
�������������������

����������������������������
������������������������

��������������

Jason Brownlee

XGBoost With Python

Gradient Boosted Trees With XGBoost and scikit-learn

i

XGBoost With Python

© Copyright 2016 Jason Brownlee. All Rights Reserved.

Edition: v1.3

Contents

I Introduction 1

1 Welcome 2
1.1 Book Organization . 2
1.2 Requirements For This Book . 4
1.3 Your Outcomes From Reading This Book . 4
1.4 What This Book is Not . 5
1.5 Summary . 5

II XGBoost Basics 7

2 A Gentle Introduction to Gradient Boosting 8
2.1 Origin of Boosting . 8
2.2 AdaBoost the First Boosting Algorithm . 9
2.3 Generalization of AdaBoost as Gradient Boosting 9
2.4 How Gradient Boosting Works . 10
2.5 Improvements to Basic Gradient Boosting . 11
2.6 Summary . 13

3 A Gentle Introduction to XGBoost 14
3.1 What is XGBoost? . 14
3.2 XGBoost Features . 15
3.3 Why Use XGBoost? . 16
3.4 What Algorithm Does XGBoost Use? . 17
3.5 Summary . 17

4 Develop Your First XGBoost Model in Python with scikit-learn 18
4.1 Install XGBoost for Use in Python . 18
4.2 Problem Description: Predict Onset of Diabetes 19
4.3 Load and Prepare Data . 19
4.4 Train the XGBoost Model . 20
4.5 Make Predictions with XGBoost Model . 21
4.6 Tie it All Together . 21
4.7 Summary . 22

ii

iii

5 Data Preparation for Gradient Boosting 23
5.1 Label Encode String Class Values . 23
5.2 One Hot Encode Categorical Data . 25
5.3 Support for Missing Data . 28
5.4 Summary . 31

6 How to Evaluate XGBoost Models 33
6.1 Evaluate Models With Train and Test Sets . 33
6.2 Evaluate Models With k-Fold Cross Validation 34
6.3 What Techniques to Use When . 36
6.4 Summary . 36

7 Visualize Individual Trees Within A Model 37
7.1 Plot a Single XGBoost Decision Tree . 37
7.2 Summary . 39

III XGBoost Advanced 40

8 Save and Load Trained XGBoost Models 41
8.1 Serialize Models with Pickle . 41
8.2 Serialize Models with Joblib . 42
8.3 Summary . 44

9 Feature Importance With XGBoost and Feature Selection 45
9.1 Feature Importance in Gradient Boosting . 45
9.2 Manually Plot Feature Importance . 46
9.3 Using theBuilt-in XGBoost Feature Importance Plot 47
9.4 Feature Selection with XGBoost Feature Importance Scores 49
9.5 Summary . 50

10 Monitor Training Performance and Early Stopping 51
10.1 Early Stopping to Avoid Overfitting . 51
10.2 Monitoring Training Performance With XGBoost 51
10.3 Evaluate XGBoost Models With Learning Curves 53
10.4 Early Stopping With XGBoost . 56
10.5 Summary . 58

11 Tune Multithreading Support for XGBoost 59
11.1 Problem Description: Otto Dataset . 59
11.2 Impact of the Number of Threads . 60
11.3 Parallelism When Cross Validating XGBoost Models 63
11.4 Summary . 65

12 Train XGBoost Models in the Cloud with Amazon Web Services 66
12.1 Tutorial Overview . 66
12.2 Setup Your AWS Account (if needed) . 67
12.3 Launch Your Server Instance . 67

iv

12.4 Login and Configure . 70
12.5 Train an XGBoost Model . 73
12.6 Close Your AWS Instance . 74
12.7 Summary . 75

IV XGBoost Tuning 76

13 How to Configure the Gradient Boosting Algorithm 77
13.1 Configuration Advice from Primary Sources . 77
13.2 Configuration Advice From R . 79
13.3 Configuration Advice From scikit-learn . 79
13.4 Configuration Advice From XGBoost . 80
13.5 Summary . 82

14 Tune the Number and Size of Decision Trees with XGBoost 83
14.1 Tune the Number of Decision Trees . 83
14.2 Tune the Size of Decision Trees . 86
14.3 Tune The Number and Size of Trees . 88
14.4 Summary . 91

15 Tune Learning Rate and Number of Trees with XGBoost 92
15.1 Slow Learning in Gradient Boosting with a Learning Rate 92
15.2 Tuning Learning Rate . 93
15.3 Tuning Learning Rate and the Number of Trees 95
15.4 Summary . 98

16 Tuning Stochastic Gradient Boosting with XGBoost 99
16.1 Stochastic Gradient Boosting . 99
16.2 Tutorial Overview . 100
16.3 Tuning Row Subsampling . 100
16.4 Tuning Column Subsampling By Tree . 102
16.5 Tuning Column Subsampling By Split . 104
16.6 Summary . 106

V Conclusions 107

17 How Far You Have Come 108

18 Getting More Help 109
18.1 Gradient Boosting Papers . 109
18.2 Gradient Boosting in Textbooks . 109
18.3 Python Machine Learning . 110
18.4 XGBoost Library . 110

Part I

Introduction

1

Chapter 1

Welcome

Welcome to XGBoost With Python. This book is your guide to fast gradient boosting in Python.
You will discover the XGBoost Python library for gradient boosting and how to use it to develop
and evaluate gradient boosting models. In this book you will discover the techniques, recipes
and skills with XGBoost that you can then bring to your own machine learning projects.

Gradient Boosting does have a some fascinating math under the covers, but you do not need
to know it to be able to pick it up as a tool and wield it on important projects to deliver real
value. From the applied perspective, gradient boosting is quite a shallow field and a motivated
developer can quickly pick it up and start making very real and impactful contributions. This is
my goal for you and this book is your ticket to that outcome.

1.1 Book Organization

The tutorials in this book are divided into three parts:

� XGBoost Basics.

� XGBoost Advanced.

� XGBoost Tuning.

In addition to these three parts, the Conclusions part at the end of the book includes a list
of resources for getting help and diving deeper into the field (Chapter 18).

1.1.1 XGBoost Basics

This part provides a gentle introduction to the XGBoost library for use with the scikit-learn
library in Python. After completing the tutorials in this section, you will know your way around
basic XGBoost models. Specifically, this part covers:

� Chapter 2: A gentle introduction to the gradient boosting algorithm.

� Chapter 3: A gentle introduction to the XGBoost library and why it is so popular.

� Chapter 4: How to develop your first XGBoost model from scratch.

2

1.1. Book Organization 3

� Chapter 5: How to prepare data for use with XGBoost.

� Chapter 6: How to evaluate the performance of trained XGBoost models.

� Chapter 7: How to visualize boosted trees within an XGBoost model.

1.1.2 XGBoost Advanced

This part provides an introduction to some of the more advanced features and uses of the
XGBoost library. After completing the tutorials in this section you will know how to implement
some of the more advanced capabilities of gradient boosting and scale up your models for bigger
hardware platforms. Specifically, this part covers:

� Chapter 8: How to serialize trained models to file and later load and use them to make
predictions.

� Chapter 9: How to calculate importance scores and use them for feature selection.

