express.static('./public'));
app.use(express.responseTime());
app.use(app.router);

// Setup for production environment
if ('production' == app.get('env')) {
 app.get('/', function(req, res) {
 res.render('index', {title:config.title, message:config.message});
 });
}

// Setup for development environment
if ('development' == app.get('env')) {
 app.use(express.errorHandler());
 app.get('/', function(req, res) {
 res.send('development mode test');
 });
}

Your First Express App

[52]

// Common setup for all the environments
app.get('/test', function(req, res) {
 res.send('works on all environment');
});

http.createServer(app).listen(config.port, function() {
 console.log('App started on port ' + config.port);
});

Restart the server and see how the app behaves according to environment type.

In production mode:

$ NODE_ENV=production node app

In test mode:

$ NODE_ENV=test node app

Setting up the app according to the environment was previously implemented
in another way using the app.configure() method. It is deprecated now and
included, as follows, just for reference:

// Setup for production environment
app.configure('production', function() {
 app.get('/', function(req, res) {
 res.render('index', {title:config.title, message:config.message});
 });
});

// Setup for development environment
app.configure('development', function() {
 app.use(express.errorHandler());
 app.get('/', function(req, res) {
 res.send('development mode test');
 });
});

// Common setup for all the environments
app.configure(function() {
 app.get('/test', function(req, res) {
 res.send('works on all environment');
 });
});

Chapter 2

[53]

Edit the app.js file accordingly and restart the server to see the configurations kick
in again.

With the last example, you have come to a point where you can configure your
Express app using all possible methods. If you have been paying good attention,
your Express basics should be rock solid now.

Summary
In this chapter, we learned how to create a fairly complete Express app from the
ground up. We started by demonstrating the fact that Express are Node modules.
Then we went on to create a simple app, upon which we added more and more
components and features to make it more complex. By the end of the exercise, we
had an app that could run on different modes depending on the environment.

We now have a good amount of knowledge to make sense of an auto-generated
Express app.

Since routes are the public interfaces to an app, they make it a natural topic to
focus on next. We will learn in detail about routes in Express in the next chapter.

Understanding Express
Routes

This chapter is about routes—the request interfaces to your application. We have
seen and used some routes in the previous chapters, but there is much more to
routes than creating one by giving a name and including a callback function to
handle the request.

In this chapter, you will get a deeper insight into how routes work and how you
can customize them to make your application more flexible and powerful.

You will learn the following in this chapter.

• How to define routes
• How to handle routes
• How to organize routes

What are Routes?
Routes are URL schema, which describe the interfaces for making requests to your
web app. Combining an HTTP request method (a.k.a. HTTP verb) and a path
pattern, you define URLs in your app.

Each route has an associated route handler, which does the job of performing any
action in the app and sending the HTTP response.

Understanding Express Routes

[56]

Routes are defined using an HTTP verb and a path pattern. Any request to the server
that matches a route definition is routed to the associated route handler.

Route handlers are middleware functions, which can send the HTTP response or
pass on the request to the next middleware in line. They may be defined in the app
file or loaded via a Node module.

A quick introduction to HTTP verbs
The HTTP protocol recommends various methods of making requests to a Web
server. These methods are known as HTTP verbs. You may already be familiar with
the GET and the POST methods; there are more of them, about which you will learn in
a short while.

Express, by default, supports the following HTTP request methods that allow us to
define flexible and powerful routes in the app:

• GET

• POST

• PUT

• DELETE

• HEAD

• TRACE

• OPTIONS

• CONNECT

• PATCH

• M-SEARCH

• NOTIFY

Chapter 3

[57]

• SUBSCRIBE

• UNSUBSCRIBE

GET, POST, PUT, DELETE, HEAD, TRACE, OPTIONS, CONNECT,
and PATCH are part of the Hyper Text Transfer Protocol (HTTP)
specification as drafted by the Internet Engineering Task Force (IETF)
and the World Wide Web Consortium (W3C). M-SEARCH, NOTIFY,
SUBSCRIBE, and UNSUBSCRIBE are specified by the UPnP Forum.

There are some obscure HTTP verbs such as LINK, UNLINK, and PURGE, which are
currently not supported by Express and the underlying Node HTTP library.

Routes in Express are defined using methods named after the HTTP verbs, on an
instance of an Express application: app.get(), app.post(), app.put(), and so on.
We will learn more about defining routes in a later section.

Even though a total of 13 HTTP verbs are supported by Express, you need not use
all of them in your app. In fact, for a basic website, only GET and POST are likely to
be used.

Revisiting the router middleware
This chapter would be incomplete without revisiting the router middleware.

The router middleware is very special middleware. While other Express
middlewares are inherited from Connect, router is implemented by Express
itself. This middleware is solely responsible for empowering Express with
Sinatra-like routes.

Connect-inherited middlewares are referred to in Express from the
express object (express.favicon(), express.bodyParser(),
and so on). The router middleware is referred to from the instance of
the Express app (app.router).

To refresh your memory, we learned in Chapter 2, Your First Express App, that if the
router middleware is not explicitly added in the middleware stack, it is added at
the point where a route is defined for the first time. To ensure predictability and
stability, we should explicitly add router to the middleware stack:

app.use(app.router);

Understanding Express Routes

[58]

The router middleware is a middleware system of its own. The route definitions
form the middlewares in this stack. Meaning, a matching route can respond with
an HTTP response and end the request flow, or pass on the request to the next
middleware in line. This fact will become clearer as we work with some examples
in the upcoming sections.

Though we won't be directly working with the router middleware, it is responsible
for running the whole routing show in the background. Without the router
middleware, there can be no routes and routing in Express.

Defining routes for the app
From the examples in Chapter 1, What is Express? and Chapter 2, Your First Express
App, we know how routes and route handler callback functions look like. Here is an
example to refresh your memory:

app.get('/', function(req, res) {
 res.send('welcome');
});

Routes in Express are created using methods named after HTTP verbs. For instance,
in the previous example, we created a route to handle GET requests to the root of the
website. You have a corresponding method on the app object for all the HTTP verbs
listed earlier.

Let's create a sample application to see if all the HTTP verbs are actually available as
methods in the app object:

var http = require('http');
var express = require('express');
var app = express();

// Include the router middleware
app.use(app.router);

// GET request to the root URL
app.get('/', function(req, res) {
 res.send('/ GET OK');
});

// POST request to the root URL
app.post('/', function(req, res) {
 res.send('/ POST OK');
});

Chapter 3

[59]

// PUT request to the root URL
app.put('/', function(req, res) {
 res.send('/ PUT OK');
});

// PATCH request to the root URL
app.patch('/', function(req, res) {
 res.send('/ PATCH OK');
});

// DELETE request to the root URL
app.delete('/', function(req, res) {
 res.send('/ DELETE OK');
});

// OPTIONS request to the root URL
app.options('/', function(req, res) {
 res.send('/ OPTIONS OK');
});

// M-SEARCH request to the root URL
app['m-search']('/', function(req, res) {
 res.send('/ M-SEARCH OK');
});

// NOTIFY request to the root URL
app.notify('/', function(req, res) {
 res.send('/ NOTIFY OK');
});

// SUBSCRIBE request to the root URL
app.subscribe('/', function(req, res) {
 res.send('/ SUBSCRIBE OK');
});

// UNSUBSCRIBE request to the root URL
app.unsubscribe('/', function(req, res) {
 res.send('/ UNSUBSCRIBE OK');
});

// Start the server
http.createServer(app).listen(3000, function() {
 console.log('App started');
});

Understanding Express Routes

[60]

We did not include the HEAD method in this example, because it is
best left for the underlying HTTP API to handle it, which it already
does. You can always do it if you want to, but it is not recommended
to mess with it, because the protocol will be broken unless you
implement it as specified.

The browser address bar isn't capable of making any type of request, except GET
requests. To test these routes we will have to use HTML forms or specialized tools.
Let's use Postman, a Google Chrome plugin for making customized requests to
the server.

We learned that route definition methods are based on HTTP verbs. Actually, that's
not completely true, there is a method called app.all() that is not based on an
HTTP verb. It is an Express-specific method for listening to requests to a route
using any request method:

app.all('/', function(req, res, next) {
 res.set('X-Catch-All', 'true');
 next();
});

Place this route at the top of the route definitions in the previous example. Restart
the server and load the home page. Using a browser debugger tool, you can examine
the HTTP header response added to all the requests made to the home page, as
shown in the following screenshot:

Chapter 3

[61]

Something similar can be achieved using a middleware. But the app.all() method
makes it a lot easier when the requirement is route specified.

Route identifiers
So far we have been dealing exclusively with the root URL (/) of the app. Let's find
out how to define routes for other parts of the app.

Routes are defined only for the request path. GET query parameters are
not and cannot be included in route definitions.

Route identifiers can be string or regular expression objects.

String-based routes are created by passing a string pattern as the first argument
of the routing method. They support a limited pattern matching capability. The
following example demonstrates how to create string-based routes:

// Will match /abcd
app.get('/abcd', function(req, res) {
 res.send('abcd');
});

// Will match /acd
app.get('/ab?cd', function(req, res) {
 res.send('ab?cd');
});

Understanding Express Routes

[62]

// Will match /abbcd
app.get('/ab+cd', function(req, res) {
 res.send('ab+cd');
});

// Will match /abxyzcd
app.get('/ab*cd', function(req, res) {
 res.send('ab*cd');
});

// Will match /abe and /abcde
app.get('/ab(cd)?e', function(req, res) {
 res.send('ab(cd)?e');
});

The characters ?, +, *, and () are subsets of their Regular Expression
counterparts.
The hyphen (-) and the dot (.) are interpreted literally by string-based
route identifiers.

There is another set of string-based route identifiers, which is used to specify
named placeholders in the request path. Take a look at the following example:

app.get('/user/:id', function(req, res) {
 res.send('user id: ' + req.params.id);
});

app.get('/country/:country/state/:state', function(req, res) {
 res.send(req.params.country + ', ' + req.params.state);
}

The value of the named placeholder is available in the req.params object in
a property with a similar name.

Named placeholders can also be used with special characters for interesting
and useful effects, as shown here:

app.get('/route/:from-:to', function(req, res) {
 res.send(req.params.from + ' to ' + req.params.to);
});

app.get('/file/:name.:ext', function(req, res) {
 res.send(req.params.name + '.' + req.params.ext.toLowerCase());
});

Chapter 3

[63]

The pattern-matching capability of routes can also be used with named
placeholders. In the following example, we define a route that makes the
format parameter optional:

app.get('/feed/:format?', function(req, res) {
 if (req.params.format) { res.send('format: ' + req.params.format); }
 else { res.send('default format'); }
});

Routes can be defined as regular expressions too. While not being the most
straightforward approach, regular expression routes help you create very flexible
and powerful route patterns.

Regular expression routes are defined by passing a regular expression object as the
first parameter to the routing method.

Do not quote the regular expression object, or else you will get
unexpected results.

Using regular expression to create routes can be best understood by taking a look at
some examples.

The following route will match pineapple, redapple, redaple, aaple, but not
apple, and apples:

app.get(/.+app?le$/, function(req, res) {
 res.send('/.+ap?le$/');
});

The following route will match anything with an a in the route name:

app.get(/a/, function(req, res) {
 res.send('/a/');
});

You will mostly be using string-based routes in a general web app. Use regular
expression-based routes only when absolutely necessary; while being powerful,
they can often be hard to debug and maintain.

Order of route precedence
Like in any middleware system, the route that is defined first takes precedence over
other matching routes. So the ordering of routes is crucial to the behavior of an app.
Let's review this fact via some examples.

Understanding Express Routes

[64]

In the following case, http://localhost:3000/abcd will always print "abc*"

, even though the next route also matches the pattern:

app.get('/abcd', function(req, res) {
 res.send('abcd');
});

app.get('/abc*', function(req, res) {
 res.send('abc*');
});

Reversing the order will make it print "abc*":

app.get('/abc*', function(req, res) {
 res.send('abc*');
});

app.get('/abcd', function(req, res) {
 res.send('abcd');
});

The earlier matching route need not always gobble up the request. We can make it
pass on the request to the next handler, if we want to.

In the following example, even though the order remains the same, it will print
"abc*" this time, with a little modification in the code.

Route handler functions accept a third parameter, commonly named next, which
refers to the next middleware in line. We will learn more about it in the next section:

app.get('/abc*', function(req, res, next) {
 // If the request path is /abcd, don't handle it
 if (req.path == '/abcd') { next(); }
 else { res.send('abc*'); }
});

app.get('/abcd', function(req, res) {
 res.send('abcd');
});

So bear it in mind that the order of route definition is very important in Express.
Forgetting this will cause your app behave unpredictably. We will learn more about
this behavior in the examples in the next section.

Chapter 3

[65]

How to handle routes
When a request is made to the server, which matches a route definition, the associated
callback functions kick in to process the request and send back a response. These
callback functions are responsible for the dynamic behavior of the app; without
them routes would simply be dumb interfaces that do nothing at all.

So far, we have been dealing with a single callback function for a route, but a route
can have more than one callback function.

As mentioned earlier, the Express routing system is also built around the
middleware concept—each route handler has the capability to send a response or
pass on the request to the next route-handling middleware in the current or the next
matching route.

All of a sudden route handling sounds a little more complicated than what we
assumed earlier, doesn't it? Let's find out if it is so.

By now, we are all familiar with how a route definition looks like:

app.get('/', function(req, res) {
 res.send('welcome');
});

We have been using a single callback function in all our examples so far. So, where
do the other callback functions come in and what do they do?

Understanding Express Routes

[66]

In Chapter 1, What is Express?, we saw the next() function being called to execute
the next middleware in the stack. Route handlers, being middlewares, also have
access to the next object, which happens to be the next callback function in the line.
To make the next object available to the callback function, pass it along with the req
and the res objects to it:

app.get('/', function(req, res, next) {
 next();
});

If there is no matching callback function after the current callback function, next
refers to the built-in 404 error handler, and it will be triggered when you call it.

This is how you specify multiple callbacks for a route:

app.get('/',

 function(req, res, next) {
 res.send('one');
 },

 function(req, res, next) {
 res.send('two');
 },

 function(req, res) {
 res.send('three');
 }
);

Try guessing what the response will be. Will the server print all of them, or "one"
or, "three"?

The server will print just "one". The act of doing a res.send() or send.render() or
other similar method terminates the flow of the request then and there; the request is
not passed on to any other middleware.

So, how do we specify multiple callbacks for a route, and use them all at the same
time? Call the next() function from the callback, without calling any of the methods
that terminates the request flow. Here is an example:

app.get('/',

 function(req, res, next) {
 res.set('X-One', 'hey!');
 next();

Chapter 3

[67]

 },

 function(req, res, next) {
 res.set('X-Two', 'ho!');
 next();
 },

 function(req, res) {
 res.send("Let's go!");
 }
);

This route handler stack is composed of three callbacks. The first two add two
additional HTTP headers. You can see that the two functions have successfully
added the HTTP headers, and the third is printed to the browser:

HTTP headers are protocol-level information sent by an HTTP server
in response to a request. They are not displayed by the browser, but
can be seen using a traffic analyzer or web development tools such as
Firebug and Chrome Developer Tool.

The callback functions can be passed in an array too. The following modification to
the code will result in the same response, similar to the one shown in the preceding
example, from the server:

var one = function(req, res, next) {
 res.set('X-One', 'hey!');
 next();
};

var two = function(req, res, next) {

Understanding Express Routes

[68]

 res.set('X-Two', 'ho!');
 next();
};

app.get('/', [one, two], function(req, res) {
 res.send("Let's go!");
});

You can achieve the same thing again by defining multiple routes for a route
path. This is not really recommended, but it will help you to better understand
how routes work:

app.get('/', function(req, res, next) {
 res.set('X-One', 'hey!');
 next();
});

app.get('/', function(req, res, next) {
 res.set('X-Two', 'ho!');
 next();
});

app.get('/', function(req, res) {
 res.send('three');
});

Showing the various ways of assigning callbacks to a route is not a recommendation
in any manner; it is just to show you the possibilities. You may most likely stick with
the single callback approach, but knowing the fact that you can assign more than one
callback to a router in various ways will give you flexibility and and power if the
need ever arises.

How to organize routes
So far, our routes and their handlers have been written right in the app file. It might
work for small apps, but is not practical for bigger projects. After a certain level of
complexity in our app, we will need to organize your routes.

So what is the Express way of organizing routes?

The Express way of organizing routes is—chose what works best for you. Express
does not force, recommend, or suggest any form of routing pattern on its developers.
However, it provides the capability to implement any sort of routing pattern you
may want to implement for your app.

Chapter 3

[69]

There are three popular ways of organizing routes in an Express app; let's
explore them.

Using Node modules
In Chapter 1, What is Express?, we learned that Node modules can be of any
JavaScript object type, including functions. Since route handlers are function,
we can modularize our app by using Node nodules to define our route handlers.

Create a directory named routes to keep our route handlers. In the directory,
create two basic Node modules: index.js and users.js.

Here is the content for index.js:

exports.index = function(req, res){
 res.send('welcome');
};

And, here is the content for users.js:

exports.list = function(req, res){
 res.send('Amar, Akbar, Anthony');
};

Now, update the app.js file to include our route handlers:

var express = require('express');
var http = require('http');
var app = express();

// Load the route handlers
var routes = require('./routes');
var user = require('./routes/users');

// Add router middleware explicitly
app.use(app.router);

// Routes
app.get('/', routes.index);
app.get('/users', user.list);

http.createServer(app).listen(3000, function(){
 console.log('App started');
});

Understanding Express Routes

[70]

Start the app and load http://localhost:3000 and http://localhost:3000/
users on the browser to see the results.

Now our route handlers reside in separate Node modules, making our app a little
more modular. Can the app be made even more modular?

How about moving also the route definitions out of the app.js file?

In our new scheme, the routes directory will be called handlers. So, go ahead and
rename routes to handlers. The modules need not be renamed or edited.

Create a new file called routes.js in the app directory. This file will be responsible
for loading the route handlers and defining the routes. Here is the content for the file:

// Load the route handlers
var routes = require('./handlers');
var user = require('./handlers/users');

module.exports = function(app) {

 // Define the routes
 app.get('/', routes.index);
 app.get('/users', user.list);

};

Now modify the app.js file to incorporate the new changes we have made:

var http = require('http');
var express = require('express');
var app = express();

// Explicitly add the router middleware
app.use(app.router);

// Pass the Express instance to the routes module
var routes = require('./routes')(app);

http.createServer(app).listen(3000, function() {
 console.log('App started');
});

Restart the app and reload http://localhost:3000 and http://localhost:3000/
users to see the functionality intact.

There you go, an even more modular app.

Chapter 3

[71]

This method of organizing the routes used the basic module loading capability
of Node to introduce modularity in the app. There are other methods of route
organization, which introduce a layer of abstraction to create routing patterns.
Let's explore two of them: namespaced routing and resourceful routing.

Namespaced routing
Take a look at the following set of route definitions:

app.get('/articles/', function(req, res) { … });
app.get('/articles/new', function(req, res) { … });
app.get('/articles/edit/:id', function(req, res) { … });
app.get('/articles/delete/:id', function(req, res) { … });
app.get('/articles/2013', function(req, res) { … });
app.get('/articles/2013/jan/', function(req, res) { … });
app.get('/articles/2013/jan/nodejs', function(req, res) { … });

As the number of routes and their path segments grow, you will start to wonder
if there is any way to organize them better, and flatten the growing pyramid of
repeating strings in the path names.

How about the ability to define root paths and defining other routes based on it?
That would cut down the repetitive text in path names, right?

Namespaced routing is just about that. You define the routes in your app based on a
namespace, which happens to be the root of the path, relative to which other routes
are defined.

You will have a better understanding about how namespaced routing works if we
re-write the preceding routes using namespaced routing, so let's do that.

Express does not support namespaced routing by default, but it is very easy to
enable support by installing a Node module called express-namespace:

$ npm install express-namespace

Now, edit app.js to include express-namespace and redefine the routes using
namespaces:

var http = require('http');
var express = require('express');

// express-namespace should be loaded before app is instantiated
var namespace = require('express-namespace');
var app = express();

Understanding Express Routes

[72]

app.use(app.router);

app.namespace('/articles', function() {

 app.get('/', function(req, res) {
 res.send('index of articles');
 });

 app.get('/new', function(req, res) {
 res.send('new article');
 });

 app.get('/edit/:id', function(req, res) {
 res.send('edit article ' + req.params.id);
 });

 app.get('/delete/:id', function(req, res) {
 res.send('delete article ' + req.params.id);
 });

 app.get('/2013', function(req, res) {
 res.send('articles from 2013');
 });

 // Namespaces can be nested
 app.namespace('/2013/jan', function() {

 app.get('/', function(req, res) {
 res.send('articles from jan 2013');
 });

 app.get('/nodejs', function(req, res) {
 res.send('articles about Node from jan 2013');
 });
 });

});

http.createServer(app).listen(3000, function() {
 console.log('App started');
});

Chapter 3

[73]

Restart the app and load the following URLs in your browser to see namespaced
routing in action:

• http://localhost:3000/articles/

• http://localhost:3000/articles/edit/4

• http://localhost:3000/articles/delete/4

• http://localhost:3000/articles/2013

• http://localhost:3000/articles/2013/jan

• http://localhost:3000/articles/2013/jan/nodejs

Namespaces support all the pattern matching and regular expression support we
read earlier, so the flexibility and power of defining routes is not compromised by
using namespaced routing.

Although we used app.get() for defining all the routes for the sake
of simplicity, it is not recommended to actually do so in production.
Doing so can leave the resources of your app open to deletion via the
most basic and unexpected actions, even by web spiders. Use app.
delete() instead, with authentication.

Resourceful routing
Another popular routing pattern is an object-oriented approach called resourceful
routing. The idea behind resourceful routing is to create routes based on actions
available on objects called resources on the server.

Resources are entities such as users, photos, forums, and so on on
the server.

Resourceful routes are defined using a recommended combination of HTTP verbs
and path patterns. Corresponding methods are defined in the route handling Node
module to perform the necessary actions in the server.