� Chapter 10: How to monitor the performance of a model during training and set
conditions for early stopping.

� Chapter 11: How to harness the parallel features of the XGBoost library for training
models faster.

� Chapter 12: How to rapidly speed up model training of XGBoost models using Amazon
cloud infrastructure.

1.1.3 XGBoost Tuning

This part provides tutorials detailing how to configure and tune XGBoost hyperparameters.
After completing the tutorials in this part, you will know how to design parameter tuning
experiments to get the most from your models. Specifically, this part covers:

� Chapter 13: An introduction to XGBoost parameters and heuristics for good parameter
values.

� Chapter 14: How to tune the number and size of trees in a model.

� Chapter 15: How to tune the learning rate and number of trees in a model.

� Chapter 16: How to tune the sampling rates in stochastic variation of the algorithm.

1.1.4 Python Recipes

Building up a catalog of code recipes is an important part of your XGBoost journey. Each time
you learn about a new technique or new problem type, you should write up a short code recipe
that demonstrates it. This will give you a starting point to use on your next machine learning
project.

As part of this book you will receive a catalog of XGBoost recipes. This includes recipes for
all of the tutorials presented in this book. You are strongly encouraged to add to and build
upon this catalog of recipes as you expand your use and knowledge of XGBoost in Python.

1.2. Requirements For This Book 4

1.2 Requirements For This Book

1.2.1 Python and SciPy

You do not need to be a Python expert, but it would be helpful if you knew how to install and
setup Python and SciPy. The tutorials assume that you have a Python and SciPy environment
available. This may be on your workstation or laptop, it may be in a VM or a Docker instance
that you run, or it may be a server instance that you can configure in the cloud as taught in
Part III of this book.

Technical Requirements: The technical requirements for the code and tutorials in this
book are as follows:

� Python version 2 or 3 installed. This book was developed using Python version 2.7.11.

� SciPy and NumPy installed. This book was developed with SciPy version 0.17.0 and
NumPy version 1.11.0.

� Matplotlib installed. This book was developed with Matplotlib version 1.5.1.

� Pandas installed. This book was developed with Pandas version 0.18.0.

� scikit-learn installed. This book was developed with scikit-learn 0.17.1.

You do not need to match the version exactly, but if you are having problems running a
specific code example, please ensure that you update to the same or higher version as the library
specified.

1.2.2 Machine Learning

You do not need to be a machine learning expert, but it would be helpful if you knew how to
navigate a small machine learning problem using scikit-learn. Basic concepts like cross validation
and one hot encoding used in tutorials are described, but only briefly. There are resources to
go into these topics in more detail at the end of the book, but some knowledge of these areas
might make things easier for you.

1.2.3 Gradient Boosting

You do not need to know the math and theory of gradient boosting algorithms, but it would be
helpful to have some basic idea of the field. You will get a crash course in gradient boosting
terminology and models, but we will not go into much technical detail. Again, there will be
resources for more information at the end of the book, but it might be helpful if you can start
with some idea about the technical details of the technique.

1.3 Your Outcomes From Reading This Book

This book will lead you from being a developer who is interested in XGBoost with Python to
a developer who has the resources and capabilities to work through a new dataset end-to-end
using Python and develop accurate gradient boosted models. Specifically, you will know:

1.4. What This Book is Not 5

� How to prepare data in scikit-learn for gradient boosting.

� How to evaluate and visualize gradient boosted models.

� How to save and load trained gradient boosted models.

� How to visualize, evaluate the importance of input variables.

� How to configure and tune hyperparameters of gradient boosted models.

There are a few ways you can read this book. You can dip into the tutorials as your need
or interests motivate you. Alternatively, you can work through the book end-to-end and take
advantage of how the tutorials build in complexity and range. I recommend the latter approach.

To get the very most from this book, I recommend taking each tutorials and build upon
them. Attempt to improve the results, apply the method to a similar but different problem, and
so on. Write up what you tried or learned and share it on your blog, social media or send me an
email at jason@MachineLearningMastery.com. This book is really what you make of it and
by putting in a little extra, you can quickly become a true force in applied gradient boosting.

1.4 What This Book is Not

This book solves a specific problem of getting you, a developer, up to speed applying XGBoost
to your own machine learning projects in Python. As such, this book was not intended to be
everything to everyone and it is very important to calibrate your expectations. Specifically:

� This is not a gradient boosting textbook. We will not cover the basic theory of
how algorithms and related techniques work. There will be no equations. You are also
expected to have some familiarity with machine learning basics, or be able to dive deeper
into the theory yourself, if needed.

� This is not a Python programming book. We will not be spending a lot of time on
Python syntax and programming (e.g. basic programming tasks in Python). You are
expected to already be familiar with Python or a developer who can pick up a new C-like
language relatively quickly.

You can still get a lot out of this book if you are weak in one or two of these areas, but you
may struggle picking up the language or require some more explanation of the techniques. If
this is the case, see the Getting More Help chapter at the end of the book and seek out a good
companion reference text.

1.5 Summary

It is a special time right now. The tools for fast gradient boosting have never been so good and
XGBoost is the top of the stack. The pace of change with applied machine learning feels like it
has never been so fast, spurred by the amazing results that the methods are showing in such a
broad range of fields. This is the start of your journey into using XGBoost and I am excited for
you. Take your time, have fun and I’m so excited to see where you can take this amazing new
technology.

1.5. Summary 6

Next in Part II, you will get a gentle introduction to the gradient boosting algorithm as
described by primary sources. This will lay the foundation for understanding and using the
XGBoost library in Python.

Part II

XGBoost Basics

7

Chapter 2

A Gentle Introduction to Gradient
Boosting

Gradient boosting is one of the most powerful techniques for building predictive models. In this
tutorial you will discover the gradient boosting machine learning algorithm and get a gentle
introduction into where it came from and how it works. After reading this tutorial, you will
know:

� The origin of boosting from learning theory and AdaBoost.

� How gradient boosting works including the loss function, weak learners and the additive
model.

� How to improve performance over the base algorithm with various regularization schemes.

Let’s get started.

2.1 Origin of Boosting

The idea of boosting came out of the idea of whether a weak learner can be modified to become
better. Michael Kearns articulated the goal as the Hypothesis Boosting Problem stating the
goal from a practical standpoint as:

... an efficient algorithm for converting relatively poor hypotheses into very good
hypotheses

– Thoughts on Hypothesis Boosting, 1988.

A weak hypothesis or weak learner is defined as one whose performance is at least slightly
better than random chance. These ideas built upon Leslie Valiant’s work on distribution free or
Probability Approximately Correct (PAC) learning, a framework for investigating the complexity
of machine learning problems. Hypothesis boosting was the idea of filtering observations, leaving
those observations that the weak learner can handle and focusing on developing new weak learns
to handle the remaining difficult observations.

8

2.2. AdaBoost the First Boosting Algorithm 9

The idea is to used the weak learning method several times to get a succession
of hypotheses, each one refocused on the examples that the previous ones found
difficult and misclassified. [...] Note, however, it is not obvious at all how this can
be done

– Probably Approximately Correct, page 152, 2013.