The following table illustrates resourceful routing for a resource called users in
the server:

HTTP Verb Path Module Method Description
GET /users index Lists users
GET /users/new new The form to create a new

user

Understanding Express Routes

[74]

HTTP Verb Path Module Method Description
POST /users create Processes new user form

submission
GET /users/:id show Shows user with ID :id
GET /users/:id/

edit
edit Form to edit user with

ID :id
PUT /users/:id update Processes user edit form

submission
DELETE /users/:id destroy Deletes user with ID

:id

Resourceful routing is not supported by Express by default. However, enabling it is
as easy as installing a Node module named express-resource:

$ npm install express-resource

Next, we need to create a Node module to handle the resourceful routes. Create a file
called users.js and implement the resourceful methods in it:

exports.index = function(req, res) {
 res.send('index of users');
};

exports.new = function(req, res) {
 res.send('form for new user');
};

exports.create = function(req, res) {
 res.send('handle form for new user');
};

exports.show = function(req, res) {
 res.send('show user ' + req.params.user);
};

exports.edit = function(req, res) {
 res.send('form to edit user ' + req.params.user);
};

exports.update = function(req, res) {
 res.send('handle form to edit user ' + req.params.user);
};

exports.destroy = function(req, res) {
 res.send('delete user ' + req.params.user);

};

Chapter 3

[75]

Now modify app.js to use the express-resource module and load the
route-handling Node module:

var http = require('http');
var express = require('express');
// Load express-resource BEFORE app is instantiated
var resource = require('express-resource');

var app = express();

app.use(app.router);

// Load the resourceful route handler
app.resource('users', require('./users.js'));

http.createServer(app).listen(3000, function() {
 console.log('App started');
});

Start the app and load the following URLs in your browser to see the resourceful
route handlers print the assigned messages:

• http://localhost:3000/users

• http://localhost:3000/users/new

• http://localhost:3000/users/7

• http://localhost:3000/users/7/edit

For POST, PUT, and DELETE routes, you will have to use a form or a tool such as
Postman to see the results:

Understanding Express Routes

[76]

In a real-world application, POST, PUT, and DELETE methods are
called using HTML forms. We are limited to GET examples by the
browser address bar which just supports GET requests. You will learn
more about forms and how to make other type of HTTP requests in
Chapter 6, The Stylus CSS Preprocessor.

So you can see, in resourceful routing you just have to specify the resource name and
implement the resourceful methods. The task of creating the routes is handled by the
underlying express-resource module.

Making a choice
Express aims to be an unopinionated web development framework. Apart from
the very basics, it does not impose any software development patterns on the
developers. At the same time it is so flexible that you can set up Express to nearly
work like Ruby on Rails, plain old PHP, Kohana, Django, or any other web
development framework you might have heard about.

The Express ideology of not being opinionated applies to routing too. Routes can
be implemented and organized in numerous ways. Some people like to define the
routes right in the app file, some like to keep them in a Node module, some like to go
the namespaced way, and some prefer the resourceful approach.

There is no one recommended way to implement routes in your app. Each app is
different and the needs are different. Resourceful routing in a simple app would be
overkill, while not planning the routes for a CMS application would be very bad
software development practice.

It is best to be aware about the possible ways of implementing and organizing routes
in an Express app, and pick the best according to the need of the application.

Summary
In this chapter, we learned about routes and route handlers in great detail. We can
now define flexible routes and route handlers. An important insight we got was the
fact that route handers are a middleware system of their own. We also learned the
various ways of organizing our routes and route handlers.

Now that we know how to define and handle routes, in the next chapter let's find out
how to send various types of responses from the server.

Response From the Server
This chapter is about understanding how web servers respond to HTTP requests and
how it works in Express. We will cover the details of the response process and learn
how to serve different kinds of content in Express.

You will learn the following in this chapter:

• The basics of HTTP response format
• How to set HTTP status code in Express
• How to set HTTP headers in Express
• How to serve different kinds of content in Express

A primer on HTTP response
To understand the types of response Express is capable of generating and have a
better control over them, it is important that you have some technical understanding
about the underlying HTTP protocol's response format. So, let's go over it real quick
and cover the basics.

HTTP response is a small part of the much bigger HTTP protocol.
As a web developer it is an added advantage if you have a good
understanding of the protocol you are working with. You can
read about the HTTP protocol in detail at http://www.w3.org/
Protocols/.

Response From the Server

[78]

The data sent by an HTTP server in response to a request is called an HTTP response
message. It is composed of a status code, headers, and optional associated data,
which is technically referred to as the body of the message.

The body is presented to the user as plain text, rendered HTML, image, file
download, and so on. The status code and the headers are hidden from a
regular user, but the browser requires them to process the body appropriately.

HTTP status codes
You might be familiar with 404 and 500 errors already. These error names are
derived from the HTTP status code used to convey the errors.

404 and 500 are examples from the number of HTTP status codes that can be sent
by the server to the client. Although there are a number of HTTP status codes, the
reason you don't get to see them all is, because these codes are targeted at the user
agent and the exchange takes place in the background.

An HTTP user agent is any software that a user makes use of to make
requests to a web server. In most cases, the user agent happens to be a
web browser, so we will be using the terms "user agent" and "browser"
interchangeably in this book.

All responses from an HTTP server come with an associated status code. The most
common among them is 200—the code for a successful request. Here is an example
of a 200 HTTP status code:

Chapter 4

[79]

Although not visible to a the regular user, the HTTP status code sent by the server
can be seen in the Network tab of most browser debugging tools.

Here is an example of a 404 status code sent by the server when requested for a
non-existent resource:

As mentioned a while ago, HTTP status codes are not limited to just 200, 404, and
500; there are many more used for conveying many different kinds of messages.

Since we are working with Express, which is an HTTP server, it makes sense to
be the aware about all the HTTP status codes, even if we don't get into the finer
details about them.

Response From the Server

[80]

Following is a list of all the HTTP status codes for your information and
general knowledge:

It is beyond the scope of this book to get into all the details of
HTTP status code, but you can find them all at http://www.
w3.org/Protocols/rfc2616/rfc2616-sec10.html.

1xx
The 1xx series of status codes is classified as Informational, and is used for
conveying provisional response from the server.

The available codes in this series are: 100, 101, and 102.

2xx
The 2xx series of status codes is classified as Success, and is used for conveying a
successful request for a resource on the server.

The available codes in this series are: 200, 201, 202, 303, 204, 205, 206, 207, 208, 250,
and 226.

3xx
The 3xx series of status codes is classified as Redirection, and is used for information
by the user agent about taking additional action to retrieve the requested resource.

The available codes in this series are: 300, 301, 302, 303, 304, 305, 306, 307, and 308.

4xx
The 4xx series of status codes is classified as Client Error, and is used for informing
the user agent of its erroneous requests to the server.

The available codes in this series are: 400, 401, 402, 403, 404, 405, 406, 407, 408, 409,
410, 411, 412, 413, 414, 415, 416, 417, 422, 423, 424, 425, 426, 428, 429, 431, 444, 449,
450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 494, 495, 496, 497, and 499.

Chapter 4

[81]

5xx
The 5xx series of status codes is classified as Server Error, and is used for informing
the user agent that the server has encountered an error because of which the request
was not fulfilled.

The available codes in this series are: 500, 501, 502, 503, 504, 505, 506, 507, 508, 509,
510, 511, 551, 598, and 599.

HTTP response headers
HTTP response headers (often referred to as just headers) are key-value pairs sent
after the HTTP status code in a HTTP message. These headers are used for conveying
various important pieces of information from the server to the user agent.

The following is an example of headers sent by a web server:

X-Powered-By: Express
Accept-Ranges: bytes
ETag: "819254-1356021445000"
Date: Mon, 11 Mar 2013 21:19:05 GMT
Cache-Control: public, max-age=0
Last-Modified: Thu, 20 Dec 2012 16:37:25 GMT
Content-Type: image/gif
Content-Length: 819254
Connection: keep-alive

HTTP headers, like HTTP status codes, are targeted at the user agent, rather than the
user, so they are also not visible to a regular user. However, they can be seen using
network traffic analyzers and browser debugging tools such as Firebug and Chrome
Developer Tool.

The HTTP protocol specifies a standard set of headers and possible values, which
can be set in a message; however, there is no technical restriction on the actual
implementation. Having said that, it is recommended to follow the standards to
ensure the app works in a predictable manner.

Media types
Media type describes the kind of data that is being transferred over the Internet
protocol; in our case it would be the HTTP protocol.

You might already be familiar with terms such as text/html, multipart/form-
data, text/plain, and so on, those are examples of description of media types.

Response From the Server

[82]

Media Type is also commonly referred to as MIME Type or
Content Type. You can read more about them at http://www.
iana.org/assignments/media-types.

Whenever an HTTP server sends a response, it also specifies what kind of data it is
sending via the Content-Type header, which is shown in the following screenshot:

The Content-Type header can have an optional parameter, which specifies the
encoding for the data being transferred. On the Web, this parameter is most
commonly applicable to string data, such as plain text, HTML, and JSON:

UTF-8 is the most popular encoding format on the Web, and is the default in
JavaScript, Node, and Express.

Chapter 4

[83]

HTTP response in Express
Now that we have covered the basics of HTTP response in general, let's find
out if it works in Express.

By now, we already know how a simple HTTP response can be generated in
Express—by setting up a route and a handler for it:

app.get('/', function(req, res) {
 res.send('welcome');
});

Let's examine the response for this response.

Express can send an HTTP response using one of its response methods:
res.send(), res.json(), res.jsonp(), res.sendfile(), res.
download(), res.render(), or res.redirect(). If none of them is
called, the request will be left hanging till the connection times out.
If more than one response methods are specified in a route handler, only
the first method will take effect, the rest will generate non-fatal, run-time
errors.

Start the app, load the homepage, and look at the response headers using a
browser-debugging tool:

HTTP/1.1 200 OK
X-Powered-By: Express
Content-Type: text/html; charset=utf-8
Content-Length: 7
Date: Sat, 09 Mar 2013 15:55:24 GMT
Connection: keep-alive

The HTTP status is set to 200 OK, the content type is set to text.html; charset=utf-8,
and a bunch of other HTTP headers have been set. Express does all of these for you,
automatically for successful requests.

It is not limited to successful results only, Express also handles 404 errors for you.
Try making a request to a non-existent URL on your local machine, for example,
http://localhost:3000/foo, and examine the response headers:

HTTP/1.1 404 Not Found
X-Powered-By: Express
Content-Type: text/plain

Response From the Server

[84]

Date: Sat, 09 Mar 2013 17:54:22 GMT
Connection: keep-alive
Transfer-Encoding: chunked

In fact, Express does all that is expected from any decent web server. Naturally, it
handles 500 errors too. Modify the home page handler to cause a runtime error:

app.get('/', function(req, res) {
 // Call an undefined function
 error();
});

Restart the app, load the homepage, and examine the response headers again:

HTTP/1.1 500 Internal Server Error
X-Powered-By: Express
Content-Type: text/plain
Content-Length: 938
Date: Sat, 09 Mar 2013 18:06:13 GMT
Connection: keep-alive

So Express takes care of setting the right HTTP status code and headers for the
requests made to it, and we really don't have to do anything much at all. It is all
well and good, but being curious hackers, we start to wonder if there are ways to
customize the HTTP status code and the headers. Can we?

Setting the HTTP status code
Setting the HTTP status code is as easy as passing a number to the res.status()
method. Let's look at some examples of to find out how res.status() works.

res.status() alone is not enough to handle the response. It needs to
be used in conjunction with one of the Express HTTP response methods,
such as res.send(), res.render(), and so on, or else the request
will be left hanging.

In the following example, we send a status code of 404 even though the home page
route actually exists. If we hadn't specified 404, Express would have sent a status
code of 200:

app.get('/', function(req, res) {
 // Set the status
 res.status(404);
 // Specify the body
 res.send('forced 404');
});

Chapter 4

[85]

And in this example, we send a 500 status code:

app.get('/', function(req, res) {
 res.status(500);
 res.send('forced 500');
});

res.status() is a chainable method, meaning we can do things like the following:

app.get('/', function(req, res) {
 // Status and body in one line
 res.status(404).send('not found');
});

Among the HTTP response methods, res.send(), res.json(), and res.jsonp()
are capable of specifying the HTTP status code themselves, without the help of res.
status(). When a status code is not specified, a default of 200 is assigned.

Here are some examples showing how it works using res.send():

app.get('/', function(req, res) {
 res.send('welcome');
});

When a number alone is passed to res.send(), it is assumed to be the intended
status code. The server will just send the status code and the basic headers, with
no body:

app.get('/', function(req, res) {
 res.send(404);
});

It is your responsibility to pass the proper HTTP status code to the
response methods; Express won't check the validity of the number.
Whatever you pass will be sent to the user agent.

And of course, you can set the status code and the body at the same time, like so:

app.get('/', function(req, res) {
 res.send(404, 'not found');
});

For res.render(), res.sendfile(), and res.download(), you will need to specify
the status code using the res.status() method, or else it will default to 200:

app.get('/', function(req, res) {

Response From the Server

[86]

 res.status(404);
 res.render('index', {title: 'Express'});
});

And as shown earlier, res.status() can be chained with the appropriate response
method to accomplish everything in a single line:

app.get('/', function(req, res) {
 res.status(404).render('index', {title: 'Express'});
});

It is important to note that res.render(), res.sendfile(), and res.download()
do not accept a single numeric parameter and send a response with just the
status code.

Setting HTTP headers
Express provides a very easy interface for setting HTTP headers in the response
message. You pass two parameters to the res.set() method; the first parameter
is the header name and the second parameter is its value.

In the following example, we set a standard HTTP header along with two
custom headers:

app.get('/', function(req, res) {
 // status is optional, it defaults to 200
 res.status(200);
 res.set('Content-Type', 'text/plain; charset=us-ascii');
 res.set('X-Secret-Message', 'not really secret');
 res.set('X-Test', 'OK');
 res.send('welcome');
});

The custom headers along with the standard HTTP headers can be seen in a web
debugger tool.

Note that HTTP header key names are case-insensitive from the
browser's context—Content-Type and content-type are both
interpreted as the same thing. It is also worth noting that the standard
practice of setting custom HTTP header is to use a key prefixed with
X-, as shown in the example.

Chapter 4

[87]

If the process of individually setting the headers seems tedious to you, you can use the
alternative approach of passing an object to res.set() instead. The key-value pair in
the object will be assigned as the header and its value in the HTTP response message:

app.get('/', function(req, res) {
 res.set({
 'Content-Type': 'text/plain; charset=us-ascii',
 'X-Secret-Message': 'not really secret',
 'X-Test': 'OK'
 });
 res.send('welcome');
});

Very related to setting HTTP headers, Express provides a res.charset property,
which can be used to set the value of the optional Content-Type header. This
property is best used when you just want to change the charset of the default
Content-Type of text/html.

The following code will set the Content-Type header to text/html;
charset=us-ascii:

app.get('/', function(req, res) {
 res.charset = 'us-ascii';
 res.send('welcome');
});

Now that we have covered setting the HTTP status code and headers, it is about time
that we started learning about sending stuff to the users that they can actually see
and interact with.

Response From the Server

[88]

Sending data
The component of an HTTP response message, which users can generally see and
interact with, is called the body of the message. The body can come in many different
forms—as HTML, plain text, images, binary files, CSS files and so on—and the
Content-Type header is exclusively used to convey to the user agent what sort of
data it is dealing with.

Let's find out how different kinds of data can be served from an Express application.

Plain text
One may wonder if we actually need to dedicate a section on how to send plain text
from Express. We will soon find out whether it was worth it or not.

Let's create a very simple route handler for the home page route. Our intention is to
see the HTML tags as is in the browser:

app.get('/', function(req, res) {
 res.send('<h1>welcome</h1>');
});

Start the app, load the homepage, and analyze the output:

The browser actually rendered the output as HTML. Maybe you expected it, or
maybe you did not; but we need to get to the root of this behavior.

The browser interpreted the output as HTML and rendered it accordingly, because
the default value of the Content-Type header in Express is text/html.

However, we wanted the browser to treat the output as plain text and not bother
rendering it as HTML.

Chapter 4

[89]

Is there a way to enforce that behavior? Yes, there is a way. Using our newfound
knowledge of HTTP headers and Express' res.set() method, we can set the
Content-Type header to text/plain.

Update the code accordingly to confirm our assumption:

app.get('/', function(req, res) {
 res.set('Content-Type', 'text/plain');
 res.send('<h1>welcome</h1>');
});

Restart the app and reload the home page:

This time the content was really treated as plain text, like how we wanted. When
the Content-Type is set to text/plain, the browser will render the body as plain
text—this is the case even for binary files.

The results of manually setting the Content-Type header for binary
files may vary from browser to browser depending on many factors.

Although the exercise was about sending plain text data, we had a very
good demonstration about the power of HTTP headers, especially the
Content-Type header.

HTML
Being an HTTP server, sending the content as HTML is the default behavior of
Express. Anything you send via res.send() or res.render() is sent as HTML
by setting the Content-Type header to text/html.

Response From the Server

[90]

As seen in a previous example, the following response body will be interpreted
and rendered as HTML by the browser:

app.get('/', function(req, res) {
 res.send('<h1>welcome</h1>');
});

And in this example, Express will render a view using the Jade template engine,
and generate a corresponding HTML page:

app.use(express.static('./public'));
app.set('views', __dirname + '/views');
app.set('view engine', 'jade');

app.get('/', function(req, res) {
 res.render('index', {title:'Express'});
});

If you look at the source code of the HTML code generated by Jade, you will find
 that the whole HTML is in a single line, as shown in the following screenshot:

For whatever reason, you may sometimes want the HTML to be pretty-printed—show
tags in separate lines with appropriate indentation to show hierarchy. To enable that,
just set the value of app.locals.pretty in your app to true.

The previous code can be re-written as follows to prettify the generated HTML:

app.use(express.static('./public'));
app.set('views', __dirname + '/views');
app.set('view engine', 'jade');

Chapter 4

[91]

// HTML should be prettified
app.locals.pretty = true;

app.get('/', function(req, res) {
 res.render('index', {title:'Express'});
});

Restart the server, reload the home page, and look at the source code now:

The generated HTML will now be pretty-printed. However, in a production
environment it is best not to prettify HTML to save some processing power
and reduce the download size of the HTML page.

JSON
Express provides the res.json() method for serving JSON content. You just
have to pass an object to it, and it will take care of setting the up right headers
and formatting the JSON string according to the JSON specifications.

Create this route for the home page:

app.get('/', function(req, res) {
 res.json({message: 'welcome'});
});

Response From the Server

[92]

Start the app, load the home page, and examine the HTTP response headers:

res.json() has successfully transformed the JavaScript object to a valid JSON string
and set the appropriate HTTP headers for the message.

Like other response methods, res.json() sets a default of 200 when no status code
is explicitly set. You can customize the status code by passing a number as the first
parameter of res.json(), followed by the object to be sent:

 res.json(404, {error: 'not found'});

Unlike res.send(), if you pass just a number to res.json(), it will be interpreted
as the intended JSON object, and the default status code of 200 will be sent instead
of using it as the status code.

JSONP
JSON with Padding (JSONP) is a JavaScript technique to allow cross-domain scripts
to execute callbacks from JSON requests made to an external domain. It is beyond
the scope of this book to cover JSONP in detail, but you can read it up at http://
en.wikipedia.org/wiki/JSONP.

A JSONP request comes with a GET request parameter, conventionally named
callback, which is the callback function available at the website making the request,
which will be executed by passing the JSON result from the external domain.

JSONP requests to Express are handled by the res.jsonp() method. This method
works like res.json(), except it wraps the JSON result with the callback function
specified in the request.

Chapter 4

[93]

Let's define the route of the home page to respond with res.jsonp():

app.get('/', function(req, res) {
 res.jsonp({message: 'welcome'});
});

Start the server, load http://localhost:3000/?callback=json_callback in
your browser, and examine the result:

Not only did res.jsonp() wrap the JSON result with the callback function, it also
added a quick check for the existence of the callback on the client machine before
executing the callback. Also, it set the Content-Type header to the appropriate text/
javascript content type so that the browser interprets the result as JavaScript.

By default, res.jsonp() expects the name of the callback parameter to be named
callback, but it can be renamed to anything you like using the app.set() method,
as shown here:

app.set('jsonp callback name', 'cb');

Now the callback name will be expected to be found in the GET parameter named cb.
If the callback name is not found in the expected GET parameter, only the JSON object
will be sent, without the callback padding.

Serving static files
As we saw in Chapter 2, Your First Express App, serving static files is very easy in
Express—just set up a static directory using the static middleware and place the
files there.

Response From the Server

[94]

Create a directory named files in the app directory, keep the files in the directory,
and add the following to the app file:

// Use the static middleware to set up a static files directory
app.use(express.static('./files'));

Now you can access all the files in the directory from the root of the website. This
is how static files for the app, such as CSS, JavaScript, and image files are served
in Express.

If you have a file named logo.png in the files directory, you can access it at
http://localhost:3000/logo.png. Any file or subdirectory you create in the
files directory will also be correspondingly accessible from the app, for example,
http://localhost:3000/new-logo.png, http://localhost:3000/icons/packt.
png, and so on.

Serving files programmatically
There is another category of files that can be served by a web server—those that are
served dynamically—the requests to which you can apply programming logic.

Express provides two methods of handling such requests: res.sendfile() and
res.download(). Let's examine them one after another.

Note, it is res.sendfile(), not res.sendFile().

Using res.sendfile(), you can send files to the browser in the same manner
as how regular files are sent to it. The Content-Type header is automatically set
based on the file extension, and depending on the file type and browser settings,
the file may be shown in the browser, displayed by a plugin, prompted for
download, and so on.

The following is a very simple example of using res.sendfile():

app.get('/file', function(req, res) {
 res.sendfile('./secret-file.png', function(err) {
 if (err) { condole.log(err); }
 else { console.log('file sent'); }
 });
});

In this example, we send a private file from a private directory, to GET requests to the
path/file on the server.

Chapter 4

[95]

In a web server context, public files and directories can be accessed via a
URL, whereas private files and directories are those that are not exposed
to the general public via a URL.

On loading http://localhost:3000/file, and examining the HTTP headers, we
will find that no information about the actual name or location of the file was sent to
the browser:

Considering the fact that routes names are very flexible and configurable in Express,
you can do all sorts of useful or crazy things, when combined with res.sendfile().

Here is an example that belongs to the crazy category:

app.get('/file.html', function(req, res) {
 console.log('HTML file is an image?');
 res.sendfile('./secret-file.png');
});

Response From the Server

[96]

There are times when you want the user to actually download the file, and not let the
browser try to render it. This can be achieved using the res.download() method.

res.download() requires the target file path, and accepts the optional desired
filename and callback function for the download:

app.get('/download', function(req, res) {
 res.download('./secret-file.png', 'open-secret.png', function(err) {
 if (err) { condole.log(err); }
 else { console.log('file downloaded'); }
 });
});

If you examine the HTTP headers for this response, you will find that the Content-
Disposition header has been set to attachment, because of which the file is being
prompted for download or being downloaded:

If a filename is not specified for the download to res.download(), the original name
of the file will be used.

Serving error pages
Displaying an error page can be as simple as sending just an error status code with
no body, or rendering an elaborate 404 or 500 error page.

Chapter 4

[97]

The simplest way to display an error page is to just send the HTTP error code.
In this case, the browser will "know" about the error, but the user will see just a
blank screen.

// 404 error
res.send(404);

You can elaborate this a little bit more by adding a body that will be displayed in
the browser. Now even the user will be aware about the error:

// 404 with additional message body
res.send(404, 'File not Found');

Using res.render(), you can have beautifully customized error pages for your
website, if you want to.

In theory, using res.send() and res.render() to serve error pages sounds very
straightforward and easy, however, in reality handling 404 and 500 errors is not that
obvious to most beginners. Let's find out how we can catch these errors and send the
appropriate responses.