2.2 AdaBoost the First Boosting Algorithm

The first realization of boosting that saw great success in application was Adaptive Boosting or
AdaBoost for short.

Boosting refers to this general problem of producing a very accurate prediction
rule by combining rough and moderately inaccurate rules-of-thumb.

– A decision-theoretic generalization of on-line learning and an application to boosting, 1995.

The weak learners in AdaBoost are decision trees with a single split, called decision stumps
for their shortness. AdaBoost works by weighting the observations, putting more weight on
difficult to classify instances and less on those already handled well. New weak learners are
added sequentially that focus their training on the more difficult patterns.

This means that samples that are difficult to classify receive increasing larger
weights until the algorithm identifies a model that correctly classifies these samples

– Applied Predictive Modeling, 2013.

Predictions are made by majority vote of the weak learners’ predictions, weighted by their
individual accuracy. The most successful form of the AdaBoost algorithm was for binary
classification problems and was called AdaBoost.M1.

2.3 Generalization of AdaBoost as Gradient Boosting

AdaBoost and related algorithms were recast in a statistical framework first by Breiman calling
them ARCing algorithms.

Arcing is an acronym for Adaptive Reweighting and Combining. Each step in an
arcing algorithm consists of a weighted minimization followed by a recomputation of
[the classifiers] and [weighted input].

– Prediction Games and Arching Algorithms, 1997.

This framework was further developed by Friedman and called Gradient Boosting Machines.
Later called just gradient boosting or gradient tree boosting. The statistical framework cast
boosting as a numerical optimization problem where the objective is to minimize the loss of the
model by adding weak learners using a gradient descent like procedure. This class of algorithms
were described as a stage-wise additive model. This is because one new weak learner is added
at a time and existing weak learners in the model are frozen and left unchanged.

2.4. How Gradient Boosting Works 10

Note that this stagewise strategy is different from stepwise approaches that
readjust previously entered terms when new ones are added.

– Greedy Function Approximation: A Gradient Boosting Machine, 1999.

The generalization allowed arbitrary differentiable loss functions to be used, expanding the
technique beyond binary classification problems to support regression, multiclass classification
and more.

2.4 How Gradient Boosting Works

Gradient boosting involves three elements:

1. A loss function to be optimized.

2. A weak learner to make predictions.

3. An additive model to add weak learners to minimize the loss function.

2.4.1 Loss Function

The loss function used depends on the type of problem being solved. It must be differentiable,
but many standard loss functions are supported and you can define your own. For example,
regression may use a squared error and classification may use logarithmic loss. A benefit of the
gradient boosting framework is that a new boosting algorithm does not have to be derived for
each loss function that may want to be used, instead, it is a generic enough framework that any
differentiable loss function can be used.

2.4.2 Weak Learner

Decision trees are used as the weak learner in gradient boosting. Specifically regression trees
are used that output real values for splits and whose output can be added together, allowing
subsequent models outputs to be added and correct the residuals in the predictions. Trees are
constructed in a greedy manner, choosing the best split points based on purity scores like Gini
or to minimize the loss.

Initially, such as in the case of AdaBoost, very short decision trees were used that only had
a single split, called a decision stump. Larger trees can be used generally with 4-to-8 levels. It is
common to constrain the weak learners in specific ways, such as a maximum number of layers,
nodes, splits or leaf nodes. This is to ensure that the learners remain weak, but can still be
constructed in a greedy manner.

2.4.3 Additive Model

Trees are added one at a time, and existing trees in the model are not changed. A gradient
descent procedure is used to minimize the loss when adding trees. Traditionally, gradient descent
is used to minimize a set of parameters, such as the coefficients in a regression equation or

2.5. Improvements to Basic Gradient Boosting 11

weights in a neural network. After calculating error or loss, the weights are updated to minimize
that error.

Instead of parameters, we have weak learner sub-models or more specifically decision trees.
After calculating the loss, to perform the gradient descent procedure, we must add a tree to
the model that reduces the loss (i.e. follow the gradient). We do this by parameterizing the
tree, then modify the parameters of the tree and move in the right direction by (reducing the
residual loss. Generally this approach is called functional gradient descent or gradient descent
with functions.

One way to produce a weighted combination of classifiers which optimizes [the
cost] is by gradient descent in function space

– Boosting Algorithms as Gradient Descent in Function Space, 1999.

The output for the new tree is then added to the output of the existing sequence of trees in
an effort to correct or improve the final output of the model. A fixed number of trees are added
or training stops once loss reaches an acceptable level or no longer improves on an external
validation dataset.

2.5 Improvements to Basic Gradient Boosting

Gradient boosting is a greedy algorithm and can overfit a training dataset quickly. It can benefit
from regularization methods that penalize various parts of the algorithm and generally improve
the performance of the algorithm by reducing overfitting. In this this section we will look at 4
enhancements to basic gradient boosting:

1. Tree Constraints.

2. Shrinkage.

3. Random Sampling.

4. Penalized Learning.

2.5.1 Tree Constraints

It is important that the weak learners have skill but remain weak. There are a number of ways
that the trees can be constrained. A good general heuristic is that the more constrained tree
creation is, the more trees you will need in the model, and the reverse, where less constrained
individual trees, the fewer trees that will be required. Below are some constraints that can be
imposed on the construction of decision trees:

� Number of trees, generally adding more trees to the model can be very slow to overfit.
The advice is to keep adding trees until no further improvement is observed.

� Tree depth, deeper trees are more complex trees and shorter trees are preferred. Generally,
better results are seen with 4-8 levels.

2.5. Improvements to Basic Gradient Boosting 12

� Number of nodes or number of leaves, like depth, this can constrain the size of the tree,
but is not constrained to a symmetrical structure if other constraints are used.

� Number of observations per split imposes a minimum constraint on the amount of training
data at a training node before a split can be considered

� Minimum improvement to loss is a constraint on the improvement of any split added to a
tree.

2.5.2 Weighted Updates

The predictions of each tree are added together sequentially. The contribution of each tree to
this sum can be weighted to slow down the learning by the algorithm. This weighting is called
a shrinkage or a learning rate.

Each update is simply scaled by the value of the “learning rate parameter v”

– Greedy Function Approximation: A Gradient Boosting Machine, 1999.

The effect is that learning is slowed down, in turn require more trees to be added to the
model, in turn taking longer to train, providing a configuration trade-off between the number of
trees and learning rate.

Decreasing the value of v [the learning rate] increases the best value for M [the
number of trees].

– Greedy Function Approximation: A Gradient Boosting Machine, 1999.

It is common to have small values in the range of 0.1 to 0.3, as well as values less than 0.1.

Similar to a learning rate in stochastic optimization, shrinkage reduces the
influence of each individual tree and leaves space for future trees to improve the
model.

– Stochastic Gradient Boosting, 1999.

2.5.3 Stochastic Gradient Boosting

A big insight into bagging ensembles and random forest was allowing trees to be greedily created
from subsamples of the training dataset. This same benefit can be used to reduce the correlation
between the trees in the sequence in gradient boosting models. This variation of boosting is
called stochastic gradient boosting.

at each iteration a subsample of the training data is drawn at random (without
replacement) from the full training dataset. The randomly selected subsample is
then used, instead of the full sample, to fit the base learner.

– Stochastic Gradient Boosting, 1999.

2.6. Summary 13

A few variants of stochastic boosting that can be used:

� Subsample rows before creating each tree.

� Subsample columns before creating each tree

� Subsample columns before considering each split.

Generally, aggressive sub-sampling such as selecting only 50% of the data has shown to be
beneficial.

According to user feedback, using column sub-sampling prevents over-fitting even
more so than the traditional row sub-sampling

– XGBoost: A Scalable Tree Boosting System, 2016.

2.5.4 Penalized Gradient Boosting

Additional constraints can be imposed on the parameterized trees in addition to their structure.
Classical decision trees like CART are not used as weak learners, instead a modified form called
a regression tree is used that has numeric values in the leaf nodes (also called terminal nodes).
The values in the leaves of the trees can be called weights in some literature. As such, the leaf
weight values of the trees can be regularized using popular regularization functions, such as:

� L1 regularization of weights.

� L2 regularization of weights.

The additional regularization term helps to smooth the final learnt weights to
avoid over-fitting. Intuitively, the regularized objective will tend to select a model
employing simple and predictive functions.

– XGBoost: A Scalable Tree Boosting System, 2016.

2.6 Summary

In this tutorial you discovered the gradient boosting algorithm for predictive modeling in machine
learning. You now have an understanding of the gradient boosting algorithm in general as well
as common variations of the technique. Specifically you learned:

� The history of boosting in learning theory and AdaBoost.

� How the gradient boosting algorithm works with a loss function, weak learners and an
additive model.

� How to improve the performance of gradient boosting with regularization.

In the next section you will start using the XGBoost library, beginning with a gentle
introduction to the XGBoost library itself.

Chapter 3

A Gentle Introduction to XGBoost

XGBoost is an algorithm that has recently been dominating applied machine learning and
Kaggle competitions for structured or tabular data. XGBoost is an implementation of gradient
boosted decision trees designed for speed and performance. In this tutorial you will discover
XGBoost and get a gentle introduction to what is, where it came from and how you can learn
more. After reading this tutorial you will know:

� What XGBoost is and the goals of the project.

� Why XGBoost must be apart of your machine learning toolkit.

� Where you can learn more to start using XGBoost on your next machine learning project.

Let’s get started.

3.1 What is XGBoost?

XGBoost stands for eXtreme Gradient Boosting.

The name xgboost, though, actually refers to the engineering goal to push the
limit of computations resources for boosted tree algorithms. Which is the reason
why many people use xgboost.

– Tianqi Chen, on Quora.com.

It is an implementation of gradient boosting machines created by Tianqi Chen, now with
contributions from many developers. It belongs to a broader collection of tools under the
umbrella of the Distributed Machine Learning Community or DMLC1 who are also the creators
of the popular mxnet deep learning library. Tianqi Chen provides a brief and interesting back
story on the creation of XGBoost in the tutorial Story and Lessons Behind the Evolution of
XGBoost2. XGBoost is a software library that you can download and install on your machine,
then access from a variety of interfaces. Specifically, XGBoost supports the following main
interfaces:

1http://dmlc.ml
2http://goo.gl/QiIq99

14

http://dmlc.ml
http://goo.gl/QiIq99

3.2. XGBoost Features 15

� Command Line Interface (CLI).

� C++ (the language in which the library is written).

� Python interface as well as a model in scikit-learn.

� R interface as well as a model in the caret package.

� Julia support.

� Java and JVM languages like Scala and platforms like Hadoop.

3.2 XGBoost Features

The library is laser focused on computational speed and model performance, as such there are
few frills. Nevertheless, it does offer a number of advanced features.

3.2.1 Model Features

The implementation of the model supports the features of the scikit-learn and R implementations,
with new additions like regularization. Three main forms of gradient boosting are supported:

� Gradient Boosting algorithm also called gradient boosting machine including the learning
rate.

� Stochastic Gradient Boosting with sub-sampling at the row, column and column per split
levels.

� Regularized Gradient Boosting with both L1 and L2 regularization.

3.2.2 System Features

The library provides a system for use in a range of computing environments, not least:

� Parallelization of tree construction using all of your CPU cores during training.

� Distributed Computing for training very large models using a cluster of machines.

� Out-of-Core Computing for very large datasets that don’t fit into memory.

� Cache Optimization of data structures and algorithm to make best use of hardware.

3.2.3 Algorithm Features

The implementation of the algorithm was engineered for efficiency of compute time and memory
resources. A design goal was to make the best use of available resources to train the model.
Some key algorithm implementation features include:

� Sparse Aware implementation with automatic handling of missing data values.

3.3. Why Use XGBoost? 16

� Block Structure to support the parallelization of tree construction.

� Continued Training so that you can further boost an already fitted model on new data.

XGBoost is free open source software available for use under the permissive Apache-2 license.

3.3 Why Use XGBoost?

The two reasons to use XGBoost are also the two goals of the project:

1. Execution Speed.

2. Model Performance.

3.3.1 XGBoost Execution Speed

Generally, XGBoost is fast. Really fast when compared to other implementations of gradient
boosting. Szilard Pafka performed some objective benchmarks comparing the performance
of XGBoost to other implementations of gradient boosting and bagged decision trees. He
wrote up his results in May 2015 in the blog tutorial titled Benchmarking Random Forest
Implementations3.

He also provides all the code on GitHub4 and a more extensive report of results with hard
numbers. His results showed that XGBoost was almost always faster than the other benchmarked
implementations from R, Python Spark and H2O. From his experiment, he commented:

I also tried xgboost, a popular library for boosting which is capable to build
random forests as well. It is fast, memory efficient and of high accuracy

– Benchmarking Random Forest Implementations, Szilard Pafka.

3.3.2 XGBoost Model Performance

XGBoost dominates structured or tabular datasets on classification and regression predictive
modeling problems. The evidence is that it is the go-to algorithm for competition winners
on the Kaggle competitive data science platform. For example, there is an incomplete list of
first, second and third place competition winners that used titled: XGBoost: Machine Learning
Challenge Winning Solutions5. To make this point more tangible, below are some insightful
quotes from Kaggle competition winners:

As the winner of an increasing amount of Kaggle competitions, XGBoost showed
us again to be a great all-round algorithm worth having in your toolbox.

– Dato Winners’ Interview, Mad Professors6.

3http://datascience.la/benchmarking-random-forest-implementations/
4https://github.com/szilard/benchm-ml
5https://github.com/dmlc/xgboost/tree/master/demo
6http://goo.gl/AHkmWx

http://datascience.la/benchmarking-random-forest-implementations/
https://github.com/szilard/benchm-ml
https://github.com/dmlc/xgboost/tree/master/demo
http://goo.gl/AHkmWx

3.4. What Algorithm Does XGBoost Use? 17

When in doubt, use xgboost.

– Avito Winner’s Interview, Owen Zhang7.

I love single models that do well, and my best single model was an XGBoost
that could get the 10th place by itself.

– Caterpillar Winners’ Interview 8.

I only used XGBoost.

– Liberty Mutual Property Inspection Winner’s Interview, Qingchen Wang9.

The only supervised learning method I used was gradient boosting, as imple-
mented in the excellent xgboost package.