We will be using views in the upcoming examples, so make sure you
have set the views directory in the app.js file, or else the examples
will fail to work. Refer Chapter 2, Your First Express App, for setting up
views for your app.

The router middleware comes with a default 404 error handler, but its output may
not be what you would want for your app. Let's find out how to create a custom 404
error handler.

A 404 error handler is technically a generic route handler that handles a request that
all other middleware before it has failed to handle. It is implemented by adding a
custom middleware at the end of the Express middleware stack.

Add the following middleware code after the router middleware:

app.use(function(req, res) {
 res.status(400);
 res.render('404.jade',
 {
 title: '404',
 message: 'File Not Found'
 }
);
});

Response From the Server

[98]

When the in-built 404 error handler detects that there is a route handler even beyond
it, it will pass on the request to the next handler, which would be our custom 404
error handler.

In the views directory, create a file named 404.jade with the following content:

doctype 5
html
 head
 title #{title}
 body
 h1 #{title}
 p #{message}

Restart the server and load a non-existent URL to see the 404 error page:

There you have it, your custom 404 error page! Feel free to modify and
customize404.jade to your maximum satisfaction.

Express also comes with a default 500 error handler that will pass on the control
to the next error handler, if there is one beyond it.

The 500 error is handled by adding a middleware with an arity of four. Since we
want to override the default 500 error handler provided by the router middleware,
we would need to add our handler after the router middleware.

Add the following middleware after the router middleware:

app.use(function(error, req, res, next) {
 res.status(500);
 res.render('500.jade',

Chapter 4

[99]

 {
 title: '500',
 error: error
 }
);
});

Now create the corresponding 500.jade view file in the views directory:

doctype 5
html
 head
 title #{title}
 body
 h1 #{title}
 p #{error}

To intentionally cause a 500 error, create a route with a callback that tries to execute
an undefined function:

app.get('/error', function(req, res) {
 // Call an undefined function
 error();
});

Restart the app, load http://localhost:3000/error in your browser to see the 500
error page:

There you go, your own custom 500 error page!

Response From the Server

[100]

Content negotiation
Content negotiation is the mechanism of specifying the data types a user agent is
capable of consuming and prefers, and the server fulfilling the request when it can,
and informing when it cannot.

User agents send their preferred content type for a resource using the Accept HTTP
request header.

Express supports content negotiation using the res.format() method. This is a
useful feature if you want to send different types of content based on the capability
of the user agent.

res.format() accepts an object whose keys are the canonical content type name
(text/plain, text/html, and so on), and whose values are functions that will be
used as the handler for the route, for the matching content type.

Let's implement content negotiation in the home page route handler to find out how
it works:

app.get('/', function(req, res) {

 res.format({

 'text/plain': function() {
 res.send('welcome');
 },

 'text/html': function() {
 res.send('welcome');
 },

 'application/json': function() {
 res.json({ message: 'welcome' });
 },

 'default': function() {
 res.send(406, 'Not Acceptable');
 }
 });

});

The server will respond with the appropriate data type based on the Accept
header. This fact can be verified by sending an Accept header of text/sgml,
application/json:

Chapter 4

[101]

Similarly, you will get the corresponding content type if you set the Accept header
to text/plain or text/html.

If a user agent does not support any of the specified formats in the handler, the
server will return a status of 406 Not Acceptable.

The previous code can be re-written in a less verbose manner by using just the
subtype of the content type as the key:

res.format({

 text: function() {
 res.send('welcome');
 },

 html: function() {
 res.send('welcome');
 },

 json: function() {
 res.json({ message: 'welcome' });
 },

 default: function() {
 res.send(406, 'Not Acceptable');
 }
});

Response From the Server

[102]

The default handler is optional. When not defined, an unsuccessful content
negotiation will be handled by Express' built-in implementation of 406.

Redirecting a request
Sometimes you may want to redirect the request to a different URL, instead of
responding with data. This is made possible in Express using the res.redirect()
method. This method takes an optional redirection code that defaults to 302, and
the URL to redirect to. The URL parameter can be an absolute URL or relative to the
current URL.

The following are some examples of redirecting requests from an Express app:

Code Description
res.redirect('/notice'); 302 redirection to /

notice relative to the
requested URL

res.redirect(301, '/help-docs'); 301 redirection to /
help-docs relative to
the requested URL

res.redirect('http://nodejs.org/api/'); 301 redirection to an
absolute URL

res.redirect('../images'); 302 redirection to /
notice relative to the
requested URL

Summary
We now know that a lot more happens in the background when we load something
in the browser. We learned to customize the HTTP response object in Express to
control the outcome of the request and serve different content types from our app.

We were introduced to Jade in Chapter 2, Your First Express App, and it has been a
constant presence in all the chapters till now. So far we know that it is a templating
engine and works great for generating HTML from our app. There is much more to
Jade than what we saw in the examples, in the next chapter we will learn about it in
greater detail.

The Jade Templating
Language

Jade is the recommended template engine for Express. It comes with an intuitive
language to create templates and views for Express apps. Jade, the template
engine has many aspects to it, but in this chapter we will focus only on its
templating capabilities.

You will learn the following in this chapter:

• How to create HTML tags using Jade
• How to use filters such as Markdown with Jade
• How to modularize views
• How to use the programming capabilities of Jade

What is Jade?
Jade, the templating language has a very intuitive syntax. You will most likely
understand 70 percent of how Jade works just by looking at an example. In fact,
the best way to start learning Jade is to look at a moderately complex Jade example
and try to make sense of it.

In this chapter, we will be focusing only on the language aspect of Jade.
For other details about Jade, visit the official Jade website at http://
jade-lang.com/.

The Jade Templating Language

[104]

Jade support is not enabled in Express apps by default. Jade is one of the many
template engines supported by Express. We will need to configure our app to
support Jade by setting two app variables: one for setting the view engine to
jade, and the other to set the views directory, where the view files for the app
will be located:

app.set('view engine', 'jade');
app.set('views','./views');

Let's set up a quick app to see an example of Jade code in action.

The following is the content for app.js. Note that we have specified that a
view named index should be rendered for GET requests to the home page:

var express = require('express');
var http = require('http');
var app = express();

app.set('view engine', 'jade');
app.set('views','./views');

app.use(app.router);
app.use(express.static('./public'));
app.locals.pretty = true;

app.get('/', function(req, res) {
 res.render('index', {title:'Learning Jade'});
});

http.createServer(app).listen(3000, function(){
 console.log('App started');
});

Create a file named index.jade in the views directory with the following content:

doctype 5
html

 head
 title #{title}
 style(type='text/css')
 #wrapper {
 font: 14px Arial;
 width: 300px;
 padding: 5px;
 border: 1px solid #ccc;

Chapter 5

[105]

 margin: 0 auto;
 }
 #content {
 margin: 10px 0;
 }
 .highlighted {
 background: #d0ff5e;
 }

 body
 #wrapper

 h1 #{title}
 #content
 p Jade is intuitive, Jade is logical. Jade makes HTML easy,
Jade saves time.
 p.highlighted Here is some highlighted text.
 button#alert Click Me

 footer
 span Copyright © 2013
 a(href='/') Home

 // script tag at the end to query the DOM straightaway
 script
 var greeting = 'Welcome to Jade';
 document.querySelector('#alert').onclick = function() {
 alert(greeting);
 };

Start the app and load the home page. On viewing the source of the page, you will
find the following HTML:

<!DOCTYPE html>
<html>
<head>
<title>Learning Jade</title>
<style type="text/css">
 #wrapper {
 font: 14px Arial;
 width: 300px;
 padding: 5px;
 border: 1px solid #ccc;
 margin: 0 auto;
 }

The Jade Templating Language

[106]

 #content {
 margin: 10px 0;
 }
 .highlighted {
 background: #d0ff5e;
 }

</style>
</head>
<body>
<div id="wrapper">
<h1>Learning Jade</h1>
<div id="content">
<p>Jade is intuitive, Jade is logical. Jade makes HTML easy, Jade
saves time.</p>
<p class="highlighted">Here is some highlighted text.</p>
<button id="alert">Click Me</button>
</div>
<footer>Copyright © 2013 Home</
footer>
</div>
<!-- script tag at the end to query the DOM straightaway-->
<script>
 var greeting = 'Welcome to Jade';
 document.querySelector('#alert').onclick = function() {
 alert(greeting);
 };
</script>
</body>
</html>

Try to correlate the Jade code and the HTML output. Pay good attention to the
indentation. This exercise will prepare you for learning more about Jade in the
upcoming sections.

Anytime you make some change in a view file, it will be reflected
immediately, without having to restart the server. Just refresh the
page to see the change.

Generating HTML tags
HTML tags are created by the mere mention of their names in the view file. If you
would like to include any text within a tag, include it right after the tag name.

Chapter 5

[107]

The way tags work in Jade is best understood by looking at these examples:

Jade HTML
html <html></html>

div <div></div>

div Hello World! <div>Hello World!</div>

br

script <script></script>

span Howdy? Howdy?

It is important to note that it is your responsibility to use valid HTML tag names,
Jade will just create an element—valid or not.

Hierarchy of HTML elements
In HTML, we create hierarchical DOM elements by nesting elements within other
elements with the use of opening and closing tags. In Jade, we create hierarchy by
the use of indentations—a tag indented below a tag is hierarchically placed under
the former tag.

You can use either tabs or spaces for indentation. Whichever you
choose, stick to one; mixing both will cause Jade to throw an error.

Let's look at some examples to see how indentations in Jade work to create hierarchy
in the HTML output:

Jade HTML
div
 span

<div>

</div>

div
 span Hola!

<div>
Hola!
</div>

div
 div
 button Click Me

<div>
<div>
<button>Click Me</button>
</div>
</div>

The Jade Templating Language

[108]

Jade HTML
html
 head
 title Hello
 body Hello World!

<html>
<head>
<title>Hello</title>
</head>
<body>Hello World!</body>

</html>

Sometimes, the number of indentations can get too nested. In the case of tags without
text, you can use Jade's block expansion feature to define the hierarchy on one line.
The block expansion uses a colon after the tag.

Here are some examples to show you how block expansions work:

Jade HTML
div: a(href='/about') About Me <div>

About Me
</div>

div: ul: li One <div>

One

</div>

div.container: div.content
Hello!

<div class="container">
<div class="content">Hello!</
div>
</div>

div.one: div.two: div.three
Three levels deep

<div class="one">
<div class="two">
<div class="three">Three
levels deep</div>
</div>
</div>

div: span: strong: em: #main <div>

<div id="main"></div>

</div>

Chapter 5

[109]

Block expansion works best when there are no text nodes within the involved tags,
the only exception being the last tag.

Assigning IDs
An ID can be assigned to a tag by using the ID marker (#). If the ID marker is used
without any tag name, the tag is assumed to be div tag.

Here are some examples to help you understand how ID assignment works in Jade:

Jade HTML
p#main-content <p id="main-content"></p>

span#target

div#username DiamondDave <div id="username">DiamondDave</
div>

#social
 #fb Facebook
 #twitter Twitter

<div id="social">
<div id="fb">Facebook</div>
<div id="twitter">Twitter</div>
</div>

Since an ID is an HTML element's attribute, it can also be assigned to a tag using the
attribute assignment feature, which is covered in an upcoming section.

If you haven't noticed already, Jade's ID marker is derived from the CSS ID selector.

Assigning classes
Like the ID marker, Jade uses the CSS class selector to mark classes. A tag can be
assigned a class by using the class marker (.). Multiple classes can be assigned to a
tag. If the class marker is used without a tag, it is assumed to be a div tag.

The Jade Templating Language

[110]

Let's look at some examples:

Jade HTML
.highlighted This text is
highlighted

<div class="highlighted">This
text is highlighted</div>

#target.highlighted ID and
class together

<div id="target"
class="highlighted">ID and class
together</div>

.highlighted#target Order
doesn't matter

<div id="target"
class="highlighted">Order
doesn't matter</div>

.highlighted.important
Multiple classes

<div class="highlighted
important">Multiple classes</
div>

p.normal
 .start The text starts
here

<p class="normal">
<div class="start">The text
starts here</div>
</p>

Specifying HTML attributes
The ID and class markers were used to set the id and class attributes of tags. But
we can't afford a symbol for all the possible attributes of HTML tags. This problem
is addressed by the use of a generic attribute operator to assign attributes to a tag.

The attribute operator consists of an opening and a closing parenthesis, with the
arguments and their values enclosed within them. The following examples will
give you a good idea about how attributes are created in Jade:

Jade HTML
p(id='main', class='highlight
special')

<p id="main"
class="highlight
special"></p>

#main(data-name='Lee') <div id="main" data-
name="Dave"></div>

a(href='/main').special#main-link <a href="/main"
id="main-link"
class="special">

img(src='/images/logo.png')#logo. <img src="/images/logo.
png" id="logo"/>

You can set the value of an attribute using a variable by referring to it without the
quotes. Variables in Jade are covered a little later:

Chapter 5

[111]

Jade HTML
- user_type = 'regular'

div(class=user_type) Hi

<div class="regular">Hi</div>

Creating text content
As seen in some of the examples, adding text to a tag is just about putting it right
after a tag:

Jade HTML
div Here goes some text <div>Here goes some text</div>

p One-line paragraph <p>One-line paragraph</p>

button Click Me <button>Click Me</button>

The preceding method works very well for single-line text, but it cannot handle
multiline text. So how do we write multiline text?

There are two ways of handling this: text blocks defined using the bar notation and
the dot notation.

The bar notation uses the vertical bar character (|) to mark the contents of a text
block. The text block should be indented within the containing tag:

Jade HTML
p
 | one two
 | buckle my shoe

<p>
 one two
 buckle my shoe
</p>

pre
 | step 1
 | step 2
 | step 3

<pre>step 1
 step 2
 step 3</pre>

Text blocks can also be used seamlessly with other nested elements, as shown in the
following examples:

Jade HTML
p
 | Username:
 span.username DiamondDave

<p>Username: <span
class="username">DiamondDave</
span></p>

The Jade Templating Language

[112]

Jade HTML
p
 span Diamond
 span Dave
 | is the
 span username

<p>
Diamond
Daveis the
 username
</p>

The bar notation works fine for a few lines of text, especially with other nested
elements, but it becomes awkward when dealing with large contiguous chunks
of text.

The dot notation uses a suffixed dot to mark the text block to be contained within
a tag. Note that there should be no space between the tag and the dot, or else it will
be interpreted as a literal dot:

Jade HTML
p.
 one two
 buckle my shoe

<p>
 one two
 buckle my shoe
</p>

pre.
 step 1
 step 2
 step 3

<pre>step 1
 step 2
 step 3</pre>
<p>

The dot notation works best with large chunks of contiguous text.

For style and script tags, you don't need define text blocks. You can indent
the appropriate content and they will be rendered accordingly, as shown in the
following examples:

Jade HTML
style
 body {
 padding: 10px;
 font: 14px Arial;
 }

<style>
 body {
 padding: 10px;
 font: 14px Arial;
 }
</style>

script
 var name = 'Dave';
 alert(name);

<script>
 var name = 'Dave';
 alert(name);
</script>

Chapter 5

[113]

Filters
The default text blocks in Jade work well for simple text segments, but can become
problematic for large segments with lots of formatting. That's where text-to-HTML
filters such as Markdown excel.

Filters are Jade's way of supporting other text formatters within it. Jade is currently
compatible with Stylus, Less, Markdown, CDATA, and CoffeeScript. Filter blocks are
marked by a colon, followed by the name of the filter.

Filters for Stylus, Less, Markdown, CDATA, and CoffeeScript, don't
work right out of the box; you will need to install their respective
packages for the filters to work in your code.

Let's find out how filters work using Markdown as an example.

First, install the markdown Node package by executing the following command:

$ npm install markdown

With the package installed, you will be able to use Markdown in your code. The
following is an example of using the Markdown syntax within the Markdown filter
in a Jade view:

#content

 :markdown

 #Websites

 1. [Wikipedia](http://www.wikipedia.org/)
 2. [Google](http://www.google.com/)
 3. [Yahoo!](http://www.yahoo.com/)

 IMPORTANT: Install the 'markdown' module

The preceding Jade code will output the following HTML code:

<div id="content">
<h2>Websites</h2>

Wikipedia
Google
Yahoo!

<p>

The Jade Templating Language

[114]

IMPORTANT: Install the <code>markdown</code> module
</p>
</div>

If you were to accomplish the same thing using Jade, it would have been a lot more
tedious. For large chunks of text with no dynamic content, it's advisable to use filters
to save time.

Local variables in views can be accessed from filter blocks but their
behavior is not optimal at the moment, so don't rely on it.

Declaring the document's Doctype
The Doctype of the document is declared by using the doctype keyword followed by
an optional Doctype value. If no value is specified, it defaults to html. Alternatively,
you can use !!! instead of doctype.

The following table lists the predefined values of Doctype:

Jade HTML
doctype <!DOCTYPE html>

doctype 5 <!DOCTYPE html>

doctype default <!DOCTYPE html>

doctype
transitional

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd">

doctype strict <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Strict//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd">

doctype frameset <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Frameset//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-frameset.dtd">

doctype 1.1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/
xhtml11.dtd">

doctype basic <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
Basic 1.1//EN" "http://www.w3.org/TR/xhtml-
basic/xhtml-basic11.dtd">

Chapter 5

[115]

Jade HTML
doctype mobile <!DOCTYPE html PUBLIC "-//WAPFORUM//

DTD XHTML Mobile 1.2//EN" "http://www.
openmobilealliance.org/tech/DTD/xhtml-
mobile12.dtd">

doctype xml <?xml version="1.0" encoding="utf-8" ?>

Apart from the predefined Doctypes, you can pass a literal and declare any Doctype
you want to. The probability of you using this method is very slim, but in case you
need to, here are some examples to follow:

Jade HTML
doctype html PUBLIC "-//W3C//DTD
XHTML Basic 1.1//EN"

<!DOCTYPE html public "-//
w3c//dtd xhtml basic 1.1//
en">

doctype html DIY "-//WHATEVER" <!DOCTYPE html diy "-//
whatever">

doctype my-custom-doctype <!DOCTYPE my-custom-doctype>

Programmability in Jade
Jade is not just about static tags and contents. Especially being a templating
language, it is expected of Jade to support variables, interpolation, and various
programming capabilities.

In this section, we will explore the various programmable aspects of Jade.

Even though Jade provides programming capability, it is primarily a
template engine; hence it is recommended to minimize programming in
the view files.

Variables
Variables in a Jade file can come from the app.locals object, the res.locals object,
the res.render() method, or can be defined right in the view file.

Any variable defined in the app.globals object will be available to all the views of
the app. Variables defined in the app.res.globals object will be available to the
view rendering the response.

Variables from res.render() are passed to a Jade template as the second parameter
of res.render(), as key-value pairs of an object.

The Jade Templating Language

[116]

In the very first example of this chapter, we had a route handler that passed the
title variable to its view:

app.get('/', function(req, res) {
 res.render('index', {title:'Learning Jade'});
});

We used the title variable for setting the title of the page and the main header:

title #{title}
…
h1 #{title}

To add more variables in the view, we just add more properties on the object that
will be passed to the renderer:

app.get('/', function(req, res) {
 res.render('index', {
 title: 'Superheroes',
 message: 'The champs are back!',
 html_message: 'The champs are back!'
 });
});

In this example, three variables: title, message, and html_message will be available
to the index view.

Although the most common way of creating variables in a view is to pass them
through the res.render() method, we can declare variables right in the view file
too. There are two ways of declaring variables in a view file: using plain JavaScript
and using the Jade construct for variable declaration.

Jade constructs are designer-friendly wrappers on the top of actual
JavaScript constructs. They provide a less verbose and a "friendlier"
interface to various programming constructs available in JavaScript.
You will get to see more of them in the upcoming sections.

The JavaScript way of declaring a variable is to start a line with a hyphen (-), and
follow with the regular JavaScript statement of variable declaration. The ending
semicolon is optional:

- var title = 'Super!'

The Jade way of declaring is a lot like JavaScript, except you don't have to start with
a hyphen or use the var keyword:

title = 'Super!'

Chapter 5

[117]

Note that, whether a variable came from the route handler or was defined in the
view, it always refers to the same instance. If you are not careful, you can end up
overwriting a variable passed by the router handler, in the view.

We learned that defining the pretty variable in the view is supposed to
prettify HTML; however, if you define it in the view file it will not work
as expected. It works only if it is defined in app.locals, res.locals,
or came from res.render(). That is because its value is required
before the view is rendered.

Interpolation
Now that we know how variables are created in views, let's find out how to use them
and render their values in the generated HTML.

There are two main types of interpolations available in Jade: placeholders and
expressions. Each of these types has an escaped and an unescaped version:

Interpolation Escaped Unescaped
Placeholder #{variable} !{variable}

Expression = variable != variable

Escaped interpolation will escape any HTML code in the variable to display is
actual characters in the rendered HTML, instead of formatting them. Unescaped
interpolation will result in rendering of the HTML if the variable contains any.

Be very careful about using the unescaped version of interpolation
or your app will be susceptible to XSS attacks. Read more about
XSS at https://www.owasp.org/index.php/Cross-site_
Scripting_%28XSS%29.

In placeholder interpolation, variables are rendered by enclosing them within the
braces of #{} or !{}, depending on your requirement. The only exception is values
of HTML attributes; they are interpreted without the evaluation enclosures:

The Jade Templating Language

[118]

Jade HTML

p #{title} - #{html_message} <p>Superheroes - The
champs are
back!</p>

p #{title} - !{html_message} <p>Superheroes - The
champs are back!</p>

img(alt=title, src='/logo.png') <img alt="Superheroes" src="/
logo.png">

You can notice that the HTML code is not rendered in the first example, because we
used the escaped interpolation. In the unescaped example, the HTML code in the
variable is rendered along with the Jade code.

Placeholders works very well for large chunks of text with variable sections within it.
Here is an example:

actor_type = 'frog'
actor_name = 'Croaky'
territory = 'pond'
territory_name = 'Pondy'

p Once upon a time there was a #{actor_type} named #{actor_name}, in
a #{territory} called #{territory_name}. #{actor_name} was loved by
everyone in #{territory_name}.

The preceding Jade code will be rendered into the following HTML code:

<p>Once upon a time there was a frog named Croaky, in a pond called
Pondy. Croaky was loved by everyone in Pondy.</p>

Expression interpolation works best for displaying the contents of a single variable.
You can use either the escaped (=) or the unescaped (!=) version, depending on
your requirement:

Jade HTML
p= title <p>Superheroes</p>

p= html_message <p>The champs are
back!</p>

p!= html_message <p>The champs are back!</p>

Chapter 5

[119]

Since expression interpolation uses JavaScript expressions, it is not limited to
displaying just a single variable. You can use the JavaScript concatenation operator
(+) to string together multiple variables into a single expression and even include
simple JavaScript expressions:

Jade HTML
p= '© ' + new Date().
getFullYear()

<p>© 2013</p>

p= actor_name + ' is a ' + actor_
type

<p>Croaky is a frog</p>

Although expression interpolation can be used to string together multiple variables,
it is best suited for rendering individual variables. Here is how it would look, if we
were to rewrite Croaky's story using expression interpolation:

p= 'Once upon a time there was a ' + actor_type + ' named ' + actor_
name + ', in a ' + territory + ' called ' + territory_name +'. '+
actor_name + ' was loved by everyone in '+ territory_name + '.'