– Recruit Coupon Purchase Winner’s Interview, Halla Yang10.

3.4 What Algorithm Does XGBoost Use?

The XGBoost library implements the gradient boosting decision tree algorithm. This algorithm
goes by lots of different names such as gradient boosting, multiple additive regression trees,
stochastic gradient boosting or gradient boosting machines. Boosting is an ensemble technique
where new models are added to correct the errors made by existing models. Models are added
sequentially until no further improvements can be made. A popular example is the AdaBoost
algorithm that weights data points that are hard to predict.

Gradient boosting is an approach where new models are created that predict the residuals or
errors of prior models and then added together to make the final prediction. It is called gradient
boosting because it uses a gradient descent algorithm to minimize the loss when adding new
models. This approach supports both regression and classification predictive modeling problems.

3.5 Summary

In this tutorial you discovered the XGBoost including why it is so popular in applied machine
learning. You learned:

� That XGBoost is a library for developing fast and high performance gradient boosting
tree models.

� That XGBoost is achieving the best performance on a range of difficult machine learning
tasks.

� That you can use this library from the command line, Python and R and how to get
started.

In the next tutorial you will develop your first XGBoost model from scratch.

7http://goo.gl/sGyGtu
8http://goo.gl/Sku8vw
9http://goo.gl/0LTOBl

10http://goo.gl/wTUH7y

http://goo.gl/sGyGtu
http://goo.gl/Sku8vw
http://goo.gl/0LTOBl
http://goo.gl/wTUH7y

Chapter 4

Develop Your First XGBoost Model in
Python with scikit-learn

XGBoost is an implementation of gradient boosted decision trees designed for speed and
performance that is dominative competitive machine learning. In this tutorial you will discover
how you can install and create your first XGBoost model in Python. After reading this tutorial
you will know:

� How to install XGBoost on your system for use in Python.

� How to prepare data and train your first XGBoost model.

� How to make predictions using your XGBoost model.

Let’s get started.

4.1 Install XGBoost for Use in Python

Assuming you have a working SciPy environment, XGBoost can be installed easily using pip.
For example:

sudo pip install xgboost

Listing 4.1: Install XGBoost using pip.

To update your installation of XGBoost you can type:

sudo pip install --upgrade xgboost

Listing 4.2: Update XGBoost using pip.

An alternate way to install XGBoost if you cannot use pip or you want to run the latest code
from GitHub requires that you make a clone of the XGBoost project and perform a manual
build and installation. For example to build XGBoost without multithreading on Mac OS X
(with GCC already installed via macports or homebrew), you can type:

git clone --recursive https://github.com/dmlc/xgboost

cd xgboost

cp make/minimum.mk ./config.mk

make -j4

18

4.2. Problem Description: Predict Onset of Diabetes 19

cd python-package

sudo python setup.py install

Listing 4.3: Build and Install XGBoost on Mac OS X.

Below are some resources to help you with the installation of the XGBoost library on your
platform.

� You can learn more about how to install XGBoost for different platforms on the XGBoost
Installation Guide.
http://xgboost.readthedocs.io/en/latest/build.html

� For up-to-date instructions for installing XGBoost for Python see the XGBoost Python
Package.
https://github.com/dmlc/xgboost/tree/master/python-package

XGBoost v0.6 is the latest at the time of writing and is used in this book.

4.2 Problem Description: Predict Onset of Diabetes

In this tutorial we are going to use the Pima Indians onset of diabetes dataset. This dataset is
comprised of 8 input variables that describe medical details of patients and one output variable
to indicate whether the patient will have an onset of diabetes within 5 years. You can learn
more about this dataset on the UCI Machine Learning Repository website1.

This is a good dataset for a first XGBoost model because all of the input variables are
numeric and the problem is a simple binary classification problem. It is not necessarily a good
problem for the XGBoost algorithm because it is a relatively small dataset and an easy problem
to model.

6,148,72,35,0,33.6,0.627,50,1

1,85,66,29,0,26.6,0.351,31,0

8,183,64,0,0,23.3,0.672,32,1

1,89,66,23,94,28.1,0.167,21,0

0,137,40,35,168,43.1,2.288,33,1

Listing 4.4: Sample of the Pima Indians dataset.

Download this dataset2 and place it into your current working directory with the file name
pima-indians-diabetes.csv.

4.3 Load and Prepare Data

In this section we will load the data from file and prepare it for use for training and evaluating
an XGBoost model. We will start off by importing the classes and functions we intend to use in
this tutorial.

1https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
2https://goo.gl/1I4ntS

http://xgboost.readthedocs.io/en/latest/build.html
https://github.com/dmlc/xgboost/tree/master/python-package
https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
https://goo.gl/1I4ntS

4.4. Train the XGBoost Model 20

from numpy import loadtxt

from xgboost import XGBClassifier

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

Listing 4.5: Import Classes and Functions.

Next, we can load the CSV file as a NumPy array using the NumPy function loadtext().

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

Listing 4.6: Load the Dataset.

We must separate the columns (attributes or features) of the dataset into input patterns (X)
and output patterns (Y). We can do this easily by specifying the column indices in the NumPy
array format.

split data into X and y

X = dataset[:,0:8]

Y = dataset[:,8]

Listing 4.7: Separate Dataset into X and Y.

Finally, we must split the X and Y data into a training and test dataset. The training
set will be used to prepare the XGBoost model and the test set will be used to make new
predictions, from which we can evaluate the performance of the model. For this we will use
the train test split() function from the scikit-learn library. We also specify a seed for the
random number generator so that we always get the same split of data each time this example
is executed.

split data into train and test sets

seed = 7

test_size = 0.33

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size,

random_state=seed)

Listing 4.8: Separate Dataset into Train and Test sets.

We are now ready to train our model.

4.4 Train the XGBoost Model

XGBoost provides a wrapper class to allow models to be treated like classifiers or regressors in
the scikit-learn framework. This means we can use the full scikit-learn library with XGBoost
models. The XGBoost model for classification is called XGBClassifier. We can create and
fit it to our training dataset. Models are fit using the scikit-learn API and the model.fit()

function. Parameters for training the model can be passed to the model in the constructor.
Here, we use the sensible defaults.

fit model no training data

model = XGBClassifier()

model.fit(X_train, y_train)

Listing 4.9: Fit the XGBoost model.

4.5. Make Predictions with XGBoost Model 21

You can see the parameters used in a trained model by printing the model, for example:

print(model)

Listing 4.10: Summarize the XGBoost model.

We are now ready to use the trained model to make predictions.

4.5 Make Predictions with XGBoost Model

We can make predictions using the fit model on the test dataset. To make predictions we use
the scikit-learn function model.predict(). By default, the predictions made by XGBoost are
probabilities. Because this is a binary classification problem, each prediction is the probability
of the input pattern belonging to the first class. We can easily convert them to binary class
values by rounding them to 0 or 1.

make predictions for test data

y_pred = model.predict(X_test)

predictions = [round(value) for value in y_pred]

Listing 4.11: Make Predictions wit the XGBoost model.

Now that we have used the fit model to make predictions on new data, we can evaluate the
performance of the predictions by comparing them to the expected values. For this we will use
the built in accuracy score() function in scikit-learn.

evaluate predictions

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

Listing 4.12: Evaluate Accuracy of XGBoost Predictions.

4.6 Tie it All Together

We can tie all of these pieces together, below is the full code listing.

First XGBoost model for Pima Indians dataset

from numpy import loadtxt

from xgboost import XGBClassifier

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

split data into X and y

X = dataset[:,0:8]

Y = dataset[:,8]

split data into train and test sets

seed = 7

test_size = 0.33

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size,

random_state=seed)

fit model no training data

model = XGBClassifier()

model.fit(X_train, y_train)

4.7. Summary 22

make predictions for test data

y_pred = model.predict(X_test)

predictions = [round(value) for value in y_pred]

evaluate predictions

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

Listing 4.13: Complete Working Example of Your First XGBoost Model.

Running this example produces the following output.

Accuracy: 77.95%

Listing 4.14: Sample Output From First XGBoost Model.

This is a good accuracy score on this problem3, which we would expect, given the capabilities
of the model and the modest complexity of the problem.

4.7 Summary

In this tutorial you discovered how to develop your first XGBoost model in Python. Specifically,
you learned:

� How to install XGBoost on your system ready for use with Python.

� How to prepare data and train your first XGBoost model on a standard machine learning
dataset.

� How to make predictions and evaluate the performance of a trained XGBoost model using
scikit-learn.

In the next tutorial, you will build upon these skills and learn how to best prepare your data
for modeling with XGBoost.

3http://www.is.umk.pl/projects/datasets.html#Diabetes

http://www.is.umk.pl/projects/datasets.html#Diabetes

Chapter 5

Data Preparation for Gradient
Boosting

XGBoost is a popular implementation of Gradient Boosting because of its speed and performance.
Internally, XGBoost models represent all problems as a regression predictive modeling problem
that only takes numerical values as input. If your data is in a different form, it must be prepared
into the expected format. In this tutorial you will discover how to prepare your data for using
with gradient boosting with the XGBoost library in Python. After reading this tutorial you will
know:

� How to encode string output variables for classification.

� How to prepare categorical input variables using one hot encoding.

� How to automatically handle missing data with XGBoost.

Let’s get started.

5.1 Label Encode String Class Values

The iris flowers classification problem is an example of a problem that has a string class value.
This is a prediction problem where given measurements of iris flowers in centimeters, the task is
to predict to which species a given flower belongs. Below is a sample of the raw dataset. You
can learn more about this dataset and download the raw data in CSV format from the UCI
Machine Learning Repository1.

5.1,3.5,1.4,0.2,Iris-setosa

4.9,3.0,1.4,0.2,Iris-setosa

4.7,3.2,1.3,0.2,Iris-setosa

4.6,3.1,1.5,0.2,Iris-setosa

5.0,3.6,1.4,0.2,Iris-setosa

Listing 5.1: Sample of the Iris dataset.

1http://archive.ics.uci.edu/ml/datasets/Iris

23

http://archive.ics.uci.edu/ml/datasets/Iris

5.1. Label Encode String Class Values 24

XGBoost cannot model this problem as-is as it requires that the output variables be numeric.
We can easily convert the string values to integer values using the LabelEncoder. The three
class values (Iris-setosa, Iris-versicolor, Iris-virginica) are mapped to the integer
values (0, 1, 2).

encode string class values as integers

label_encoder = LabelEncoder()

label_encoder = label_encoder.fit(Y)

label_encoded_y = label_encoder.transform(Y)

Listing 5.2: Example of LabelEncoder.

We save the label encoder as a separate object so that we can transform both the training
and later the test and validation datasets using the same encoding scheme. Below is a complete
example demonstrating how to load the iris dataset. Notice that Pandas is used to load the
data in order to handle the string class values.

multiclass classification

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn import cross_validation

from sklearn.metrics import accuracy_score

from sklearn.preprocessing import LabelEncoder

load data

data = read_csv('iris.csv', header=None)

dataset = data.values

split data into X and y

X = dataset[:,0:4]

Y = dataset[:,4]

encode string class values as integers

label_encoder = LabelEncoder()

label_encoder = label_encoder.fit(Y)

label_encoded_y = label_encoder.transform(Y)

seed = 7

test_size = 0.33

X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, label_encoded_y,

test_size=test_size, random_state=seed)

fit model no training data

model = XGBClassifier()

model.fit(X_train, y_train)

print(model)

make predictions for test data

y_pred = model.predict(X_test)

predictions = [round(value) for value in y_pred]

evaluate predictions

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

Listing 5.3: Example of Using LabelEncoder on the Iris Dataset.

Running the example produces the following output:

XGBClassifier(base_score=0.5, colsample_bylevel=1, colsample_bytree=1,

gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3,

min_child_weight=1, missing=None, n_estimators=100, nthread=-1,

objective='multi:softprob', reg_alpha=0, reg_lambda=1,

scale_pos_weight=1, seed=0, silent=True, subsample=1)

5.2. One Hot Encode Categorical Data 25

Accuracy: 92.00%

Listing 5.4: Sample output of LabelEncoder and XGBoost on the Iris Dataset.

Notice how the XGBoost model is configured to automatically model the multiclass classifi-
cation problem using the multi:softprob objective, a variation on the softmax loss function
to model class probabilities. This suggests that internally, that the output class is converted
into a one hot type encoding automatically.

5.2 One Hot Encode Categorical Data

Some datasets only contain categorical data, for example the breast cancer dataset. This dataset
describes the technical details of breast cancer biopsies and the prediction task is to predict
whether or not the patient has a recurrence of cancer, or not. Below is a sample of the raw
dataset. You can learn more about this dataset at the UCI Machine Learning Repository2 and
download it in CSV format from mldata.org3.

'40-49','premeno','15-19','0-2','yes','3','right','left_up','no','recurrence-events'

'50-59','ge40','15-19','0-2','no','1','right','central','no','no-recurrence-events'

'50-59','ge40','35-39','0-2','no','2','left','left_low','no','recurrence-events'

'40-49','premeno','35-39','0-2','yes','3','right','left_low','yes','no-recurrence-events'

'40-49','premeno','30-34','3-5','yes','2','left','right_up','no','recurrence-events'

Listing 5.5: Sample of the Breast Cancer Dataset.

We can see that all 9 input variables are categorical and described in string format. The
problem is a binary classification prediction problem and the output class values are also
described in string format. We can reuse the same approach from the previous section and
convert the string class values to integer values to model the prediction using the LabelEncoder.
For example:

encode string class values as integers

label_encoder = LabelEncoder()

label_encoder = label_encoder.fit(Y)

label_encoded_y = label_encoder.transform(Y)

Listing 5.6: Example of Using the LabelEncoder on the Output Variable.

We can use this same approach on each input feature in X, but this is only a starting point.

encode string input values as integers

features = []

for i in range(0, X.shape[1]):

label_encoder = LabelEncoder()

feature = label_encoder.fit_transform(X[:,i])

features.append(feature)

encoded_x = numpy.array(features)

encoded_x = encoded_x.reshape(X.shape[0], X.shape[1])

Listing 5.7: Example of Using the LabelEncoder on all Input Variables.