Not pretty at all, and definitely not the way templates should be used.

Another important difference between placeholders and expressions is that you
can use expressions without any containing tag, but if you try the same with a
placeholder, you will end up creating a tag with the value of the variable:

Jade HTML
= title Superheroes

#{title} <Superheroes></Superheroes>

Control structures
Two types of control structures are available in Jade: JavaScript constructs and Jade
constructs. As a JavaScript programmer, the former will be instantly familiar to
you. The latter are custom implementations of various programming constructs, the
syntax of which is a lot inspired by Python.

Let's define a route and its handler to base our examples:

app.get('/', function(req, res) {
 res.render('index', {
 title: 'Superheroes',
 heroes: [
 {name: 'Fooman', role: 'captain', skills: ['dancing',
'invisibility']},

The Jade Templating Language

[120]

 {name: 'Barman', role: 'entertainer', skills: ['bar tending',
'x-ray vision']},
 {name: 'Napman', role: 'hacker', skills: ['computer hacking',
'nunchucks']},
 {name: 'Zipman', role: 'collector', skills: ['zipping',
'flight']}
]
 });
});

JavaScript constructs
JavaScript code works mostly as expected with some limitations and exceptions in a
Jade view. The most important part is to start the line with a hyphen (-) to indicate
that the following expression is in JavaScript.

Here is a JavaScript for loop in a view:

- for (var i in heroes) {
 div #{i}. #{heroes[i].name}
- }

The preceding code will generate the following HTML:

<div>0. Fooman</div>
<div>1. Barman</div>
<div>2. Napman</div>
<div>3. Zipman</div>

The same can be achieved using a slight modification—by omitting the braces.
However, make sure you indent your code well. The tag code should be indented
within the hyphen that marked the for loop:

- for (var i in heroes)
 div #{i}. #{heroes[i].name}

Here is another example to demonstrate the use of JavaScript conditionals in a view:

- if (typeof(title) != 'undefined')
 = title
- else
 = 'Title is missing'

Since the title variable is declared, Jade will print the value in the browser.

Here we demonstrate another JavaScript construct—the forEach() method:

- heroes.forEach(function(hero, i) {

Chapter 5

[121]

 div= hero.name
- })

Since we are passing a callback function to the method, we cannot omit the curly
braces. The preceding code will generate the following HTML:

<div>Fooman</div>
<div>Barman</div>
<div>Napman</div>
<div>Zipman</div>

Most JavaScript constructs are valid programming constructs in a Jade view, and
curly braces are optional in simple blocks.

In the following example, we use the JavaScript while loop to count from 10 to 1:

pre

 n = 10
 - while (n > 0)
 = n + '\n'
 - n--

And this is how we define a function and call it:

- function greet(name)
 p Hi #{name}!

- greet('Fred')
- greet('Ned')

JavaScript code, especially with the leading hyphens, can start to look untidy and
confusing if you use it a lot in your views. Try to avoid using JavaScript in your
views; if you must, consider the neater Jade constructs.

The main purpose of view files is to generate HTML content. If you
are applying any complex programming logic to the data in views,
you should re-evaluate your implementation and hand over the
responsibility to the controller or the route handler that passed the
variable.

Jade constructs
Jade constructs are the designer-friendly implementation on top of the underlying
JavaScript constructs—you use indentation to create code blocks, and you don't have
to use hyphens, parentheses, and braces.

The Jade Templating Language

[122]

Jade constructs are currently limited to if, else if, else, for, each, case, while,
and unless. Let's study them one by one, using some examples.

if, else if, and else
The if, else if, and else combination works just like in JavaScript, except you
don't have to use parentheses and braces. Another important thing to note is that you
indent the code within a conditional to execute it under that condition:

if hero.role == 'captain'
 .msg Aye Captain!
else if hero.role == 'hacker' && hero.name != 'Napman'
 .msg Who goes there?
else
 .msg Avast!

for
The for construct works like the JavaScript for-in loop:

for hero in heroes
 div= hero.name

In case you need to access the index:

for hero, i in heroes
 div Hero No.#{i} - #{hero.name}

You can access the properties of an object that is being iterated in a for loop, as
expected:

for hero in heroes
 if hero.role == 'hacker'
 div Got the hacker!
 - break
 div= hero.role

each
The closest sounding construct to Jade's each construct, in JavaScript, is forEach().

each and for are aliases to each other, you can substitute for in the preceding
examples with each and will still get the same results.

The reason we have two constructs that do the same thing is because of developer
preference—some of us feel at home with the for iteration, while some of us prefer
to use each.

Chapter 5

[123]

while
The while construct is a part of JavaScript's while loop:

i = 0

while i < 5
 div= i
 i++

unless
The unless construct is an alternative way to check for Boolean false.

Here is an example showing the use of the unless construct:

each hero in heroes
 unless hero.role == 'captain'
 div #{hero.name}, report for duty!

The preceding code does the same thing as the following:

each hero in heroes
 if hero.role != 'captain'
 div #{hero.name}, report for duty!

case
The case construct is Jade's less verbose and neater-looking implementation of the
JavaScript switch-case construct:

case hero.role
 when 'captain'
 div Yarr!
when 'hacker'
 div w00t!
 default
 div Avast!

Modularization
In this section, we will go through the ways Jade views can be modularized at file
and code level.

The Jade Templating Language

[124]

Includes
A Jade view file can seamlessly include other Jade files, CSS, JavaScript, and HTML
files. If you have installed the markdown Node module, you can include Markdown
files too.

To include a file in a view, use the include directive and pass it the path of the file
to be included. It is very important to give the correct extension to the include files,
because Jade uses the extension of the file to render the content accordingly.

A Jade view file and its included Jade files share the same scope. So
variables defined in one file are available to the other.

The indented hierarchy is applicable to the include directive too, so the way you
indent it is important.

Let's create an example to understand how include works. In the views directory
of your app, create a new directory named includes, where we will be creating the
following include files:

1. A Jade file named header.jade with the following content:
h1 Included Header

2. A Markdown file named content.md with the following content:
The Main Content

A **Markdown** file was included and rendered in the HTML.

3. An HTML file named footer.html with the following content:
<div id="footer">Footer © 2013</div>

4. A CSS file named style.css with the following content:
body {
 padding: 10px;
 font: 14px Arial, sans-serif;
}
a {
 color: #0066ff;
}

5. A JavaScript file named script.js with the following content:

alert('JavaScript included');

Chapter 5

[125]

6. And then the view file (index.jade) that goes in the views directory, which
will include the files in the includes directory:

!!! 5
html
 head
 title Include Examples
 include includes/style.css
 body
 include includes/header.jade
 include includes/content.md
 p ... and here is something original from the Jade file.
 include includes/footer.html
 include includes/script.js

When this view file is rendered, you will get the following HTML:

<!DOCTYPE html>
<html>
<head>
<title>Include Examples</title>
<style>body {
 font: 14px Arial;
 padding: 10px;
 }
</style>
</head>
<body>
<h1>Included Header</h1>
<h2>The Main Content</h2>
<p>A Markdown file was included and rendered in the
HTML.</p>
<p>... and here is something original from the Jade file.</p>
<div id="footer">Footer © 2013</div>
<script>alert('JavaScript included');</script>
</body>
</html>

Template inheritance
If you have multiple views with a similar structure, you will end up with the same
set of includes in all your views. This approach can quickly become complicated and
untidy, if the number of views and includes increases.

Includes work best with small sets of sub-views, popularly called partials.

The Jade Templating Language

[126]

An alternative to includes is template inheritance. In this method we create
templates with blocks in them, the contents of which are then filled in by the views
extending the template.

Let's find out how templates work using some examples.

Create a template named layout.jade with the following content:

!!! 5
html
 head
 title Learning Inheritance
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
p The inherited content goes below:
 block content
 block footer

We have defined two blocks named content and footer using the block directive.
Views extending this template can define the contents for the blocks, if they wish too.

Let's create a view to extend the layout template, with the following content:

extends layout

block content
 h2 Image Content
 img(src='/images/01.jpg')

block footer
 #footer Images - Copyright © 2013

We used the extends directive to indicate that this view is extending the layout.
jade template. In the view, we defined the contents for the content and footer
blocks that it inherited from the template.

Rendering this view will generate the following HTML:

<!DOCTYPE html>
<html>
<head>
<title>Learning Inheritance</title>
<link rel="stylesheet" href="/stylesheets/style.css">
</head>
<body>
<p>The inherited content goes below:</p>
<h2>Image Content</h2>

Chapter 5

[127]

<div id="footer">Images - Copyright © 2013</div>
</body>
</html>

Create another view, which extends layout, with the following content:

extends layout

block content
 h2 Text Content
 p.
 Jade is intuitive, Jade is logical.
Jade makes HTML easy, Jades saves time.

block footer
 #footer Text - Copyright © 2013

On rendering this view, the following HTML will be generated:

<!DOCTYPE html>
<html>
<head>
<title>Learning Inheritance</title>
<link rel="stylesheet" href="/stylesheets/style.css">
</head>
<body>
<p>The inherited content goes below:</p>
<h2>Text Content</h2>
<p>
 Jade is intuitive, Jade is logical.
 Jade makes HTML easy, Jade saves time.
</p>
<div id="footer">Text - Copyright © 2013</div>
</body>
</html>

From the preceding examples, we can see that the template defines the blocks, and
the views extending the template define the content of those blocks.

Template inheritance is not just about replacing empty blocks. Blocks can have
content of their own by default; those extending the template can then either replace
it, prepend it, or append to it. Views that don't define the content of a block will
inherit the content defined in the template, and will be rendered accordingly.

The Jade Templating Language

[128]

The default behavior of template inheritance is replacement, which was seen in the
previous examples. To prepend a block, we use the block prepend directive, or
just prepend. Similarly, to append a block, we use the block append directive, the
shorter version of which is append.

The replacement, prepend, append, and default inheritance behaviors are
demonstrated in the following example.

Here is the content of the template file, named layout-demo.jade:

!!! 5
html
 head
 block head
 script(src='/library.js')
 body
 block content
 p Default Content
 block footer
 #footer The original footer

And here is the content of the view, which extends it:

extend layout-demo

prepend head
 script(src='/one.js')

append head
 script(src='/two.js')

block content
 p Inherited Content

Rendering the view will generate the following HTML:

<!DOCTYPE html>
<html>
<head>
<script src="/one.js"></script>
<script src="/library.js"></script>
<script src="/two.js"></script>
</head>
<body>
<p>Inherited Content</p>
<div id="footer">The original footer</div>
</body>
</html>

Chapter 5

[129]

Notice how the view prepended a new script tag <script src="/one.js"></
script>, and appended a new script tag <script src="/two.js"></script>,
to the original content of the head block.

Since we defined a new block for content, the original content block was overwritten
by the view's content. And because we did not define a block for the footer block, the
original stayed.

Includes and template inheritance are not exclusive to each other. In fact, for
complex layouts, you will be able to achieve the most optimal view by using a
mixture of both.

Mixins
Mixins are named blocks of code that can be executed to programmatically
generate HTML. They work a lot like JavaScript functions, except their syntax
is a little different.

Here is a simple mixin that just returns a predefined list:

//- Define the mixin
mixin skills_list
 ul
 li Dancing
 li Computer Hacking
 li Nunchucks

//- Call the mixin
mixin skills_list

The preceding Jade code will generate the following:

Dancing
Computer Hacking
Nunchucks

A less verbose method of calling a mixin is to append the mixin name with a plus (+).
So, the preceding mixin can also be called using +skills_list.

Mixins can optionally accept arguments and perform logical operations, as shown in
the following example.

The Jade Templating Language

[130]

Assume we have variable named heroes in the view, with the following value:

[
 {name: 'Fooman', role: 'captain'},
 {name: 'Barman', role: 'entertainer'},
 {name: 'Napman', role: 'hacker'},
 {name: 'Zipman', role: 'collector'}
]

Here is the Jade code defining a mixin and calling it from an each loop:

mixin heroes_list(hero)
 if hero.role == 'captain'
 li Captain #{hero.name}
 else
 li #{hero.name}

ul
 each hero in heroes
 +heroes_list(hero)

The preceding code will generate the following HTML:

Captain Fooman
Barman
Napman
Zipman

Mixins, like JavaScript functions, can access variables defined outside their block.
In the following example, we define an array outside a mixin, but loop through the
array in the mixin:

skills = ['Dancing', 'Computer Hacking', 'Nunchucks'];

mixin skills_list
 ul
 each skill in skills
 li.skill= skill

+skills_list

The preceding code will generate the following:

<li class="skill">Dancing

Chapter 5

[131]

<li class="skill">Computer Hacking
<li class="skill">Nunchucks

Escaping
We have seen that HTML in variables is escaped by using escaped interpolation
constructs != or !{}. How about escaping the Jade interpolation constructs =, !=,
#{}, and !{}?

Jade interpolation constructs can be escaped with the combination of backslash (\)
and the = HTML entity:

Jade Rendered HTML
p

= message

= message

p

 != message

!= message

p \#{message} #{message}

p \!{message} !{message}

p \\#{message} \#{message}

p \\!{message} \!{message}

Using the = HTML entity code makes Jade render = in the browser, rather
than interpret it as the Jade interpolation construct.

and ! are escaped using the popular escape character, backslash (\). If you
intend to use \ as a literal, you will need to escape it too with \, as shown in
the preceding example.

Comments
Comments in Jade are marked using double slashes (//) or double slashes with
a trailing hyphen (//-). The former comments show up in the HTML as HTML
comments, while the latter remain in the view file and are not rendered in the HTML.

Tags nested within a comment will either be commented in the HTML or not be
rendered at all, depending on the comment type.

The Jade Templating Language

[132]

Here are some examples to help you understand how comments work in Jade:

Jade HTML
// Here is a comment

p Howdy?

<!-- Here is a comment-->
<p>Howdy?</p>

//- This comment will not be
shown in the HTML

p Something interesting

<p>Something interesting</p>

//

 p This paragraph will be
commented out

<!-- <p>This paragraph will be
commented out</p> -->

//-

 p This paragraph won't even
show up in the HTML

Jade even supports Internet Explorer's conditional comments:

// if lt 8
 script
 alert('Upgrade your browser!');

will render:

<!--[if lt 8]>
 <script>alert('Upgrade your browser!');</script>
<![endif]-->

Summary
In this chapter, we learned about the Jade templating language. We now know how
to create modular views for our app and use the various Jade constructs to customize
the structure and contents of the views.

Now that we know Jade in detail, it is time to learn more about its CSS
counterpart—Stylus. In the next chapter, we will study Stylus in great detail.

The Stylus CSS Preprocessor
Stylus is the recommended CSS preprocessor for Express. It comes with an intuitive
syntax for generating CSS and a flexible programming language to manage the
dynamics of the CSS generation process.

Using Stylus saves a lot of time during development and maintenance. You will
learn the following in this chapter:

• How to enable Stylus in Express
• Understand the Stylus CSS syntax
• How to use the programming capabilities of Stylus

Introduction
Stylus is a CSS preprocessor—a tool for generating CSS in a more efficient
and dynamic manner. It comes with a logical syntax for generating CSS style
definition blocks, and a programming language to make the CSS generation
process very dynamic.

Although, we cover most aspects of Stylus in this chapter, for a complete
coverage of the topic visit the official website at http://learnboost.
github.io/stylus/.

Stylus files have a .styl file extension. The contents of these files are parsed
and converted to CSS code when the corresponding .css file is requested by
a user agent.

Stylus CSS syntax isn't very different from regular CSS. In fact, regular CSS language
is valid Stylus too, because Stylus is a superset of CSS. All Stylus does is add some
dynamic capabilities to the plain old CSS. However, colons, semicolons, commas,
and braces are optional in Stylus.

The Stylus CSS Preprocessor

[134]

A very important difference between CSS and Stylus is that whitespace is significant
in Stylus. In fact, we use indentation (tabs or spaces) to create CSS selector blocks.

Here are some examples to help you get some idea about how Stylus looks and works:

Stylus CSS
// This is a comment
strong {
 color: #999;
}

strong {
 color: #999;
}

// Braces and semicolons are optional
strong
 color: #999

strong {
 color: #999;
}

// Colons are optional
strong
 color #999

strong {
 color: #999;
}

strong, b
 color: #999

strong,
b {
 color: #999;
}

strong,
b
 color: #999

strong,
b {
 color: #999;
}

// Commas are optional
strong
b
.important
 color: #999

strong,
b,
.important {
 color: #999;
}

// Indented hierarchy
#content
 font: 14px Arial
 width: 300px

 .notice
 border: 1px dotted #ccc
 border-radius: 3px
 padding: 3px

 strong
 color: #bababa

#content {
 font: 14px Arial;
 width: 300px;
}
#content .notice {
 border: 1px dotted
#ccc;
 border-radius: 3px;
 padding: 3px;
}
#content strong {
 color: #bababa;
}

Chapter 6

[135]

Stylus CSS
// A variable
warning-color = #dd0000

.warn
 color: warning-color

#footer .error
 color: warning-color

.warn {
 color: #d00;
}
#footer .error {
 color: #d00;
}

// Programming constructs
headers = 1 2 3 4 5 6
pi = 22/7
base = 200

for h in headers
 h{h}
 font-size: floor(base / (pi * h))px

h1 {
 font-size: 63px;
}
h2 {
 font-size: 31px;
}
h3 {
 font-size: 21px;
}
h4 {
 font-size: 15px;
}
h5 {
 font-size: 12px;
}
h6 {
 font-size: 10px;
}

// Conditionals
mode = dev

if mode == dev
 .debug
 display: block
else
 .debug
 display: none

.debug {
 display: block;
}

Following these examples, you will be able to write Stylus code, just enough to add
some dynamism and flexibility in your CSS. But there is more to Stylus, let's find out
more about its syntax, capabilities, and features.

The Stylus CSS Preprocessor

[136]

Enabling Stylus in Express
Although Stylus is the recommended CSS preprocessor for Express, it does not
come baked into Express by default. However, adding Stylus support in Express
is very easy.

The first step is to install the Stylus npm package in the application directory:

$ npm install stylus

The next step is to include the Stylus middleware and the static middleware in
the application. It is recommended to add them right after the router middleware:

app.use(app.router);
app.use(require('stylus').middleware('./public'));
app.use(express.static('./public'));

By passing a single parameter to the middleware() method, we specify where to
find the Stylus files. When a request for a CSS file is made to the app, it will look
for the corresponding Stylus file in this directory.

The static middleware is required for serving the generated CSS files, along with
other static resources from the app.

Stylus accepts more options than just a location for the stylus files. These options
can be specified by passing an object, instead of the directory path to the
middleware() method.

app.use(require('stylus').middleware({
 src: './public,
 compress: true
}));

The following table shows all the possible options:

Name Description
serve Serves Stylus files from the dest directory.
force Forces recompilation of the Stylus files for every request.
src The path from which to find the Stylus files. This directory

also is the root path of the CSS files requested by the browser.
dest The path to which to output the compiled CSS files. If not

specified, defaults to src.
compile A custom compile function.
compress Minifies the generated CSS.

Chapter 6

[137]

Name Description
firebug Generates debug info for the FireStylus Firebug plugin.
linenos Shows commented Stylus line number.

Using Stylus does not mean that we include the Stylus files in our HTML.
We include the CSS files as usual, and Stylus takes care of generating the
CSS code from the corresponding Stylus file. Everything happens seamlessly
in the background.

We create the Stylus file and continue to include the CSS file as usual.

In regular HTML:

<link rel="stylesheet" href="/stylesheets/style.css">

In Jade:

link(rel='stylesheet', href='/stylesheets/style.css')

Using the Stylus filter, Stylus code can be defined right in a Jade file too:

Jade / Stylus HTML / CSS
head
 :stylus
 warning-color = #dd0000
 .warn
 color: warning-color
 #footer .error
 color: warning-color

<head>
<style type="text/css">
 .warn {
 color: #d00;
 }
 #footer .error {
 color: #d00;
 }
</style>
</head>

When using the Stylus filter in Jade, you don't have to use the style tag to create
the style tag to include the Stylus code. The Stylus filter will create the style tag
with the right attribute for you.

Selectors
Stylus does not change the original syntax of CSS selectors—IDs are selected using
#, classes using ., direct children using >, and so on. It just adds some additional
features on top of CSS to make defining style declarations easier and dynamic.

The Stylus CSS Preprocessor

[138]

Selector blocks
Selectors and style declarations in Stylus are superset of the standard CSS selectors
and style declarations; hence regular CSS is valid Stylus:

#content {
 color: #999;
 padding: 5px;
 box-shadow: 5px 5px 1px #ccc;
}

However, colons, semicolons, commas, and braces are optional in Stylus:

#content
 color #999
 padding 5px
 box-shadow 5px 5px 1px #ccc

Omitting colons can make things a little confusing, so you might want to keep the
colons to help in visually demarcate properties and values:

#content
 color: #999
 padding: 5px
 box-shadow: 5px 5px 1px #ccc

Omitting the braces comes with a price—we now use indentations to define the
selector blocks. You can use either tabs or spaces for indentation. Choose whichever
you find comfortable and stick to it.

Stylus doesn't validate the name of selectors, properties, and values; it is just a
language for making CSS dynamic. It will render anything as long as it doesn't
interfere with its syntax, as shown in the following example. So, watch out!

Stylus CSS
foo -bar
 lul: wut

foo -bar {
 lul: wut;
}

Hierarchy
Stylus has a very logical implementation of defining hierarchical CSS definition
blocks. You create the root block and nest other selectors within it with the
appropriate indentation.

Chapter 6

[139]

Take a look at this example:

Stylus CSS
#container
 width: 600px
 div
 padding: 3px
 .block
 width: 50%
 strong
 color: #ccc

#container {
 width: 600px;
}
#container div {
 padding: 3px;
}
#container .block {
 width: 50%;
}
#container .block strong {
 color: #ccc;
}

Using the & character, you can refer to the parent selector from a block. Using this
technique can greatly reduce the verbosity and make style declarations a lot more
logical, as shown here:

Stylus CSS
.block
 padding: 5px
 color: #ccc
 strong
 color: #555
&.special
 border: 1px solid #900
 padding: 3px
&:hover
 border-color: #d00

.block {
 padding: 5px;
 color: #ccc;
}
.block strong {
 color: #555;
}
.block.special {
 border: 1px solid #900;
 padding: 3px;
}
.block:hover {
 border-color: #d00;
}

Rules
Stylus implements a superset of various CSS rules, and includes some of its own.

The Stylus CSS Preprocessor

[140]

@import
@import can either be used to import CSS or Stylus files. When importing CSS files,
the rule works in the regular CSS context. When importing Stylus files, the contents
of the included files are parsed and included in the generated CSS file.

The import path is relative to the directory of the file applying the
import rule.

Importing a CSS file is done just by using the regular CSS @import rule:

@import "common.css"

If the file extension is .styl or it is omitted, it is assumed to be a Style file, and
the content of the included file is rendered in the generated file.

Say, this is the content of special.styl:

.special
 border: 1px solid red

And this, the content of style.styl:

@import "special"

When style.css is called, the following will be generated:

.special {
 border: 1px solid #f00;
}

To modularize Stylus imports, we can use indexed directories. In such cases, we
just have to mention the name of the directory to include.

Let's say we have a directory named mobile in the src directory, with two files
index.styl and ui.styl in it.

Content of index.styl:

.mobile
 width: 100%

@import "ui"

Chapter 6

[141]

Content of ui.styl:

button
 padding: 2 5px
 font: 12px Tahoma

The result of rendering style.styl is shown in the following table:

style.styl style.css
@import "mobile" .mobile {

 width: 100%;
}
button {
 padding: 2 5px;
 font: 12px Tahoma;
}

Another advantage of using indexed directories is that the files in the directories can
be individually included from other files, as shown here:

@import "mobile/ui"
@import "mobile/layout"

@media
The @media rule works like the regular CSS rule, except it is less verbose:

Stylus CSS
@media print
 #header
 #footer
 display none

@media print {
 #header,
 #footer {
 display: none;
 }
}

@media (min-width: 700px)
 #info-panel
 display: block

@media (min-width: 700px) {
 #info-panel {
 display: block;
 }
}

The Stylus CSS Preprocessor

[142]

Stylus CSS
@media all and (min-
width:800px) and (max-
width:1023px)
 #extra-blogroll,
#feedburner-link
 display: none

@media all and (min-width:800px)
and (max-width:1023px) {
 #extra-blogroll,
 #feedburner-link {
 display: none;
 }
}

@font-face
The @font-face rule is a friendly wrapper on top of CSS' @font-face:

Stylus CSS
@font-face
 font-family Neo
 font-style normal
 src local("Neo Sans"),
url(fonts/Neo-Sans.ttf)

.font-neo
 font-family Neo

@font-face {
 font-family: Neo;
 font-style: normal;
 src: local("Neo Sans"),
url("fonts/Neo-Sans.ttf");
}
.font-neo {
 font-family: Neo;
}

@keyframes
The @keyframe rule is useful for generating vendor-specific keyframe rules for CSS.
There is a variable named vendors in Stylus, which is a list of vendors that defaults
to moz webkit o ms official.

Chapter 6

[143]

Stylus CSS
@keyframes foo
 from
 width: 50px
 to
 width: 100px

@-moz-keyframes foo {
 0% {
 width: 50px;
 }

 100% {
 width: 100px;
 }
}
@-webkit-keyframes foo {
 0% {
 width: 50px;
 }

 100% {
 width: 100px;
 }
}
@-o-keyframes foo {
 0% {
 width: 50px;
 }

 100% {
 width: 100px;
 }
}
@-ms-keyframes foo {
 0% {
 width: 50px;
 }

 100% {
 width: 100px;
 }
}
@keyframes foo {
 0% {
 width: 50px;
 }

 100% {
 width: 100px;
 }
}

The Stylus CSS Preprocessor

[144]

By overwriting the vendors variable, you can customize the vendor prefixes in the
generated CSS:

Stylus CSS
vendors = official webkit

@keyframes bar
 from
 width: 50px
 to
 width: 100px

@keyframes bar {
 0% {
 width: 50px;
 }

 100% {
 width: 100px;
 }
}
@-webkit-keyframes bar {
 0% {
 width: 50px;
 }

 100% {
 width: 100px;
 }
}

@extend
@extend is a Stylus-specific rule that makes re-using CSS style definitions very
intuitive. Using this rule, you can include predefined styles in a style block.

Make sure that the style you are trying to extend is already defined or
else you will encounter an error.

Stylus CSS
.content
 padding: 10px
 font-size: 14px

#message
 @extends .content
 margin: 5px 0

.content,
#message {
 padding: 10px;
 font-size: 14px;
}
#message {
 margin: 5px 0;
}

Chapter 6

[145]

Stylus CSS
.message
 padding: 10px
 font: 14px
Helvetica
 border: 1px solid
#eee

.warning
 @extends .message
 border-color:
yellow
 background: yellow

.error
 @extends .message
 border-color: red
 background: red

.message,

.warning,

.error {
 padding: 10px;
 font: 14px
Helvetica;
 border: 1px solid
#eee;
}
.warning {
 border-color:
#ff0;
 background: #ff0;
}
.error {
 border-color:
#f00;
 background: #f00;
}

@css
Anything defined within a @css rule is understood as literal CSS. None of the
Stylus-specific constructs work within this rule. You can use this rule in those
rare situations when you need to use plain old CSS within Stylus.

Here are some examples to help you understand how @css works:

Stylus CSS
@css {
 #container {
 color: #333;
 padding: 3px;
 }
}

#container {
 color: #333;
 padding: 3px;
}

The Stylus CSS Preprocessor

[146]

Stylus CSS
light_gray = #ccc
dark_gray = #555
bright_red = #f00

.block
 padding: 5px
 color: light_gray
 strong
 color: dark_gray
&:hover
 border-color: bright_red

.block {
 padding: 5px;
 color: #ccc;
}
.block strong {
 color: #555;
}
.block:hover {
 border-color:
#f00;
}

@css {
 light_gray = #ccc
 dark_gray = #555
 bright_red = #f00

 .block
 padding: 5px
 color: light_gray
 strong
 color: dark_gray
&:hover
 border-color: bright_red
}

light_gray = #ccc
dark_gray = #555
bright_red = #f00

.block
 padding: 5px
 color: light_gray
 strong
 color: dark_
gray
&:hover
 border-color:
bright_red

Programmability
Stylus provides a relatively minimal but efficient programming language in addition
to the CSS syntax. Using this programming language, you can make CSS generation
dynamic and more flexible.

The Stylus programming language is limited in many ways, and some
implementation may still be buggy due its young age.

Chapter 6

[147]

Variables
Although the data type is not strongly defined in Stylus, variables can be broadly
classified as literals, lists, and tuples.

Stylus variable identifiers can start with any alphabetical character: $, -, or _ and
contain alphanumeric characters along with the aforementioned characters.

The following are some examples of variables in Stylus:

$font-weight = bold
num = 100
vendors = moz webkit ms
-height = (num/5)px
_width = 200

Literals
The most common data type in Stylus is literals. Literals are strings of text that
are not lists or tuples, and are interpreted literally.

The following table demonstrates how literal variables can be used in
CSS declarations:

Stylus CSS
fixed-width = 800px
$font-weight = bold
num = 100
-height = (num/5)px
_width = 200
font-family = "Comic Sans MS"

#content
 width: fixed-width
 font-weight: $font-weight
 height: -height
 font-size: (num)px
 font-family: font-family
 .message
 width: (_width)px

#content {
 width: 800px;
 font-weight: bold;
 height: 20px;
 font-size: 100px;
 font-family: "Comic Sans
MS";
}
#content .message {
 width: 200px;
}

The Stylus CSS Preprocessor

[148]

Stylus variables, as expected, can be used seamlessly within other variables too:

Stylus CSS
font-size = 14px
base-font = font-size Arial

#content
 font: base-font, sans-serif

#content {
 font: 14px Arial, sans-
serif;
}

If you try to use a variable that is not defined, the literal name of the variable will be
used instead of undefined or null:

Stylus CSS
#content
 width: $width

$width = 100px
#message
 width: $width

#content {
 width: $width;
}
#message {
 width: 100px;
}

When you assign a value to a CSS property, the property is available as a variable,
which can be referred to by prefixing the property name with @:

Stylus CSS
#content
 width:800px
 height (@width/2)px
 margin: 2px 5px
 padding: @margin

#content {
 width: 800px;
 height: 400px;
 margin: 2px 5px;
 padding: 2px 5px;
}

The @ variables are looked up from inner to outer block, and when not defined, they
return null.

While using variables in style values is pretty straightforward, trying to use them in
property names can be confusing at first:

Chapter 6

[149]

Stylus CSS
prefix = chan

#(prefix)-one
 width: 10%

#(prefix)-one {
 width: 10%;
}

Use {} instead of () to interpolate variables in CSS properties. The following
examples show how to do that:

Stylus CSS
prefix = chan

#{prefix}-one
 width: 20%

#{prefix}-two
 width: 80%

#chan-one {
 width: 20%;
}
#chan-two {
 width: 80%;
}

chans = one two three

for chan in chans
 #chan-{chan}
 width: (floor(100/
length(chans)))px

#chan-one {
 width: 33px;
}
#chan-two {
 width: 33px;
}
#chan-three {
 width: 33px;
}

Special characters can be escaped using backslash (\), and operations are
forced upon on otherwise literals by using (), where applicable, as shown in
the following examples:

Stylus CSS
.dynamic
 width: calc(100% \/ 2)

.dynamic {
 width: calc(100%/2);
}

.blocks
 height: (20px/2)
 width: 60px/3

.blocks {
 height: 10px;
 width: 60px/3;
}

The Stylus CSS Preprocessor

[150]

Lists
Lists are similar to arrays in JavaScript, except that they are represented by nothing
but a string of space-delimited characters. Stylus provides various built-in functions
and a construct to loop through lists.

To create a list, you just assign a list of space-delimited characters to a variable:

fonts = Times Arial Helvetica

If you need to include items with spaces in them, just quote them:

fonts = Times Arial Helvetica "Comic Sans MS"

Items in a list start with an index of 0, and can be accessed by their index number:

Stylus CSS
fonts = Arial Times Helvetica

.funny
 font-family: fonts[1]

.funny {
 font-family: Times;
}

Lists can be iterated by value alone or along with the index number:

Stylus CSS
hidden = header footer

for tag in hidden
 {tag}
 display: none

header {
 display: none;
}
footer {
 display: none;
}

fonts = Times Arial Helvetica
for font, i in fonts
 h{i+1}
 font-family: font

h1 {
 font-family: Times;
}
h2 {
 font-family: Arial;
}
h3 {
 font-family: Helvetica;
}

Chapter 6

[151]

Stylus comes with a set of built-in functionalities for manipulating arrays:

Function Description
push(list, a, b, …) Adds new items to the list at the end
append(list, a, b, …) Alias of push()
unshift(list, a, b, …) Adds new items to the list at the front
join(deliminator, values) Joins the values with the deliminator

Tuples
Tuples are another kind of list, but they are meant for storing related data. Although
a single tuple can be used in a program, they are often used as a list of tuples.

Unlike Python tuples, Stylus tuples are mutable; meaning you can
change their contents.

To create a tuple, just assign a list of space-delimited strings within parentheses to a
variable:

font = (Helvetica 10px)

If you need to include items with spaces in them, just quote them:

font = ("Comic Sans MS" 12px)

Tuples are a lot like lists, except in their purpose. All the built-in list functions can be
applied to tuples too. However, tuples are not meant to be used like lists. Tuples are
commonly used for containing related data within a list:

Stylus CSS
fonts = (Arial 10px) (Tahoma
12px) (Helvetica 14px)
#content
 font-family: fonts[2][0]
 font-size: fonts[2][1]

#content {
 font-family: Helvetica;
 font-size: 14px;
}

Listed tuples
Although, technically not a separate data type, listed tuples deserve a separate
section because of the way they work. Listed tuples are lists of tuples with two
significant values, which are understood as key-value pairs.

The Stylus CSS Preprocessor

[152]

Stylus does not recognize tuples with a single item in it as an iterable, if you try to
loop through a tuple with a single item, it will throw an error.

Listed tuples support these two built-in functions:

Function Description
keys(list) Returns the keys of the listed tuples. Essentially returns

index 0 of the listed tuples.
values(list) Returns the value of the listed tuples. Essentially returns

index 1 of the listed tuples.

Mixins
Mixins are dynamic blocks of CSS style declarations, which can be added to a style
definition block. They are invoked at the style declaration level as a statement:

Stylus CSS
common-border-radius()
 -webkit-border-radius: 5px
 -moz-border-radius: 5px
 border-radius: 5px

#content
 width: 100px
 common-border-radius()

#content {
 width: 100px;
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 border-radius: 5px;
}

Mixins can accept arguments, and the arguments can have default values:

Stylus CSS
set-font(size, line-height,
family=Times)
 font: size/line-height family

#content
 set-font(14px, 15px)

#message
 set-font(12px, 12px, Arial)

#content {
 font: 14px/15px Times;
}
#message {
 font: 12px/12px Arial;
}

If you define your mixins to accept arguments, either set their default values, or pass
the arguments when invoking them, or else Stylus will throw an error.

Chapter 6

[153]

Mixins can be used in a transparent manner, as if they were CSS property names.
Basically, you can omit the braces and commas:

Stylus CSS
set-font(size, line-height,
family=Times)
 font: size/line-height family

#content
 set-font: 14px 15px

#message
 set-font: 12px 12px Arial

#content {
 font: 14px/15px Times;
}
#message {
 font: 12px/12px Arial;
}

You can use the arguments local variable in a mixin to refer to the whole body of the
arguments passed to a mixin.

Stylus CSS
set-font()
 font: arguments

#message
 set-font: 12px/12px Arial,
sans-serif;

#message {
 font: 12px/12px Arial, sans-
serif;
}

Mixins can be named after a CSS property name, and when referred within itself, it
does recurse:

Stylus CSS
width(p)
 width: (100% - p)

#message
 width: 10%

#message {
 width: 90%;
}

x-width(p)
 x-width: (100% - p)

#message
 x-width: 10%

#message {
 x-width: 90%;
}

The Stylus CSS Preprocessor

[154]

Functions
Functions are defined like mixins, but they return a value instead of a set of CSS
property definitions. While mixins are invoked as a statement, functions are used
in expressions:

Stylus CSS
get-color(p)
 if p > 5
 return #f00
 else
 return #0f0

get-font()
 return Arial

.note
 color: get-color(5)
 font: 12px get-font()

.note {
 color: #0f0;
 font: 12px Arial;
}

// return keyword is
optional
width-a()
 100px

#content
 width: width-a()

#content {
 width: 100px;
}

By using conflicting function names with the built-in functions, you can overwrite
them, so be careful.

Comments
Stylus supports JavaScript-style single line comments on individual lines or after the
property definitions. These comments are not included in the generated CSS:

Stylus CSS
// Styles for .description
.description
&.error
 color: #ff0000 // brightest
red
 .error
 color: #dd0000 // darker red

.description.error {
 color: #f00;
}
.description .error {
 color: #d00;
}

Chapter 6

[155]

Note that Stylus, currently, does not support inline comments on selectors. The
following Stylus code will generate broken CSS:

Stylus CSS
.description // Styles for
.description
&.error
 color: #ff0000 // brightest
red
 .error
 color: #dd0000 // darker red

.description // Styles for

.description.error {
 color: #f00;
}
.description // Styles for
.description .error {
 color: #d00;
}

Stylus also supports the conventional CSS comments. These comments, however, are
included in the generated CSS:

Stylus CSS
/*
* This is
* a multiline
* comment
*/
h1
 font-size: 30px

/*
* This is
* a multiline
* comment
*/
h1 {
 font-size: 30px;
}

To suppress multiline comments in CSS, set the Stylus compress option to true:

app.use(require('stylus').middleware({
 src: __dirname + '/public',
 compress: true
}));

The Stylus CSS Preprocessor

[156]

When the compress option is set to true, multiline comments will not be generated
and the CSS will be minified. In case you want to keep a multiline comment,
append! to the opening comment marker:

Stylus CSS
/*!
* Copyright © 2013
* Hack Sparrow
*/
h1
 font-size: 30px

/*
* Copyright © 2013
* Hack Sparrow
*/
h1 {
 font-size: 30px;
}

Operators
The following is a list of operators supported by the Stylus programming language:

Operator Description
[] Subscript
! Logical NOT
+ Unary plus
- Unary minus
is defined Checks if variable is defined
** Exponent
* Multiplication
/ Division
% Modulus
+ Addition
- Subtraction
n1..n2 Inclusive range. Generates a list of numbers from n1 to

n2, including n2.
n1…n2 Exclusive range. Generates a list of numbers from n1 to

n2, excluding n2.
<= Less than or equal to
>= More than or equal to

Chapter 6

[157]

Operator Description
< Less than
> More than
in Checks if value is in a list or tuple
== Equal to
is Designer-friendly syntax for ==
!= Not equal to
is not Designer-friendly syntax for !=
isnt Alias of is not
&& Logical AND
and Designer-friendly alias for &&
|| Logical OR
or Designer-friendly alias for ||
= Assignment
?: Ternary operator
:= Conditional assignment
?= Alias of :=
+= Addition assignment
-= Subtraction assignment
*= Multiplication assignment
/= Division assignment
%= Modulo assignment
not Designer-friendly syntax for !

Currently, there are no increment (++) and decrement (--) operators
in Stylus.

Conditionals
Stylus provides two conditional checks for performing logical operations.

The Stylus CSS Preprocessor

[158]

if, else if, and else
The if, else if, and else construct works like in JavaScript, except you omit the
braces and use indentions to create the conditional block:

Stylus CSS
env = development

body
 if env == development
 font-family: Arial
 else if env == production
 font-family: Helvetica
 else
 font-family: Times

body {
 font-family: Arial;
}

unless
The unless conditional is an alternative way for checking for Boolean false:

Stylus CSS
env = development

unless env == production
 body
 font-family: Arial

body {
 font-family: Arial;
}

env = production

unless env == production
 body
 font-family: Arial

Built-in functions
Stylus comes with a large number of built-in functions to perform common
operations on objects, especially related to CSS.

Chapter 6

[159]

The following is a list of some useful in-built functions:

Function Description
red(color) Returns the red component of the color
green(color) Returns the green component of the color
blue(color) Returns the blue component of the color
alpha(color) Returns the alpha component of the color
dark(color) Checks if the color is dark
light(color) Checks if the color is light
hue(color) Returns the hue of the color
saturation(color) Returns the saturation of the color
lightness(color) Returns the lightness of the color
invert(color) Inverts the color
saturate(color, amount) Saturates the color by the given amount
desaturate(color, amount) Desaturates the color by the given amount
lighten(color, amount) Lightens the color by the given amount
darken(color, amount) Darkens the color by the given amount
match(pattern, string) Checks if the string matches the regular

expression pattern
abs(value) Returns the absolute value
ceil(value) Rounds the value to the nearest upper value

integer
floor(value) Rounds the value to the nearest lower value

integer
round(value) Rounds the value to the nearest integer
even(value) Checks if the numeric component is even
odd(value) Checks if the numeric component is odd
unquote(string) Removes quotes from the string
p(expression) Prints the value of the expression to stdout

The Stylus CSS Preprocessor

[160]

Summary
Now we know how to generate CSS using the Stylus preprocessor. We learned
about the Stylus syntax and programming to make CSS generation more efficient
and dynamic.

So far what we learned has been mostly static interactions with the server. In the
next chapter, we will learn how to make things more dynamic with the use of forms,
cookies, and sessions.

Forms, Cookies, and
Sessions

Any website that is beyond simple static web pages is likely to have forms, support
file uploads, and maintain some form of data state. Forms, cookies, and sessions
are all interrelated and work together to accomplish the common goal of creating a
dynamic experience in a web app.

This chapter is about enabling these features in an Express app. Here is what you
will learn in this chapter:

• How to submit forms using various methods
• How to create, read, update, and delete cookies
• How to create sessions
• How to create, read, update, and delete session variables

Using forms to submit data
The HTML form provides two methods for submitting data to the backend using
the GET and the POST methods. In this section, we will find out how to read data
submitted via these methods.

Although GET and POST are the conventional methods of form
submission in HTML, using the methodOverride middleware in
Express, we can submit forms using any valid HTTP method.

GET forms are submitted using the GET HTTP method and the form data is sent in
the query string of the URL specified in the action attribute of the form.

Forms, Cookies, and Sessions

[162]

POST forms are submitted using the POST HTTP method and the form data is sent
in the body of the HTTP request.

POST forms come in two varieties: application/x-www-form-urlencoded and
multipart/form-data. The former uses urlencoded string for sending data to the
server; it is a lot like the GET query string, except the data is sent in the HTTP body.
The latter uses a deliminator to send large chunks of data in the HTTP body, and is
the version that is used for uploading files.

For those curious ones, here is a quick summary of the important differences
between GET and POST methods of form submission:

GET POST
Form data is sent in the query string. Hence,
it is visible in the browser's address bar.

Form data is sent in the HTTP body.
Therefore, it is not visible in the
address bar.

There is a limit to how much data that can be
sent via the GET method.

The amount of data that can be sent
using the POST method is virtually
limitless.

Cannot be used for uploading files. Can be used for uploading files.

Cannot use the same URL for handling the
form, without having to add additional logic.

Can use the same URL for handling
the form by defining a separate route
using the post() method.

Now that we know about the various ways by which HTML forms can be submitted,
let's find out how to handle the various types of form submissions.

Handling GET submissions
Let's create a route and view for a search form. We will set this form to be submitted
via the GET method by specifying it in its method attribute:

!!! 5
html
 head
 title #{title}
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 h1 #{title}
 p Enter the name to search for.

 form(action='/search-result', method='get')
 label Name

Chapter 7

[163]

 input(type='text', name='name')
 input(type='hidden', name='source', value='web')
 input(type='submit', value='Search')

Create an appropriate CSS file for the view. The rendered HTML of the Jade view is
shown in the following screenshot:

When the form is submitted, the browser will be redirected to its action URL
with the query string, which might look like http://localhost:3000/search-
result?name=Captain&source=web.

Reading form data
All form data submitted via the GET method is available in the query property of
the request object (req.query), at their corresponding keys. For example, if the form
had a parameter named color, its value will be available at req.query.color, and
so on.

Trying to read a non-existent key will return undefined, because we are dealing with
regular JavaScript objects, and that's the expected behavior.

Let's create a route to handle our form submission. We won't render a view or do
anything fancy, let's just read the values and print them:

app.get('/search-result', function(req, res) {
 var name = req.query.name;
 var source = req.query.source;
 console.log('Searching for: ' + name);
 console.log('From: ' + source);
 res.send(name + ' : ' + source);
});

Forms, Cookies, and Sessions

[164]

In case, a GET parameter contains characters that cannot be used as a JavaScript
identifier name, you can use a subscript notation to read the value:

var firstname = req.query['first name'];

Reading data submitted via a GET form is as easy as looking for them in the req.
query object.

Reading URL query parameters
When it comes to data, GET form submissions are nothing more than URLs
with query strings constructed out of the form parameters. Which means, we
actually don't need a form to make such requests; they can be crafted in the
address bar manually.

Processing a manually-crafted query string is no different from processing one
generated by a form. No matter how the query string was created, the parameters
will be available in the req.query object.

Here is an example of a manually-crafted query string:

http://localhost:3000/search-result?q=JavaScript&l=CA&e=10

And here is the route and the handler, which reads the data from the previous
query string:

app.get('/search-result', function(req, res) {
 var q = req.query.q;
 var l = req.query.l;
 var e = req.query.e;
 console.log('Query:' + q);
 console.log('Location:' + l);
 console.log('Experience:' + e);
 res.json(req.query);
});

Handling multiple options
Those new to forms and Express are likely to be stumped at handling multiple
selected options—the kind of data you create using multiple checkboxes. The
following is a quick example to help you understand how to send multiple
options and read them at the backend.