2http://archive.ics.uci.edu/ml/datasets/Breast+Cancer
3http://mldata.org/repository/data/viewslug/datasets-uci-breast-cancer/

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer
http://mldata.org/repository/data/viewslug/datasets-uci-breast-cancer/

5.2. One Hot Encode Categorical Data 26

XGBoost may assume that encoded integer values for each input variable have an ordinal
relationship. For example that left-up encoded as 0 and left-low encoded as 1 for the
breast-quad variable have a meaningful relationship as integers. In this case, this assumption
is untrue. Instead, we must map these integer values onto new binary variables, one new variable
for each categorical value. For example, the breast-quad variable has the values:

left-up

left-low

right-up

right-low

central

Listing 5.8: Sample Categorical Values for breast-quad Variable.

We can model this as 5 binary variables as follows:

left-up, left-low, right-up, right-low, central

1,0,0,0,0

0,1,0,0,0

0,0,1,0,0

0,0,0,1,0

0,0,0,0,1

Listing 5.9: One Hot Encoding of the breast-quad Variable.

This is called one hot encoding. We can one hot encode all of the categorical input variables
using the OneHotEncoder class in scikit-learn. We can one hot encode each feature after we
have label encoded it. First we must transform the feature array into a 2-dimensional NumPy
array where each integer value is a feature vector with a length 1.

feature = feature.reshape(X.shape[0], 1)

Listing 5.10: Example of Reshaping an Encoded Variable.

We can then create the OneHotEncoder and encode the feature array.

onehot_encoder = OneHotEncoder(sparse=False)

feature = onehot_encoder.fit_transform(feature)

Listing 5.11: Example of using the OneHotEncoder on a Variable.

Finally, we can build up the input dataset by concatenating the one hot encoded features,
one by one. We end up with an input vector comprised of 43 binary input variables.

encode string input values as integers

columns = []

for i in range(0, X.shape[1]):

label_encoder = LabelEncoder()

feature = label_encoder.fit_transform(X[:,i])

feature = feature.reshape(X.shape[0], 1)

onehot_encoder = OneHotEncoder(sparse=False)

feature = onehot_encoder.fit_transform(feature)

columns.append(feature)

collapse columns into array

encoded_x = numpy.column_stack(columns)

Listing 5.12: Example of using the OneHotEncoder on all Input Variables.

5.2. One Hot Encode Categorical Data 27

Ideally, we may experiment with not one hot encode some of input attributes as we could
encode them with an explicit ordinal relationship, for example the first column age with values
like 40-49 and 50-59. This is left as an exercise, if you are interested in extending this example.
Below is the complete example with label and one hot encoded input variables and label encoded
output variable.

binary classification, breast cancer dataset, label and one hot encoded

import numpy

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import OneHotEncoder

load data

data = read_csv('datasets-uci-breast-cancer.csv', header=None)

dataset = data.values

split data into X and y

X = dataset[:,0:9]

Y = dataset[:,9]

encode string input values as integers

columns = []

for i in range(0, X.shape[1]):

label_encoder = LabelEncoder()

feature = label_encoder.fit_transform(X[:,i])

feature = feature.reshape(X.shape[0], 1)

onehot_encoder = OneHotEncoder(sparse=False)

feature = onehot_encoder.fit_transform(feature)

columns.append(feature)

collapse columns into array

encoded_x = numpy.column_stack(columns)

print("X shape: : ", encoded_x.shape)

encode string class values as integers

label_encoder = LabelEncoder()

label_encoder = label_encoder.fit(Y)

label_encoded_y = label_encoder.transform(Y)

split data into train and test sets

seed = 7

test_size = 0.33

X_train, X_test, y_train, y_test = train_test_split(encoded_x, label_encoded_y,

test_size=test_size, random_state=seed)

fit model no training data

model = XGBClassifier()

model.fit(X_train, y_train)

print(model)

make predictions for test data

y_pred = model.predict(X_test)

predictions = [round(value) for value in y_pred]

evaluate predictions

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

Listing 5.13: Example of Using OneHotEncoder on the Breast Cancer Dataset.

Running this example we get the following output:

5.3. Support for Missing Data 28

('X shape: : ', (285, 43))

XGBClassifier(base_score=0.5, colsample_bylevel=1, colsample_bytree=1,

gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3,

min_child_weight=1, missing=None, n_estimators=100, nthread=-1,

objective='binary:logistic', reg_alpha=0, reg_lambda=1,

scale_pos_weight=1, seed=0, silent=True, subsample=1)

Accuracy: 71.58%

Listing 5.14: Sample output of OneHotEncoder and XGBoost on the Breast Cancer Dataset.

You may get a warning like the following, that you can ignore for now:

FutureWarning: numpy not_equal will not check object identity in the future

Listing 5.15: Example of a Warning You May See.

Again we can see that the XGBoost framework chose the binary:logistic objective
automatically, the right objective for this binary classification problem.

5.3 Support for Missing Data

XGBoost can automatically learn how to best handle missing data. In fact, XGBoost was
designed to work with sparse data, like the one hot encoded data from the previous section, and
missing data is handled the same way that sparse or zero values are handled, by minimizing the
loss function. For more information on the technical details for how missing values are handled
in XGBoost, see Section 3.4 Sparsity-aware Split Finding in the paper XGBoost: A Scalable
Tree Boosting System4.

The Horse Colic dataset is a good example to demonstrate this capability as it contains a
large percentage of missing data, approximately 30%. You can learn more about the Horse Colic
dataset and download the raw data file from the UCI Machine Learning repository5. The values
are separated by whitespace and we can easily load it using the Pandas function read csv().

dataframe = read_csv("horse-colic.csv", delim_whitespace=True, header=None)

Listing 5.16: Load the Horse Colic Dataset.

Once loaded, we can see that the missing data is marked with a question mark character (?).
We can change these missing values to the sparse value expected by XGBoost which is the value
zero (0).

set missing values to 0

X[X == '?'] = 0

Listing 5.17: Mark Missing Values with a Zero Value.

Because the missing data was marked as strings, those columns with missing data were all
loaded as string data types. We can now convert the entire set of input data to numerical values.

convert to numeric

X = X.astype('float32')

Listing 5.18: Convert Input Variables to Floats.

4https://arxiv.org/abs/1603.02754
5https://archive.ics.uci.edu/ml/datasets/Horse+Colic

https://arxiv.org/abs/1603.02754
https://archive.ics.uci.edu/ml/datasets/Horse+Colic

5.3. Support for Missing Data 29

Finally, this is a binary classification problem although the class values are marked with the
integers 1 and 2. We model binary classification problems in XGBoost as logistic 0 and 1 values.
We can easily convert the Y dataset to 0 and 1 integers using the LabelEncoder, as we did in
the iris flowers example.

encode Y class values as integers

label_encoder = LabelEncoder()

label_encoder = label_encoder.fit(Y)

label_encoded_y = label_encoder.transform(Y)

Listing 5.19: Apply LabelEncoder to Output Variable.