Let's create a view with multiple checkboxes. Notice how all of them share a
common value for the name attribute. The form will be submitted to http://
localhost:3000/skills-search-result.

Chapter 7

[165]

!!! 5
html
 head
 title #{title}
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 h1 #{title}
 p Select the skills to search for.

 form(action='/skills-search-result', method='get')
 h3 Skills
 ul
 li
 input(type='checkbox', name='skills', value='Nunchucks')
 label Nunchucks
 li
 input(type='checkbox', name='skills', value='Hacking')
 label Hacking
 li
 input(type='checkbox', name='skills', value='Dancing')
 label Dancing
 li
 input(type='checkbox', name='skills', value='Shooting')
 label Shooting

 input(type='submit', value='Search')

And here is the rendered HTML:

Forms, Cookies, and Sessions

[166]

Now, let's create the route for handling the form submission. The skills parameter
will be available as expected at req.query.skills:

app.get('/skills-search-result', function(req, res) {
 var skills = req.query.skills;
 console.log('Skills: ');
 skills.forEach(function(skill, i) {
 console.log((i+1) +'. '+ skill);
 });
 res.json(req.query.skills);
});

Submitting multiple options is all about setting a common value for the name
attribute for the set of checkboxes.

Handling POST submissions
The POST method of form submission is the more popular method between GET
and POST methods. Consequently, as a backend developer you will be handling
more POST forms than GET forms.

Handing POST submissions is different than handling GET submissions and is
slightly more advanced. Let's learn how to handle POST form submissions.

Enabling POST data parsing
Unlike GET submissions, which can be processed right out of the box, we need
to enable a built-in middleware named bodyParser before we can process POST
submissions.

Load the bodyParser middleware before the router middleware to enable POST
data handling:

app.use(express.bodyParser());

Although, the bodyParser middleware can be initialized without any
parameters, it accepts an optional object with two options that can be used
to configure file uploads:

Property Description
keepExtensions Whether to include the file extension in temporary files.

Defaults to false, so as not to overwrite a file with the
same name.

uploadDir The location where temporary files should be uploaded.

Chapter 7

[167]

Here is an example of enabling both the options:

app.use(express.bodyParser({
 keepExtensions: true,
 uploadDir: './uploads'
}));

With the bodyParser middleware enabled, we are ready to parse the data submitted
by POST forms.

Reading form data
The bodyParser middleware will add two new properties: body and files on
the request object and populate them with the key-value pairs of the parameters
submitted via the POST request.

Text data from the form is populated in the req.body object and files from the form
are populated in the req.files object.

That is the very basics of handling POST data.

Now it's time to go through some examples and practically experience handling
POST forms.

Handling text-only forms
When you don't specify the encytype attribute of a form, it is sent to the server with
the default Content-Type of application/x-www-form-urlencoded.

Create a route and the view for a sign-up form:

!!! 5
html
 head
 title #{title}
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 h1 #{title}
 p Enter your name and email address to become a member.

 form(action='/signup', method='post')
 div
 label Name
 input(type='text', name='name')
 div
 label Email

Forms, Cookies, and Sessions

[168]

 input(type='text', name='email')
 div
 input(type='submit')

Notice that we have omitted the enctype attribute in the form. Here is the
rendered view:

This form will be submitted to http://localhost:3000/signup, the same URL that
rendered the form. However, it will be submitted via a POST request—making it an
altogether different and a valid route.

Let's create the request-handling route for the form. The text data submitted via the
form will be available in the req.body object:

app.post('/signup', function(req, res) {
 var name = req.body.name;
 var email = req.body.email;
 console.log('Name: ' + name);
 console.log('Email: ' + email);
 res.json(req.body);
});

In this example, we just print the individual form values to the console and render
the req.body object in the browser. In a real-world application, you might store
these values in a database.

Handling file uploads
To upload files using HTML forms, we need to set the enctype attribute of the form
to multipart/form-data, and of course, include an input element of the type file.

Chapter 7

[169]

Let's update the previous sign-up view to set the enctype attribute and include a file
input:

!!! 5
html
 head
 title #{title}
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 h1 #{title}
 p Enter your name and email address to become a member.

 form(action='/signup', method='post', enctype='multipart/form-
data')
 div
 label Name
 input(type='text', name='name')
 div
 label Email
 input(type='text', name='email')
 div
 label Profile Image
 input(type='file', name='profile_image')
 div
 input(type='submit')

Here is the updated view:

When the form is submitted, the uploaded image will be found in the req.
files object.

Forms, Cookies, and Sessions

[170]

Update the form-handling route for the path:

app.post('/signup', function(req, res) {
 var name = req.body.name;
 var email = req.body.email;
 console.log(req.files);
 res.json(req.files);
});

Save the relevant files, restart the app, and submit the form.

In the console and the browser, you will see an object with a single property named
profile_image, which was the name of our image, with a number of properties.
These properties contain relevant information about the uploaded files.

It is beyond the scope of this book to get into the details of all the properties, but the
following are must-knows to be able to work with file uploads in Express:

Property Description
size Size of the file in kilobytes
path Temporary location of the uploaded file
name Name of the file as uploaded
type Media type of the file

It might come as a surprise for you, but Express provides all the necessary
information about the uploaded files, but it does nothing apart from giving it
random names and moving it to a temporary location.

It is the developer's responsibility to actually move the uploaded files to the right
location, rename if necessary, resize, and so on.

The files will be uploaded to the temporary directory of the operating system. On a
Linux machine, it may look like /tmp/4e552b0243d20a171f287a687d744b45 and so
on, with no extensions. If you want to preserve the extension, set the keepExtension
property to true.

app.use(express.bodyParser({keepExtensions: true}));

Uploading files to a temporary location with random names isn't really useful, so
let's re-write the route to move the uploaded files to public/uploads.

The reason why temporary files have very random names is to
prevent name collisions if files with the same names are uploaded.

Chapter 7

[171]

Since we will need to perform filesystem actions, we will need to include the
fs module:

var fs = require('fs');

The fs module deals with everything related to the filesystem in Node.
js. You can read more about it at http://nodejs.org/api/fs.html.

Next, we will modify the route handler. Make sure to include the callback function
(next), because we need it for handling any errors that might be encountered:

app.post('/signup', function(req, res, next) {

 var name = req.body.name;
 var email = req.body.email;

 // Reference to the profile_image object
 var profile_image = req.files.profile_image;

 // Temporary location of the uploaded file
 var tmp_path = profile_image.path;
 // New location of the file
 var target_path = './public/images/' + profile_image.name;
 // Move the file from the new location
 // fs.rename() will create the necessary directory
 fs.rename(tmp_path, target_path, function(err) {
 // If an error is encountered, pass it to the next handler
 if (err) { next(err); }
 // Delete the temporary file
 fs.unlink(tmp_path, function() {
 // If an error is encountered, pass it to the next handler
 if (err) { next(err); }
 console.log('File uploaded to: ' + target_path + ' - ' +
profile_image.size + ' bytes');
 res.redirect('/images/' + profile_image.name);
 });
 });

});

Forms, Cookies, and Sessions

[172]

The updated route handler will print some details about the file on the console and
redirect the browser to the uploaded file, if everything goes successfully.

In the preceding example, a new file with the same name as one already
uploaded will overwrite the existing one. The example is just to show
how to move uploaded files to a proper destination.

More about file uploads
A reference is created in the req.files object for each uploaded file. If you upload
multiple files in a form, all of them will have a reference in this object. You can
process them all by looping through the req.files object:

req.files.forEach(function(file) {
 // Code to handle the file
 ...
});

Although files are uploaded to the system's temporary directory, we can change the
default behavior by setting the value of uploadDir to any location of our choice:

app.use(express.bodyParser({uploadDir:'./uploads'}));

Express won't create the upload directory for you if it does not exist already, instead,
it will throw an error. So make sure you create the directory before uploading files,
when you set the uploadDir option.

Here is the code snippet for setting the uploadDir option and creating the upload
directory, if it does not exist already:

var upload_dir = './uploads';
var exists = fs.existsSync(upload_dir);
if (!exists) {
 fs.mkdirSync(upload_dir);
}

app.use(express.bodyParser({uploadDir: upload_dir}));

It is important to note that the files uploaded to the temporary directory would
eventually be cleared by the OS, but when using a custom upload directory, it
is the developer's responsibility to clear the temporary files.

Chapter 7

[173]

Submission via simulated methods
Technically, the HTML form is capable of making GET and POST requests only.
However, Express has a trick to allow HTML forms to make any kind of HTTP
request with the use of the methodOverride middleware. This trick is commonly
known as HTTP method overriding.

One reason why you might want to implement HTTP method
overriding would be to create RESTful interfaces to your web app. You
can read more about REST at https://en.wikipedia.org/wiki/
Representational_state_transfer.

The methodOverride middleware lets you "convert" POST requests to any other
valid HTTP method. This is done by including a POST parameter named _method
and setting its value to the method of your choice.

If this explanation didn't make sense to you, try this:

There is an understanding between the HTML form and Express. The form tells
Express, "Hey, we both know this is a POST request, but treat it like it was requested
via the method specified in the _method parameter", and Express treats the request
as such.

So there it is, we can simulate any kind of submission using the methodOverride
middleware. This middleware is should be loaded after the bodyParser middleware
and before the router middleware:

app.use(express.bodyParser());
app.use(express.methodOverride());
app.use(app.router);

Following is an example of a form that is ready to be submitted using the PUT
method. Note, we are setting the _method parameter in a hidden form element with
the value set to put:

form(action='/request', method='post')
 label Name
 input(type='text', name='name')
 input(type='hidden', name='_method', value='put')
 br
 input(type='submit')

And here is the route and the handler for this request:

app.put('/request', function(req, res) {
 console.log('PUT: ' + req.body.name);

Forms, Cookies, and Sessions

[174]

 res.send('PUT: ' + req.body.name);
});

A good thing about HTTP method overriding is that all the POST request handling
features continue to work as expected—even files.

We use the _method parameter as a flag for indicating the method with which to
override. However, if you want to use the _method parameter for other purposes,
you can create your own flag for indicating the overriding method—just pass a string
to the middleware:

app.use(express.methodOverride('_method_'));

With this, Express will look for _method_ instead of _method for the method with
which to override the POST request.

Note that method override works only with forms submitted using the POST method.

Data in named segments
We were introduced to named segments in Chapter 3, Understanding Express Routes. It
needs a special mention in this chapter because it is one of the most common media
for sending data to the server, along with forms and cookies.

In named segments, we create routes with segments in the URL marked as
placeholders for values. When such a route is accessed, the values of the placeholders
are available in variables named after the placeholders. This feature enables queries
to look neater by making them look like regular URLs.

Here is a URL with data contained in a query string:

http://localhost:3000/user?id=89

The preceding URL can be converted to a cleaner-looking URL using named
parameters:

http://localhost:3000/user/89

Reading data
Named segment values are available in the req.params object after we create the
appropriate routing.

The following route is defined to work with the http://localhost:3000/user/
89 URL:

Chapter 7

[175]

app.get('/user/:id', function(req, res) {
 console.log('User ID: '+ req.params.id);
 res.send('User ID: '+ req.params.id);
});

Because dots and dashes are interpreted as literals when used with named segments,
we can use this fact for interesting results.

Define the following route and load http://localhost:3000/file/profile.jpg
in the browser:

// This example will fail if the file name has a dot in it
app.get('/file/:name.:ext', function(req, res) {

 var name = req.params.name;
 var ext = req.params.ext;

 console.log('File: ' + name);
 console.log('Ext: ' + ext);

 var log = 'Name: ' + name + '
' + 'Ext: ' + ext;
 res.send(log);

});

The following route uses dash to accept to and from parameters:

app.get('/route/:from-:to', function(req, res) {

 var from = req.params.from;
 var to = req.params.to;

 console.log('From: ' + from);
 console.log('To: ' + to);

 var log = 'From: ' + from + '
' + 'To: ' + to;
 res.send(log);

});

Load http://localhost:3000/route/NYC-LAX in the browser to see the route
in action.

Since named segments are part of the URL, they can be used by any HTTP method.

Although named segments make for cleaner URLs, switching the position of
parameters will result in erroneous results.

Forms, Cookies, and Sessions

[176]

There is a method called req.param() that can read the parameter
value from req.params, req.body, and req.query, in that order,
depending on where the values are defined. It can cause confusing
bugs. Avoid using it, unless absolutely required.

Using cookies to store data
Cookies are small bits of information that a website can store in a user's browser.
They may be used for various purposes, from providing users with a customized
and lively experience to surreptitiously tracking their browsing habits.

Cookies can be created by the server backend or the frontend JavaScript. They can
then be read or updated by either one of them.

Install a cookie-editing extension such as Edit This Cookie in Google
Chrome to interactively experiment with the cookies created in your
browser.

Express provides a cookie API using the cookieParser middleware. To enable the
cookie functionality in Express, load it before the router middleware:

app.use(express.cookieParser());

With this middleware enabled, you can find the cookies sent by the browser in the
req.cookies object, and set cookies using the res.cookie() method.

The cookieParser middleware must be loaded before the router
middleware; else cookie functionality will not be enabled.

That was a short introduction to how the Express cookie API works; let's explore the
API in greater details using some examples.

Creating cookies
Cookies are created using the res.cookie() method. You pass it the name of the
cookie, its value, and an optional object with the cookie options.

Let's create a route named counter and use the res.cookie() method to create a
cookie if it is not there already, and increment its value if it exists already.

app.get('/counter', function(req, res) {

Chapter 7

[177]

 var count = req.cookies.count || 0;
 count++;
 res.cookie('count', count);
 res.send('Count: ' + count);

});

Load http://localhost:3000/counter in your browser and keep refreshing it to
see the cookie created and its value being incremented:

The res.cookie() method accepts an optional cookie options object. The following
table displays a list of possible options that can be specified:

Option Description
domain Domain name for the cookie. Defaults to the domain name loaded.
path Path for the cookie. Defaults to "/".
secure Marks the cookie to be used with HTTPS only.
expires Expiry date of the cookie in GMT. If not specified or set to 0, creates a

session cookie.
maxAge Convenient option for setting the expiry time relative to the current

time in milliseconds.
httpOnly Flags the cookie to be accessible only to the web server. It helps

prevent XSS attacks by disallowing client-side JavaScript access to it.
signed Indicates if the cookie should be signed. Signed cookies cannot be

tampered with without invalidating them.

Forms, Cookies, and Sessions

[178]

Here is an example of setting a cookie with some options:

res.cookie('count', count, {
 path: '/counter',
 maxAge: 2000
});

Make sure to call the cookie creation method before res.send() or
res.render() or other similar methods that terminate the HTTP
response. Cookies are set via the HTTP header, and when we try to set a
cookie after terminating the HTTP response, we will encounter an error
message that says "can't set headers after they are sent".

Reading cookies
All cookies valid for the domain and path are available on the cookies property of
the request object: req.cookies. For example, if you created a cookie called count,
its value will be available on req.cookies.count.

Updating cookies
Updating a cookie is just about re-creating it with a new set of properties. Assuming
we already created a cookie named counter, this is how we would update it:

res.cookie('counter', new_value);

Session cookies
Session cookies are those that last for a browsing session and are discarded after the
browser is closed.

When the expires option is not specified, Express creates a session cookie:

res.cookie('name', 'Napoleon');

Setting the expires option to 0 also creates a session cookie:

res.cookie('name', 'Napoleon', {expires: 0});

If you have set your browser to remember the tabs that were open
when you re-launch it, session cookies may not be deleted on closing
the browser.

Chapter 7

[179]

Signed cookies
Signed cookies are those that come with a signature attached to its value.
The signature is generated using a secret string, which you can specify in the
cookieParser middleware. When such cookies are manually tampered with, it is
detected and they are invalidated.

To create a signed cookie, pass a string to the cookieParser middleware while
instantiating it.

app.use(express.cookieParser('S3CRE7'));

Signed cookies are located in a special object called signedCookies on the request
object. Don't make the mistake of looking for them in the cookies property of the
request object.

Here is an example of signing and retrieving a signed cookie:

app.get('/counter', function(req, res) {

 var count = req.signedCookies.count || 0;
 count++;
 res.cookie('count', count, { signed: true });
 res.send('Count: ' + count);

});

Start the app and load http://localhost:3000/counter to see the signed cookie
getting created, read, and updated. To test the fact that it can detect tampering, use a
cookie-editing browser extension and try editing its value:

Forms, Cookies, and Sessions

[180]

Signed cookies are not encrypted or hidden from the user's view. They
just have a signature associated with the value that can be used to
ensure the cookie values are not tampered with.
The secret passed to the cookieParser middleware is used to generate
a signature for the original cookie value and the value submitted back
by the browser; if the values don't match, it is understood that the value
has been tampered with.

Deleting cookies
Session cookies are deleted when the browser is closed; other cookies are deleted
when the expiry date is reached. However, we have complete programmatic power
to delete them any time we want using the res.clearCookie() method.

It is important to make sure we call the res.clearCookie() method with the right
domain name and path options, or else the cookies won't be deleted.

Here are some examples of creating cookies and the corresponding methods of
deleting them:

Create Delete
res.cookie('count', 99); res.clearCookie('count');

res.cookie('count', 99, {path: '/
counter'});

res.clearCookie('count',
{path: '/counter'});

res.cookie('count', 99, {sign:
true});

res.clearCookie('count');

Using sessions to store data
While we can use cookies for storing information relevant to a user, it starts to
become unwieldy as their number increases and the size of the data grows. That's
where sessions come in.

Sessions, however, should not be mistaken for an independent replacement for
cookies. In fact, the sessions API leverages a cookie to identify a user's session.

There are two broad ways of implementing sessions in Express: using cookies and
using a session store at the backend. Both of them add a new object in the request
object named session, which contains the session variables.

No matter which method you use, Express provides a consistent interface for
interacting with the session data.

Chapter 7

[181]

Cookie-based sessions
Using the fact that cookies can store data in the user's browser, a session API can
be implemented using cookies. Express comes with a built-in middleware called
cookieSession that does just that.

Load the cookieParser middleware with a secret, followed by the cookieSession
middleware, before the router middleware. The cookieSession middleware is
dependent on the cookieParser middleware because it uses a cookie for storing the
session data.

The cookieParser middleware should be initialized with a secret, because
cookieSession needs to generate a signed HttpOnly cookie for storing the session
data. If you don't specify a secret for cookieParser, you will need to specify the
secret option of cookieSsession.

The following is a code for enabling sessions in Express using the cookieSession
middleware:

app.use(express.cookieParser('S3CRE7'));
app.use(express.cookieSession());
app.use(app.router);

Although the cookieSession middleware can be initialized without any options, the
middleware accepts an options object with the following possible options:

Option Description
key Name of the cookie. Defaults to connect.sess.
secret Secret for signing the session. Required if

cookieParser is not initialized with one.
cookie Session cookie settings. Regular cookie defaults apply.
proxy To trust the reverse proxy or not. Defaults to false.

Here is an example of initializing cookieSession with some options:

app.use(express.cookieSession({
 key: 'app.sess',
 secret: 'SUPERsekret'
}));

Once the session API is enabled, session variables can be accessed on the session
object on the request object: req.session.

Forms, Cookies, and Sessions

[182]

Working with req.session is like working with any other JavaScript
object. For more details, you can skip to the Session Variables section in
this chapter.

Cookie-based sessions work great for simple session data. However, it doesn't work
well with large, complicated, and sensitive data because the session data is visible
to the user. There is a limit on the size of cookies a browser can store, and multiple
large size cookies can affect the performance of the website.

The limitations in cookie-based sessions can be overcome by sessions based on
session stores.

Session store-based sessions
A session store is a provision for storing session data in the backend. Sessions based
on session stores can store a large amount of data that is well hidden from the user.

The session middleware provides a way of creating sessions using session stores.
Like cookieSession, the session middleware is dependent on the cookieParser
middleware for creating a signed HttpOnly cookie.

Initializing the session middleware is a lot like initializing cookieSession—we
first load cookieParser with a secret, and load the session middleware before the
router middleware:

app.use(express.cookieParser('S3CRE7'));
app.use(express.session());
app.use(app.router);

The session middleware accepts an options object that can be used for defining the
options of the middleware. The following are the supported options:

Option Description
key Name of the cookie. Defaults to connect.sid.
store Instance of a session store. Defaults to MemoryStore. The session

store may support options of its own.
secret Secret for signing session cookie. Required if not passed to

cookieParser().
cookie Session cookie settings. Regular cookie defaults apply.
proxy To trust the reverse proxy or not. Defaults to false.

Chapter 7

[183]

Here is an example of initializing the session middleware with some options:

app.use(express.session({
 key: 'app.sess',
 store: new RedisStore,
 secret: 'SEKR37'
}));

It is beyond the scope of this book but it is worth mentioning that you can
write your own session store if you want.
Express defines an interface for creating session stores, as long as you
adhere to the specifications, you can create your own session store using
any database or data-storage mechanism.

The interface for accessing and working with the session variables remain the same:
req.session, except now the session values reside on the backend.

Let's explore three popular session stores for Express.

MemoryStore
Express comes with a built-in session store called MemoryStore, which is the default
when you don't specify one explicitly.

MemoryStore uses the application RAM for storing session data and works right
out of the box, without the need for any database. Seeing how easily it is to set
up, you might be tempted to make it the session store of your choice, but it is not
recommended to do so because of the following reasons:

• Memory consumption will keep growing with each new session
• In case the app is restarted for any reason, all session data will be lost
• Session data cannot be shared by other instances of the app in a cluster

In fact, if you try to use MemoryStore in a production environment, you will get the
following warning:

Warning: connection.session() MemoryStore is not
designed for a production environment, as it will leak
memory, and will not scale past a single process.

Although MemoryStore is not a scalable solution and is not recommended on
production, it makes for a good choice for getting to know the session API quickly
and developing the application without the need for any database.

Forms, Cookies, and Sessions

[184]

RedisStore
RedisStore is a popular third-party module that uses Redis for storing session data.

Redis is a popular key-value "database" that is known for its speed in
storing and retrieving data. To learn more about Redis, visit http://
redis.io/.
Since RedisStore uses Redis for storing session data, you will need
to have an instance of Redis running locally or on a remote server.

Install RedisStore in the application directory:

$ npm install connect-redis

Load the RedisStore module in the app and pass the instance of the Express object
to it:

var express = require('express');
var RedisStore = require('connect-redis')(express);

With that, we are ready to use RedisStore as our session store—load the session
middleware with its store option set to an instance of RedisStore:

app.use(express.session({ store: new RedisStore }));

RedisStore accepts a configuration object that can be used for specifying various
aspects of the session store:

app.use(express.session({ store: new RedisStore({
 host:'127.0.0.1',
 port:6380,
 prefix:'sess'
}), secret: 'SEKR37' }));

Once you have set up RedisStore successfully, you can continue to work on the
req.session object to create, read, update, and delete session variables as usual;
only this time, the data is stored on a Redis server, accessible by multiple instances of
your app and persisting if your app is restarted.

You can get more information about RedisStore at https://github.com/
visionmedia/connect-redis.

MongoStore
Another popular session store uses MongoDB for storing the data and is called
MongoStore. The usage pattern is very similar to RedisStore.

Chapter 7

[185]

MongoDB is a very popular NoSQL database that uses a binary
version of JSON, BSON, to store data. Known for its speed and easy of
use, it is a popular choice of database for many modern web projects.
For MongoStore to work with your app, you will need to have an
instance of MongoDB running on your local system or on a remote
server.
You can learn more about MongoDB at http://www.mongodb.
org/.

Install MongoStore in the application directory:

$ npm install connect-mongo

Load the MongoStore module in the app and set an instance of it as the session store
for the session middleware:

var express = require('express');
var MongoStore = require('connect-mongo')(express);
…
app.use(express.session({
 store: new MongoStore({
 db: 'myapp',
 host: '127.0.0.1',
 port: 3355
 })
}));

With that, session data will now be stored in MongoDB, but the session interface
remains the same—the req.session object.

You can read more about MongoStore at https://github.com/kcbanner/
connect-mongo.

Session variables
Session variables are those variables that you associate with a user session. These
variables are independently set for each user and can be accessed on the session
property of the request object (req.session).

While it might look like we are dealing with a JavaScript object, it is not completely
true; the session variables actually reside in the data store of the session and the
JavaScript object only works as a proxy for those values.

Operations on session variables are basically working with JavaScript objects. The
states of these objects are then updated on the session store.

Forms, Cookies, and Sessions

[186]

Setting session variables
To set a session variable, attach it to the req.session object:

req.session.name = 'Napoleon';

In case the session variable contains illegal characters, use a substring notation
to create it:

req.session['primary skill'] = 'Dancing';

Reading session variables
Session variables can be read from the res.session object using either the dot
notation or the substring notation:

var name = req.session.name;
var primary_skill = req.session['primary skill'];

If you try to read an undefined property, you will get undefined as expected.

Updating session variables
Updating a session variable is just about updating the property in the req.session
object or overwriting the existing property with a new value:

// Assuming req.session.skills and req.session.name were already
defined
req.session.skills.push('Baking');
req.session.name = 'Pedro';

Deleting session variables
To delete a session variable, just delete the property from the req.session object:

delete req.session.name
delete req.session['primary skill'];

If you are wondering whether req.session.skills = null;
would work, the value will persist in the session as null, not be really
deleted. Remember we are dealing with session data, not JavaScript
variables.

Chapter 7

[187]

Deleting a session
We learned that there are two broad ways of creating sessions: using cookieSession
and sessionStore. Each session type has its own way of deleting the session.

Deleting a cookie-based session
To delete a cookie-based session, just delete the session object from the request
object, or set it to null:

deletereq.session;

or

req.session = null;

Once the session object is deleted, the session cookie is also deleted from the
browser, effectively destroying the session.

Deleting a session store-based session
Session store-based sessions do not interpret a missing session object on the request
object as the end of a session. If we delete the session object from the request object,
it will be recreated from the session store, because the session store decides the state
of the session, not JavaScript variables. This also the reason why these sessions are
intact even after the app restarts.

Session store-based sessions have a method called destroy() that is used for
destroying sessions from the session store—the proper way of tearing down a
session store-based session:

req.session.destroy();

The destroy() method accepts an optional callback function to be executed after the
session is cleared from the store:

req.session.destroy(function() {
 res.send('Session deleted');
});

For the curious ones, cookieSession does not have a destroy() method; trying to call
the destroy() method on a session created using cookieSession will throw an error.

Forms, Cookies, and Sessions

[188]

Summary
In this chapter, we learned how to submit forms using various HTTP methods,
learned how to create cookies and understood how to implement sessions in Express
using various ways.

Now that we have covered almost everything about Express, it is time to learn about
the things we need to make our Express app production-ready.

Express in Production
So far we have been learning about and implementing various aspects of Express
in sample apps on our local machine, and by now we know quite a lot about
Express. However, our ultimate goal of learning Express is to be able to deploy
apps on production.

This chapter is about making our app production-ready. We will learn the following
in this chapter:

• How to benchmark our app
• How to make our app scale and perform well
• How to ensure maximum uptime for the app

What the is production environment?
The system on which we develop our app is the development environment
or platform—the system could be your personal laptop or desktop. Apart from
development, we may use such a system for browsing, sending e-mails, image
editing, playing games, listening to music, watching movies, and so on. We
would not host our app on such a system, would we?

When we are ready to share our app with the world, the recommended and common
practice is to use a dedicated system for hosting it, which may or may not be shared
by other apps.

So how does Express know it is in the production environment?

Express looks up the NODE_ENV environment variable to determine the
environment it is in. If the environment variable is not defined, it assumes
it as a development environment.

Express in Production

[190]

For more information about NODE_ENV and the various modes
of Express, refer to the Express in different environments section in
Chapter 2, Your First Express App.

What changes in production mode?
When Express detects that it is running in production mode, it makes the following
changes automatically:

• Jade view templates are cached in memory
• CSS files are cached in the filesystem, and re-rendered only if the

source Stylus file is modified
• MemoryStore emits a warning and will definitely not scale beyond a

single process
• Error messages are less verbose

Also, we might use different configurations for development and production.
We might use an app configuration file with content like this:

{
 development: {
 db_host: 'locahost',
 db_user: 'dev',
 db_padd: 'passm3'
 },

 production: {
 db_host: '192.168.10.12',
 db_user: 'dbuser1',
 db_padd: '0lulwu7'
 }
}

Refer to the Using a configuration file section in Chapter 2, Your First Express App, for
details about using an application configuration file.

Simulating production environment
There will be times when we want to see how a certain aspect of our app will behave
in the production environment, while still being in the development environment.

Chapter 8

[191]

Since Express depends on the NODE_ENV environment variable to determine the
environment, it is pretty easy to make Express behave like it is in the production
environment. Just start the app with NODE_ENV temporarily set to production:

$ NODE_ENV=production node app

All production-specific changes will kick in once the environment variable is
set to production.

Benchmarking the app
Performance is one of the primary concerns when it comes to making an app
production-ready. Since a major section of this chapter is about making our app
performant, it makes sense to know right at the beginning how to quantitatively
measure the performance of our app.

We will use a command-line tool called siege for benchmarking our app. While
it is not going to be the most scientific and accurate method, benchmarking with
siege will give us a fair idea about how well our app is performing.

Here is how to install siege in Ubuntu:

$ sudo apt-get install siege

To start benchmarking an app located at http://localhost:3000/, we would
benchmark it this way:

$ siege -b -c100 -t10S http://localhost:3000/

Basically, we are performing a tiny denial of service (DoS) attack on our server and
seeing how well it fares.

The options used in the command are listed as follows:

Option Description
-b To indicate we are benchmarking the app. No delays between requests.
-c Concurrent connections. We decided on 100.
-t Duration of benchmark. You can specify in S (seconds), M (minutes), or H

(hours). We chose 10 seconds.

siege is a very versatile tool and comes with more than a dozen
options. Type siege --help at the command line to see all the
options. Explore the various options and play around with the values
to match your requirements.

Express in Production

[192]

A benchmark result may look something like this:

Transactions: 188 hits

Availability: 100.00 %

Elapsed time: 9.76 secs

Data transferred: 105.58 MB

Response time: 0.80 secs

Transaction rate: 19.26 trans/sec

Throughput: 10.82 MB/sec

Concurrency: 15.44

Successful transactions: 188

Failed transactions: 0

Longest transaction: 1.96

Shortest transaction: 0.03

Here is a brief description of the various fields of the benchmark:

Field Description
Transactions The number of requests made.
Availability The percentage of socket connections

successfully handled by the server.
Elapsed time The duration of the entire siege test.
Data transferred The sum of data transferred to every siege-

simulated user. It includes the header
information as well as the content. Because
it includes header information, the number
reported by siege will be larger then the
number reported by the server. In internet
mode, which hits random URLs in a
configuration file, this number is expected to
vary from run to run.

Response time The average time taken to respond to each
simulated user's requests.

Transaction rate The average number of transactions the
server was able to handle per second.

Throughput The average number of bytes transferred
every second from the server to all the
simulated users.

Chapter 8

[193]

Field Description
Concurrency The average number of simultaneous

connections, a number that rises as server
performance decreases.

Successful transactions The number of times the server returned a
code less then 400.

Failed transactions The number of times the server responded
with a return code more than or equal to 400
plus the sum of all failed socket transactions,
which includes socket timeouts.

Longest transaction The longest period of time that any single
transaction took, out of all transactions.

Shortest transaction The least period of time that any single
transaction took, out of all transactions.

To increase the reliability of the benchmark, run the app and the siege test on
different machines in the network and ensure a minimum number of processes
are running on them.

Benchmarking and load testing is a vast topic of its own, and out of
scope of this book. As a web developer, it is recommended to learn
about them.

Now that we know how to benchmark, make sure to benchmark the app after
learning about each optimization technique covered in the chapter.

Creating an app cluster
One common argument against Node is that it is single-threaded and therefore
does not perform well.

This argument is outdated and invalid—now Node comes with a module called
cluster, using which we can run multiple processes of an app, essentially
multiplying the performance of the app on multi-core machines, which most
modern computers are.

The performance gain is more obvious when the app is processor- and memory-
hungry, and is data-intensive. "Hello World" apps are likely to show little to no
improvement in less stressful tests.

Express in Production

[194]

The cluster module is still experimental, so the API may change in the
future. But the module itself is likely to be there for good.

Let's write two sample apps to find out whether the performance gain by using
cluster is true or not. We will make sure these apps perform the same set of
resource-intensive operations.

Here is the first app, a very basic Express app that programmatically generates
a huge amount of data and sends it to the client:

var http = require('http');
var express = require('express');
var app = express();

app.get('/', function (req, res) {

 // A resource-intensive operation
 var a = [];
 for (var i = 0; i < 100000; i++) { a.push(i); }

 // A large chunk of data
 res.send(a.toString());
});

http.createServer(app).listen(3000, function() {
 console.log('Express app started');
});

Following is the re-write of the previous app, using cluster:

var cluster = require('cluster');

// Master process - starts the workers
if (cluster.isMaster) {

 var cpu_count = require('os').cpus().length;

 // Create a worker process for each core
 require('os').cpus().forEach(function() {

 // Start a worker process
 cluster.fork();

Chapter 8

[195]

 });

 // In case a worker dies, a new one should be started
 cluster.on('exit', function (worker, code, signal) {
 cluster.fork();
 });

}
// Code for the worker processes to execute
else {

 var worker_id = 'Worker' + cluster.worker.id;

 var http = require('http');
 var express = require('express');
 var app = express();

 app.get('/', function (req, res) {

 // An resource-intensive operation
 var a = [];
 for (var i = 0; i < 100000; i++) { a.push(i); }

 // A large chunk of data
 res.send(a.toString());
 });

 // Start the app
 http.createServer(app).listen(3000, function() {
 console.log('Express app started by %s', worker_id);
 });

}

When you run this app, the code within the if (cluster.isMaster) bock will be
executed, which will fork the worker processes. The workers will execute the code
within the corresponding else block thereby creating their instances of the app,
which is made evident from the console message.

You must have noted that we forked a process for each core in the CPU. This
is because we want each core to run a single process only. There is no technical
restriction on the number of workers we can fork, but running more than one
process in a core does not add to the performance of the app.

Express in Production

[196]

Requests made to the server will now be distributed among the worker processes,
which can be processed simultaneously, thus increasing the overall performance
of the app.

Here is a comparative analysis of the two versions of the app benchmarked using
siege for 10 seconds with 100 concurrent connections, on a quad-core laptop:

Single-process app Clustered app
Transactions: 203 hits

Availability: 100.00 %

Elapsed time: 9.15 secs

Data transferred: 114.01 MB

Response time: 3.87 secs

Transaction rate: 22.19
 trans/sec

Throughput: 12.46 MB/sec

Concurrency: 85.80

Successful transactions: 203

Failed transactions: 0

Longest transaction: 4.09

Shortest transaction: 0.44

Transactions: 498 hits

Availability: 100.00 %

Elapsed time: 9.69 secs

Data transferred: 279.68 MB

Response time: 1.23 secs

Transaction rate: 51.39
 trans/sec

Throughput: 28.86 MB/sec

Concurrency: 73.10

Successful transactions: 498

Failed transactions: 0

Longest transaction: 4.13

Shortest transaction: 0.05

The accuracy of benchmarking any software system depends on
taking into consideration all the components and factors affecting its
performance, which is a very complex and elaborate process, and beyond
the affordability of individual developers and small companies.
Benchmarking an Express app on a local network on a machine with
siege, while not giving the absolute truth about the performance, gives an
overall good idea about the performance of the app.

You can very well see that using all the available CPU cores has greatly increased
the performance of the app in most aspects.

Apart from adding to the performance of the app, using cluster ensures greater
uptime for Node apps—if a process goes down, the remaining processes continue
to handle the requests, while a new process is being forked to replace the process
that exited.

Chapter 8

[197]

It is important to note that workers do not share the same memory space; a variable
defined in a worker will not be accessible to other workers. This is one of the reasons
why MemoryStore is not recommended as the session store in production.

There is more to the cluster module than what was shown in the example. To be
able to make the best use it, you will need to know the API as well as possible. You
can read more about cluster at http://nodejs.org/api/cluster.html.

Handling critical events
All apps are susceptible to crashes and signal terminations. Production-ready apps
are supposed to handle these critical events as gracefully and usefully as possible
when they can, rather than crash abruptly.

In this section, we will learn how to handle fatal errors and termination signals from
our app.

Closing the server
One of the first things to do in the event of something critical is to close the server to
new connections, so that we can perform the necessary housekeeping before finally
terminating the process.

When we start the server using http.createServer(), the method returns an
instance of Node's web server object, which has a method called close() that will
stop the server from receiving new requests.

You can read more about the HTTP Server object at http://nodejs.
org/docs/latest/api/http.html#http_http_createserver_
requestlistener.

Following is a simple example of using the server's close() method. This app will
respond to the first request it receives and close the server to any new connections.

In modern browsers, a refresh or a new tab does not always mean a new
connection because of HTTP persistent connection; so don't be shocked
if you can still access the app from the same browser. However, the app
will no longer be accessible from a different browser.

var http = require('http');
var express = require('express');
var app = express();

Express in Production

[198]

// Variable to track the status of the server
var closed = false;

app.get('/', function (req, res) {

 // First request to the server
 if (!closed) {

 // Close the server - no more new connections
 server.close();

 // Respond to the request
 res.send('First request');

 closed = true;
 }
 // Message for Kept alive connections
 else {
 res.send('Server shutting down ...');
 }

 // Shutdown the server in 5 secs
 setTimeout(function() {
 process.exit();
 }, 5000);

});

// Get the instance of the web server object
var server = http.createServer(app).listen(3000, function() {
 console.log('Express app started');
});

Now that we know how to close the server, let's find out how server.close()
can be used to gracefully handle fatal errors and termination signals.

Handling uncaught errors
A bad news about Node is that uncaught errors will crash the HTTP server. The
good news is that this is easily mitigated using proper error-handling techniques,
clusters, and load balancing.

By default, when a runtime error occurs in an Express app, it will either be caught by
the error handler defined in the router middleware or it will bring down the server.

Chapter 8

[199]

Here is an example of the first kind:

var http = require('http');
var express = require('express');
var app = express();

app.get('/', function (req, res) {

 // Error will be caught
 get_data();

});

var server = http.createServer(app).listen(3000, function() {
 console.log('Express app started');
});

When you load http://localhost:3000/, you will get 500 Internal Server Error,
but the server is still up and running, and users can still access the functional parts
of the app.

And here is an example of an uncaught error, which bubbles up to the event loop
and brings down the server (we will just redefine the route from the previous app,
for the sake of brevity).

app.get('/', function (req, res) {

 // An async operation which causes an error
 process.nextTick(function() {
 get_data();
 });

});

process.nextTick() is a low-level construct to execute instructions
after the current set of instructions have been processed, making all the
expressions within it asynchronous relative to the current set. You can
read more about process.nextTick() at http://nodejs.org/
api/process.html#process_process_nexttick_callback.

This time, when you load http://localhost:3000/, the app will crash instantly.
So how do we handle such errors?

Express in Production

[200]

Using try-catch to catch uncaught errors
The first thing that comes to the mind about handling uncaught errors is to use the
try-catch construct on operations that are likely to throw a data error.

Here is an example to handle the previous case:

process.nextTick(function() {
 try {
 get_data();
 }
 catch(err) {
 console.log(err);
 res.send(500, 'Oops!');
 }
});

Using try-catch can technically solve the uncaught error problem, but becomes
unrealistic in complex situations. Following is an example to demonstrate this fact:

process.nextTick(function() {
 try {
 process.nextTick(function() {
 set_data();
 });
 get_data();
 }
 catch(err) {
 console.log(err);
 res.send(500, 'Oops!');
 }
});

In Node, any async function can contain a potential app-crashing operation.
How deep do we use try-catch, and how many can we use? It starts to become
impractical beyond a certain limit.

Node provides an event named uncaughtException in the process
object, listening to which can catch process-level uncaught errors. When
this event is listened for, the default behavior of terminating the process
on uncaught errors is prevented. However, it is officially recognized as
inefficient and is likely to be removed in the future versions of Node, so
don't count on it.

Chapter 8

[201]

Using domains to handle uncaught errors
A new Node module called domain was introduced in Node 0.8.0 for handling
errors more efficiently. A domain is like a flexible error handler for any and all
errors that might be thrown within it. Unlike uncaughtException, domain
maintains the context of the objects that were involved in the exception. Using
domains is the recommended method for handling uncaught errors in Node.

The domain module is currently marked as Unstable, meaning, the API
may change in the future. So make it a point to keep yourself updated
with the changes.

Here is a very simple example for catching an unhandled error using the
domain module:

var http = require('http');
var express = require('express');
var app = express();
var domain = require('domain');

app.get('/', function (req, res) {

 // Instantiate a domain
 var d = domain.create();

 // Domain error handler
 d.on('error', function(err) {
 // Error stack
 console.log(err.stack);
 // Other information
 console.log(req.ip);
 // We still have the object in context
 res.send(500, 'Oops!');
 });

 // Execute the code under this to catch unhandled errors from it
 d.run(function() {

 // An async operation which will cause a process-level error
 process.nextTick(function() {
 get_data();
 });
 });

Express in Production

[202]

});

var server = http.createServer(app).listen(3000, function() {
 console.log('Express app started');
});

In this example, the source of the error is known to us therefore we can continue
running the server. However, in production apps, an unhandled error is usually
unexpected and associated with an unreliable state of the system, so it is best to
gracefully shutdown the server.

Assuming we will be deploying a clustered app, here is a simple example of a
domain error handler from a worker.

 // Domain error handler
 d.on('error', function(err) {

 // Stop accepting new connections
 server.close();

 // Perform last-minute cleanup
 res.send(500);

 // Let the master know the worker has disconnected
 cluster.worker.disconnect();

 // Terminate the process in 5 seconds
 setTimeout(function() {
 // Exit with a failure code
 process.process.exit(1);
 }, 5000);

 });

Correspondingly, the master process should be listening to the disconnect event of
its workers and forking a new worker accordingly:

// A worker reports its disconnection
cluster.on('disconnect', function(worker) {
 // For a new worker
 cluster.fork();
});

In our example, we covered only the run() method, the domain module supports
many more methods for efficiently handling errors generated within it. You can read
more about domains at http://nodejs.org/api/domain.html.

Chapter 8

[203]

What to do in case of uncaught errors – to
terminate the process or not to terminate?
As mentioned earlier, an uncaught error is a symptom of something seriously wrong
in the app. When such an error occurs, it becomes hard to rely on the state of the app,
and the default behavior of Node is to terminate the process.

From the official Node documentation:

"By the very nature of how throw works in JavaScript, there is almost never any
way to safely "pick up where you left off", without leaking references, or creating
some other sort of undefined brittle state."

The recommended strategy for handling uncaught errors is to shut down the server
gracefully. First close the server, respond to the current requests, log the event,
terminate the process, and then fork a new worker.

As a developer, then you would need to find out what is causing the uncaught error
and fix it at the source.

Make sure to listen for the error event on all instances of objects inheriting from the
EventEmitter, and know that all async operations, such as callback functions and
timers can contain code that can potentially cause uncaught errors.

Handling process termination
Our Express app may be terminated using various termination signals. Instead
of letting them shut down the process abruptly, we should perform the necessary
housekeeping and finally terminate the process ourselves from our code.

Here is an example for handling the two most, termination signals: SIGINT
and SIGTERM:

// Default kill signal
process.on('SIGTERM', function() {
 // Close the server
 server.close();
 // Log the event
 console.log('Terminated at ' + Date.now());
 process.exit();
});

// CTRL+c
process.on('SIGINT', function() {

Express in Production

[204]

 // Close the server
 server.close();
 // Log event
 console.log('Terminated from console at ' + Date.now());
 process.exit();
});

Our app can listen for all valid termination signals, except SIGKILL, you can read
more about termination signals at http://www.gnu.org/software/libc/manual/
html_node/Termination-Signals.html. Attempting to listen for SIGKILL will
throw an error.

Note that the act of listening for termination signals prevents the default
behavior of terminating the process when they are received, therefore, we have to
programmatically terminate it after we are done with the housekeeping by using the
process.exit() method.

Unlike unhandled errors, it may not be a good idea to fork a new process on
receiving a termination signal.

Ensuring uptime
We have seen that if a worker process crashes, a new one can be forked by the master
process, while the remaining workers can handle the current requests. But what
happens when the master process itself crashes?

Uptime concerns are a unique aspect of Node apps, but with proper knowledge and
the right tools this concern can be addressed to satisfaction.

Let's look at two popular tools for ensuring Express apps are up and running, with
as little downtime as possible.

Forever
Ensuring a Node app is restarted when it goes down can easily be accomplished
with the help of a Node package called forever.

Install forever as global module, so that we can use it as a command-line tool:

$ npm install forever -g

After forever is installed, type forever --help at the command line to see the
various options and commands.

Here is a list of the most common commands to help you get started:

Chapter 8

[205]

Command Description
$ forever start app.js Starts app.js in the background and

restarts it if it crashes.
$ forever list Lists all the processes started by

forever.
$ forever stop <process index> Stops the process with the specific

index. Index value is retrieved from
the list command.

$ forever restart <process index> Restarts the process with the specific
index. Index value is retrieved from
the list command.

Forever does a good job of keeping a process running and restarting it if it crashes.
However, it has a drawback: when the system reboots, we will have to manually
restart all of the forever processes all over again.

Although rebooting might be an infrequent event, it doesn't sound very efficient,
does it? Is there a way to automate restarting the processes?

Upstart
Upstart is a tool for starting services on Linux machines. Although it can be used for
many purposes in many different ways, we will focus on how to use it for starting
our app when the system starts and restarting if it crashes.

On a shared hosting environment, you might be limited to the access
and functionality of upstart. In such cases, you will have to make
do with forever, with a clever combination of a cron job.

Upstart jobs reside as .conf files in the /etc/init directory on Ubuntu. The name of
the job is derived from the name of the file. For example, if the file is named myapp.
conf, the job would be myapp.

Upstart jobs then can be stopped, started, and restarted from the command line in
the following manner:

Command Functionality
start myapp To start the myapp job
restart myapp To restart the myapp job
stop myapp To stop the myapp job

Express in Production

[206]

Following is an example upstart job to start an Express app on system startup and
ensure it is restarted when it goes down. Save it as myapp.conf under /etc/init:

description "Daemonized Express App"
author "Hack Sparrow"

When to start the process
start on runlevel [2345]
When to stop the process
stop on runlevel [016]

The process to start
exec sudo -u www-data /usr/local/bin/node /home/captain/projects/
example/app.js

Restart the process if it is down
respawn
Limit restart attempt to 10 times within 10 seconds
respawn limit 10 10

It is beyond the scope of this book to cover everything about upstart, but the
example should get you started with it. You can read more about upstart at
http://upstart.ubuntu.com/.

If you have a dedicated server with root access on production, upstart is the
recommended way to ensure the uptime of your Express app.

Using a reverse proxy
Express is capable of performing everything that is expected of a modern web server,
such as logging requests, HTTPS, serving files and so on, but it is best used as an
application server behind a reverse proxy. That way, Express can focus solely on
processing dynamic requests, while other tasks can be offloaded to the reverse proxy,
thereby increasing the performance of the app.

It is a standard practice in the industry to put a front-facing proxy (another name
for reverse proxy) in front of a series of application servers to load-balance and
scale the app.

The following illustration shows how an application server works with a reverse
proxy to serve a website. In a load-balanced setup, there would be more upstream
application servers:

Chapter 8

[207]

Here are some of the tasks that can be performed by Express, but are best handled by
the reverse proxy:

Task Description
Logging requests and errors Keeping track of requests made to the server

and HTTP errors generated.
Serving static files Serving static files such as CSS, JavaScript,

images, and other downloadables.
Caching Serving current copies of files instead of

regenerating them from the source.
gzip compression Serving a compressed version of text files,

thereby decreasing the load time.
HTTPS HTTP over SSL.
Protection from malformed requests Detects and invalidate potentially malicious

protocol-level requests.

You can evaluate nginx (http://nginx.org/) and HAProxy (http://
haproxy.1wt.eu/) as the potential choice of reverse proxy for your app.

The trust proxy option
Once our app is set up to run behind a reverse proxy, we should set the trust
proxy application setting to true:

app.set('trust proxy', true);

Express in Production

[208]

On not doing so, req.ip will read the IP address of the proxy as the IP address of the
client, which would obviously be wrong. Besides, we will be able to get the series of
proxies the client has connected through from the req.ips property.

In case the proxy does not provide the x-forwarded-for header, req.
ip will return the proxy's IP address.

Summary
In this chapter, we learned how to benchmark our app using siege. We saw that
clustering increases the performance of the app in general. And then we learned how
to handle fatal errors and ensure maximum uptime for our app.

Although we covered some crucial aspects of making our app production-ready,
running an app on production is a vast and continuous process. Take this chapter
as the starting point and learn more about the details of scaling and enhancing your
app on production.

Index
Symbols
1xx status code 80
2xx status code 80
3xx status code 80
4xx status code 80
5xx status code 81
$ forever list command 205
$ forever restart <process index>

command 205
$ forever start app.js command 205
$ forever stop <process index>

command 205
-b option 191
-c option 191
@css rule 145
:date token 46
@extend rule 144
@font-face rule 142
-g option 9
:http-version token 46
@import rule 140
@keyframe rule 142, 144
@media rule 141
:method token 47
@ parameter 9
:referrer token 47
:remote-addr token 46
:req[header] token 46
:res[header] token 46
:response-time token 46
:status token 47
.styl file extension 133
-t option 191
:url token 47
:user-agent token 47

A
app.all() method 60, 61
app cluster

creating 193-197
app.configure([env], callback) 10
app.configure() method 52
app.disabled(name) 10
app.disable(name) 10
app.enabled(name) 10
app.enable(name) 10
app.engine(ext, callback) 10
app.get(name) 10
application object, Express

about 9
app.all(path, [callback...], callback) 10
app.configure([env], callback) 10
app.disabled(name) 10
app.disable(name) 10
app.enabled(name) 10
app.enable(name) 10
app.engine(ext, callback) 10
app.get(name) 10
app.listen() 10
app.locals 10
app.param([name], callback) 10
app.render(view, [options], callback) 10
app.routes 10
app.set(name, value) 10
app.use([path], function) 10
app.VERB(path, [callback...], callback) 10

app.listen() 10
app.locals 10
app.param([name], callback) 10
app.render(view, [options], callback) 10
app.routes 10

[210]

app.set() method 93
app.set(name, value) 10
app.use() method 19, 20
app.use([path], function) 10
app.VERB(path, [callback...], callback) 10
Asynchronous (async) JavaScript 13, 14
Availability field 192

B
bar notation 111
basicAuth middleware 39
benchmarking

app 191
fields 192

benchmarking, fields
Availability field 192
Concurrency option 193
Data transferred field 192
Elapsed time field 192
Failed transactions option 193
Longest transaction option 193
Response time option 192
Shortest transaction option 193
Successful transactions option 193
Throughput option 192
transaction field 192
Transaction rate option 192

bodyParser middleware 40, 166
built-in functions 158, 159

C
case sensitive routing option 49
classes, HTML tags

assigning 109
Client Error 80
close() method 197
cluster 193-197
comments 131, 154, 155
compile option 136
compress middleware 39
compress option 136
Concurrency option 193
conditionals

about 157
if, else if, and else construct 158
unless conditional 158

Connect project 6
content negotiation 100-102
Content-Type header. See also media types
Content-Type header 82, 88
control structures, Jade 119
cookie-based session

about 181
cookie option 181
deleting 187
key option 181
proxy option 181
secret option 181

cookieParser middleware 40, 176, 181
cookies

creating 176, 177
deleting 180
reading 178
session cookies 178
setting 178
signed cookies 179
updating 178
using, to store data 176

cookieSession middleware 40
cron job 205

D
data

content negotiation 100, 101
error pages, serving 96-99
files, serving programmatically 94-96
HTML 89-91
in named segments 174
JSON 91, 92
JSONP 92, 93
plain text 88, 89
reading 174, 175
request, redirecting 102
sending 88
static files, serving 93, 94
submitting, forms used 161, 162
submitting, simulated methods

used 173, 174
Data transferred field 192
dest option 136
destroy() method 187
directory middleware 40

[211]

disconnect event 202
Doctype

of document, declaring 114, 115
predefined values 114, 115

domains
URL 202
used, for handling uncaught errors 201, 202

E
each construct 122
Elapsed time field 192
environments 50
env option 49
error event 203
errorHandler middleware 40, 43
error pages

serving 97
escaping, Jade 131
expires option 178
exports object 16
Express

about 5
components 9
history 6, 7
HTTP response 83, 84
HTTP response headers 81
HTTP status codes 78, 79
installing 7-9
production environment 189
Stylus, enabling 136

Express App
about 18, 19, 27
auto-generating 37, 39
configuration file used 48
configuration, options 49
creating 29, 30
in different environments 49-53
manifest file 28, 29
middlewares 39- 41
Node modules 44-46
options, getting 49
options, setting 49
output, analyzing 31, 32
public directory 34-36
requests, logging to 46, 47

starting 30
stopping 30
with views 32-34

Express App. See also node module
express command-line tool 9
Express, components

application object 9, 10
Asynchronous (async) JavaScript 13, 14
node module 14-18
request object 10-12
response object 12, 13

F
Failed transactions option 193
favicon middleware 40
file uploads

handling 168, 169
filters, Jade 113, 114
firebug option 137
forbidder middleware 21
force option 136
for construct 122
Forever

$ forever list command 205
$ forever restart <process index>

command 205
$ forever start app.js command 205
$ forever stop <process index>

command 205
installing 204

for loop 120
forms

used, for submitting data 161, 162
functions 154

G
GET HTTP method 161
GET request 104
GET submissions

form data, reading 163, 164
handling 162, 163
multiple options, handling 164-166
URL query parameters, reading 164

global modules 9

[212]

H
HAProxy

URL 207
headers. See HTTP response headers
HTML 89, 90
HTML attributes 110
HTML elements

hierarchy 107, 108
HTML tags

classes, assigning 109
generating 106, 107
HTML attributes, specifying 110
HTML elements, hierarchy 107, 108
IDs, assigning 109

http.createServer() method 197
HTTP headers

setting 86, 87
HTTP method overriding 173
HTTP protocol

URL 77
HTTP request method. See also HTTP verbs
HTTP request method 55
HTTP response

about 77
in Express 83, 84

HTTP response headers 81
HTTP response, in Express

data, sending 88
HTTP headers, setting 86, 87
HTTP status code, setting 84-86

HTTP response message 78
HTTP Server object

URL 197
HTTP status codes

1xx status code 80
2xx status code 80
3xx status code 80
4xx status code 80
5xx status code 81
about 78, 79
setting 84-86

HTTP verbs 56, 57

I
IDs, HTML tags

assigning 109
if (cluster.isMaster) bock 195
if, else if, and else combination 122
if, else if, and else construct 158
includes 124, 125
Informational 80
installation

Express 7, 8
Internet Engineering Task Force (IETF) 57
interpolations, Jade 117-119

J
Jade

about 103, 104
comments 131
control structures 119
escaping 131
filters 113, 114
HTML tags, generating 106
interpolation 117-119
modularization 123
programmability 115
URL 103, 106
variables 115, 116

Jade constructs
about 121
case construct 123
each construct 122
for construct 122
if, else if, and else combination 122
unless construct 123
while construct 123

Jade view, modularization
includes 124, 125
mixins 129, 130
template inheritance 125-128

JavaScript constructs 120, 121
JSON 91, 92
json middleware 39
JSONP 92

[213]

jsonp callback name option 49
json replacer option 49
json spaces option 49
JSON with Padding. See JSONP

K
keepExtensions property 166
keys(list) tuple 152

L
layout.jade file 38
limit middleware 40
linenos option 137
lists 150, 151
literals 147, 148
local modules 8
logger 46
logger middleware 39
Longest transaction option 193

M
manifest file

dependencies field 28
name field 28
private field 28
scripts field 28
version field 28

media types 81, 82
MemoryStore 190 183
methodOverride middleware 40, 161, 173
middleware() method 136
middlewares

about 19, 21, 39
basicAuth 39
bodyParser 40
compress 39
cookieParser 40
cookieSession 40
directory 40
errorHandler 40
favicon 40
json 39
limit 40
logger 39
methodOverride 40

multipart 40
query 40
responseTime 40
router 39
session 40
static 40
staticCache 40
timeout 40
urlencoded 39
vhost 40

MIME Type. See media types
mixins 129 152, 153
module.exports property 17
MongoStore

about 184
installing, in application directory 185

multipart middleware 40

N
named segments

data in 174
name property 170
Namespaced routing 71, 73
nginx

URL 207
NODE_ENV environment variable 50, 189
Node HTTP API 24
Node HTTPS API 24
Node.js (Node) platform 5
Node modules

about 14-17, 44-46
using 69-71

Node Package Manager. See npm
Node Version Manager. See nvm
npm 8
npm install command 9
nvm 8

O
operators 156, 157

P
path property 170
performance 191
POST HTTP method 162

[214]

Postman 60
post() method 162
POST submissions

file uploads, handling 168-172
form data, reading 167
handling 166
POST data parsing, enabling 166
text-only forms, handling 167, 168

process.nextTick() 199
process termination

handling 203, 204
production environment

about 189
changes 190
simulating 190

Q
query middleware 40

R
Redirection 80
RedisStore

about 184
installing, in application directory 184

req.accepted 11
req.acceptedCharsets 12
req.acceptedLanguages 11
req.acceptsCharsets(charset) 12
req.acceptsLanguage(langauge) 12
req.accepts(types) 11
req.body 11
req.cookies 11
req.cookies object 176
req.files object 11, 172
req.fresh 11
req.get(header) 11
req.host 11
req.ip 11
req.ips 11, 208
req.is(type) 11
req.originalUrl 11
req parameter 20
req.param() method 176
req.params 11
req.params(name) 11
req.path 11

req.protocol 11
req.query object 11, 164
req.route 11
req.secure 11
req.signedCookies 11
req.stale 11
req.subdomains 11
request

redirecting 102
request flow 22
request object, Express

req.accepted 11
req.acceptedCharsets 12
req.acceptedLanguages 11
req.acceptsCharsets(charset) 12
req.acceptsLanguage(langauge) 12
req.accepts(types) 11
req.body 11
req.cookies 11
req.files 11
req.fresh 11
req.get(header) 11
req.host 11
req.ip 11
req.ips 11
req.is(type) 11
req.originalUrl 11
req.params 11
req.params(name) 11
req.path 11
req.protocol 11
req.query 11
req.route 11
req.secure 11
req.signedCookies 11
req.stale 11
req.subdomains 11
req.url 11
req.xhr 11

require() function 14
req.url 11
req.xhr 11
res.attachment([filename]) 13
res.charset 12
res.clearCookie() method 180
res.clearCookie(name, [options]) 12
res.cookie() method 176

[215]

expires option 177
httpOnly option 177
maxAge option 177
path option 177
secure option 177
signed option 177

res.cookie() method domain option 177
res.cookie(name, value, [options]) 12
res.download() method 85, 94, 96
res.download(path, [filename],

[callback]) 13
res.format(object) 13
res.get(header) 12
res.json() method 85
res.jsonp() method 85
res.jsonp([status|body], [body]) 12
res.json([status|body], [body]) 12
res.links(links) 13
res.locals 13
res.location 12
Resourceful routing 73-76
response object, Express

res.attachment([filename]) 13
res.charset 12
res.clearCookie(name, [options]) 12
res.cookie(name, value, [options]) 12
res.download(path, [filename],

[callback]) 13
res.format(object) 13
res.get(header) 12
res.jsonp([status|body], [body]) 12
res.json([status|body], [body]) 12
res.links(links) 13
res.locals 13
res.location 12
res.redirect([status], url) 12
res.render(view, [locals], callback) 13
res.send([body|status], [body]) 12
res.sendfile(path, [options], [callback]]) 13
res.set(field, [value]) 12
res.status(code) 12
res.type(type) 12

responseTime middleware 40
Response time option 192
res.redirect([status], url) 12
res.render() method 84, 85, 115, 116
res.render(view, [locals], callback) 13

res.send([body|status], [body]) 12
res.sendfile() method 85, 94
res.sendfile(path, [options], [callback]]) 13
res.send() method 84, 85
res.set(field, [value]) 12
res.set() method 86, 89
res.status(code) 12
res.status() method 84, 85
restart myapp command 205
res.type(type) 12
reverse proxy

tasks 207
using 206

route handler 23
router middleware 39, 57, 97, 198
routes

about 55, 56
defining, for app 58-61
handling 65-68
identifiers 61-63
organizing 68
precedence order 63, 64

routes.js Node module
content 23, 24

routes, organizing
Namespaced routing 71-73
Node modules SED 69
Resourceful routing 73, 75

rules
@css rule 145
@extend rule 144
@font-face rule 142
@import 140, 141
@import rule 141
@keyframe rule 142-144
@media rule 141
about 139

run() method 202

S
script tag 112
Selectors

about 137
blocks 138
hierarchy 138, 139

serve option 136

[216]

server
closing 197, 198

Server Error 81
session cookies 178
session middleware 40
sessions

cookie-based session 181
deleting 187
session store-based session 182
session variables 185
using, to store data 180

session store-based session
about 182
cookie option 182
deleting 187
key option 182
proxy option 182
secret option 182
store option 182

session variables
about 185
deleting 186
reading 186
setting 186
updating 186

Shortest transaction option 193
siege

about 191
installing, in Ubuntu 191

siege --help command 191
siege tool 191
SIGKILL

URL 204
signed cookies 179
size property 170
skeleton app 39
src option 136
start myapp command 205
staticCache middleware 40
static files

serving 93, 94
static middleware 40, 136
stop myapp command 205
strict routing option 49
style.styl 141
style tag 112

Stylus
.styl file extension 133
about 133-153
builtin functions 158, 159
comments 154-156
compile option 136
compress option 136
conditionals 157
dest option 136
enabling, in Express 136, 137
firebug option 137
force option 136
functions 154
linenos option 137
lists 150, 151
literals 147-149
operators 156, 157
serve option 136
src option 136
tuples 151
tuples, listed 151, 152
URL 133
variables 147

Success 80
Successful transactions option 193

T
template inheritance 125-128
text content

creating 111, 112
text-only forms

handling 167, 168
Throughput option 192
timeout middleware 40
transaction field 192
Transaction rate option 192
trust proxy application 207
trust proxy option 49
try-catch

used, for catching uncaught errors 200
tuples

about 151
keys(list) 152
listing 151
values(list) 152

type property 170

[217]

U
uncaught errors

catching, try-catch used 200
example 199
handling 198
handling, domains used 201, 202
process, terminating 203
process termination, handling 203, 204

uncaughtException 201
unless conditional 158
unless construct 123
uploadDir option 172
uploadDir property 166
Upstart

about 205
restart myapp command 205
start myapp command 205
stop myapp command 205
URL 206

uptime
ensuring 204

urlencoded middleware 39

urlencoded string 162
URL query parameters

reading 164
UTF-8 82

V
values(list) tuple 152
variables 115, 116, 147
vhost middlewares 40
view cache option 49
view engine option 49
views

Express app with 32, 33
views option 49

W
while construct 123

Thank you for buying
Express Web Application Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Node Cookbook
ISBN: 978-1-84951-718-8 Paperback: 342 pages

Over 50 recipes to master the art of asynchronous
server-side JavaScript using Node

1. Packed with practical recipes taking you from
the basics to extending Node with your own
modules

2. Create your own web server to see Node’s
features in action

3. Work with JSON, XML, web sockets, and make
the most of asynchronous programming

Node Web Development
(Second Edition)
ISBN: 978-1-78216-330-5 Paperback: 197 pages

A Practical introduction to Node.js, an exciting
server-side JavaScript web development stack

1. Learn about server-side JavaScript with Node.js
and Node modules.

2. Website development both with and without
the Connect/Express web application
framework.

3. Developing both HTTP server and client
applications.

Please check www.PacktPub.com for information on our titles

Instant Node.js Starter
ISBN: 978-1-78216-556-9 Paperback: 48 pages

Program your scalable network applications and web
services with Node.js

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2. Learn how to use module patterns and Node
Packet Manager (NPM) in your applications

3. Discover callback patterns in NodeJS

4. Understand the use Node.js streams in your
applications

CoffeeScript Programming with
jQuery, Rails, and Node.js
ISBN: 978-1-84951-958-8 Paperback: 140 pages

Learn CoffeeScript programming with the three most
popular web technologies around

1. Learn CoffeeScript, a small and elegant
language that compiles to JavaScript and will
make your life as a web developer better

2. Explore the syntax of the language and see how
it improves and enhances JavaScript

3. Build three example applications in
CoffeeScript step by step

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: What is Express?
	What is Express?
	The story of Express

	Installing Express
	The stuff that makes up Express
	The application object
	The request object
	The response object

	Concepts used in Express
	Asynchronous JavaScript
	Node modules
	Express apps are Node modules
	Middlewares
	Request flow
	Node HTTP/HTTPS API

	Summary

	Chapter 2: Your First Express App
	Your first Express app
	The Express manifest file
	A very basic Express app
	Starting and stopping the app
	Analyzing the output

	Express app with views
	A public directory for the app

	Auto-generating an Express app
	Empowering Express with middlewares
	Empowering Express with Node modules
	Logging requests to the App
	Using a configuration file
	Setting and getting application options
	Express in different environments
	Summary

	Chapter 3: Understanding Express Routes
	What are Routes?
	A quick introduction to HTTP verbs

	Revisiting the router middleware
	Defining routes for the app
	Route identifiers
	Order of route precedence

	How to handle routes
	How to organize routes
	Using Node modules
	Namespaced routing
	Resourceful routing
	Making a choice

	Summary

	Chapter 4: Response From the Server
	A primer on HTTP response
	HTTP status codes
	1xx
	2xx
	3xx
	4xx
	5xx

	HTTP response headers
	Media types

	HTTP response in Express
	Setting the HTTP status code
	Setting HTTP headers
	Sending data
	Plain text
	HTML
	JSON
	JSONP
	Serving static files
	Serving files programmatically
	Serving error pages
	Content negotiation
	Redirecting a request

	Summary

	Chapter 5: The Jade Templating Language
	What is Jade?
	Generating HTML tags
	Hierarchy of HTML elements
	Assigning IDs
	Assigning classes
	Specifying HTML attributes

	Creating text content
	Filters
	Declaring the document's Doctype
	Programmability in Jade
	Variables
	Interpolation
	Control structures
	JavaScript constructs
	Jade constructs

	Modularization
	Includes
	Template inheritance
	Mixins

	Escaping
	Comments
	Summary

	Chapter 6: The Stylus CSS Preprocessor
	Introduction
	Enabling Stylus in Express
	Selectors
	Selector blocks
	Hierarchy

	Rules
	@import
	@media
	@font-face
	@keyframes
	@extend
	@css

	Programmability
	Variables
	Literals
	Lists
	Tuples

	Mixins
	Functions
	Comments
	Operators
	Conditionals
	if, else if, and else
	unless

	Built-in functions
	Summary

	Chapter 7: Forms, Cookies, and Sessions
	Using forms to submit data
	Handling GET submissions
	Reading form data
	Reading URL query parameters
	Handling multiple options

	Handling POST submissions
	Enabling POST data parsing
	Reading form data
	Handling text-only forms
	Handling file uploads
	More about file uploads

	Submission via simulated methods

	Data in named segments
	Reading data

	Using cookies to store data
	Creating cookies
	Reading cookies
	Updating cookies
	Session cookies
	Signed cookies
	Deleting cookies

	Using sessions to store data
	Cookie-based sessions
	Session store-based sessions
	MemoryStore
	RedisStore
	MongoStore

	Session variables
	Setting session variables
	Reading session variables
	Updating session variables
	Deleting session variables

	Deleting a session
	Deleting a cookie-based session
	Deleting a session store-based session

	Summary

	Chapter 8: Express in Production
	What the is production environment?
	What changes in production mode?
	Simulating production environment

	Benchmarking the app
	Creating an app cluster
	Handling critical events
	Closing the server
	Handling uncaught errors
	Using try-catch to catch uncaught errors
	Using domains to handle uncaught errors
	What to do in case of uncaught errors – to terminate the process or not to terminate?

	Handling process termination

	Ensuring uptime
	Forever
	Upstart

	Using a reverse proxy
	The trust proxy option

	Summary