The full code listing is provided below for completeness.

binary classification, missing data

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.preprocessing import LabelEncoder

load data

dataframe = read_csv("horse-colic.csv", delim_whitespace=True, header=None)

dataset = dataframe.values

split data into X and y

X = dataset[:,0:27]

Y = dataset[:,27]

set missing values to 0

X[X == '?'] = 0

convert to numeric

X = X.astype('float32')

encode Y class values as integers

label_encoder = LabelEncoder()

label_encoder = label_encoder.fit(Y)

label_encoded_y = label_encoder.transform(Y)

split data into train and test sets

seed = 7

test_size = 0.33

X_train, X_test, y_train, y_test = train_test_split(X, label_encoded_y,

test_size=test_size, random_state=seed)

fit model no training data

model = XGBClassifier()

model.fit(X_train, y_train)

print(model)

make predictions for test data

y_pred = model.predict(X_test)

predictions = [round(value) for value in y_pred]

evaluate predictions

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

Listing 5.20: Example of Missing Data Handling on the Horse Colic Dataset.

Running this example produces the following output.

XGBClassifier(base_score=0.5, colsample_bylevel=1, colsample_bytree=1,

gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3,

min_child_weight=1, missing=None, n_estimators=100, nthread=-1,

5.3. Support for Missing Data 30

objective='binary:logistic', reg_alpha=0, reg_lambda=1,

scale_pos_weight=1, seed=0, silent=True, subsample=1)

Accuracy: 83.84%

Listing 5.21: Sample output of Missing Data Handling with XGBoost on the Horse Colic
Dataset.

We can tease out the effect of XGBoost’s automatic handling of missing values, by marking
the missing values with a non-zero value, such as 1.

X[X == '?'] = 1

Listing 5.22: Mark Missing Values with a One Value.

Re-running the example demonstrates a drop in accuracy for the model.

Accuracy: 79.80%

Listing 5.23: Model Accuracy With Missing Values Set to One.

We can also mark the values as a NaN and let the XGBoost framework treat the missing
values as a distinct value for the feature.

import numpy

...

X[X == '?'] = numpy.nan

Listing 5.24: Mark Missing Values with a NaN Value.

Re-running the example demonstrates a small lift in accuracy for the model.

Accuracy: 85.86%

Listing 5.25: Model Accuracy With Missing Values Set to NaN.

We can also impute the missing data with a specific value. It is common to use a mean or a
median for the column. We can easily impute the missing data using the scikit-learn Imputer

class.

impute missing values as the mean

imputer = Imputer()

imputed_x = imputer.fit_transform(X)

Listing 5.26: Example Usage of the Imputer Class.

Below is the full example with missing data imputed with the mean value from each column.

binary classification, missing data, impute with mean

import numpy

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import Imputer

load data

dataframe = read_csv("horse-colic.csv", delim_whitespace=True, header=None)

dataset = dataframe.values

split data into X and y

5.4. Summary 31

X = dataset[:,0:27]

Y = dataset[:,27]

set missing values to NaN

X[X == '?'] = numpy.nan

convert to numeric

X = X.astype('float32')

impute missing values as the mean

imputer = Imputer()

imputed_x = imputer.fit_transform(X)

encode Y class values as integers

label_encoder = LabelEncoder()

label_encoder = label_encoder.fit(Y)

label_encoded_y = label_encoder.transform(Y)

split data into train and test sets

seed = 7

test_size = 0.33

X_train, X_test, y_train, y_test = train_test_split(imputed_x, label_encoded_y,

test_size=test_size, random_state=seed)

fit model no training data

model = XGBClassifier()

model.fit(X_train, y_train)

print(model)

make predictions for test data

y_pred = model.predict(X_test)

predictions = [round(value) for value in y_pred]

evaluate predictions

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

Listing 5.27: Example of Missing Data Handling With Imputing on the Horse Colic Dataset.

Running this example we see results equivalent to the fixing the value to one (1). This
suggests that at least in this case we are better off marking the missing values with a distinct
value of NaN or zero (0) rather than a valid value (1) or an imputed value.

Accuracy: 79.80%

Listing 5.28: Model Accuracy With Imputed Missing Values.

It is a good lesson to try both approaches (automatic handling and imputing) on your data
when you have missing values.

5.4 Summary

In this tutorial you discovered how you can prepare your machine learning data for gradient
boosting with XGBoost in Python. Specifically, you learned:

� How to prepare string class values for binary classification using label encoding.

� How to prepare categorical input variables using a one hot encoding to model them as
binary variables.

� How XGBoost automatically handles missing data and how you can mark and impute
missing values.

5.4. Summary 32

In the next tutorial you will further build upon these capabilities and discover how you can
evaluate the performance of your XGBoost models.

Chapter 6

How to Evaluate XGBoost Models

The goal of developing a predictive model is to develop a model that is accurate on unseen data.
This can be achieved using statistical techniques where the training dataset is carefully used
to estimate the performance of the model on new and unseen data. In this tutorial you will
discover how you can evaluate the performance of your gradient boosting models with XGBoost
in Python. After completing this tutorial, you will know.

� How to evaluate the performance of your XGBoost models using train and test datasets.

� How to evaluate the performance of your XGBoost models using k-fold cross validation.

Let’s get started.

6.1 Evaluate Models With Train and Test Sets

The simplest method that we can use to evaluate the performance of a machine learning
algorithm is to use different training and testing datasets. We can take our original dataset
and split it into two parts. Train the algorithm on the first part, then make predictions on the
second part and evaluate the predictions against the expected results. The size of the split can
depend on the size and specifics of your dataset, although it is common to use 67% of the data
for training and the remaining 33% for testing.

This algorithm evaluation technique is fast. It is ideal for large datasets (millions of records)
where there is strong evidence that both splits of the data are representative of the underlying
problem. Because of the speed, it is useful to use this approach when the algorithm you are
investigating is slow to train. A downside of this technique is that it can have a high variance.
This means that differences in the training and test dataset can result in meaningful differences
in the estimate of model accuracy. We can split the dataset into a train and test set using
the train test split() function from the scikit-learn library. For example, we can split the
dataset into a 67% and 33% split for training and test sets as follows:

split data into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=7)

Listing 6.1: Example of Splitting a Dataset into Train and Test Sets.

The full code listing is provided below using the Pima Indians onset of diabetes dataset,
assumed to be in the current working directory (see Section 4.2). An XGBoost model with
default configuration is fit on the training dataset and evaluated on the test dataset.

33

6.2. Evaluate Models With k-Fold Cross Validation 34

train-test split evaluation of xgboost model

from numpy import loadtxt

from xgboost import XGBClassifier

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

split data into X and y

X = dataset[:,0:8]

Y = dataset[:,8]

split data into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=7)

fit model no training data

model = XGBClassifier()

model.fit(X_train, y_train)

make predictions for test data

y_pred = model.predict(X_test)

predictions = [round(value) for value in y_pred]

evaluate predictions

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

Listing 6.2: XGBoost Evaluated on a Train and Test Set.

Running this example summarizes the performance of the model on the test set.

Accuracy: 77.95%

Listing 6.3: Sample of the XGBoost model with Train and Test Sets.

6.2 Evaluate Models With k-Fold Cross Validation

Cross validation is an approach that you can use to estimate the performance of a machine
learning algorithm with less variance than a single train-test set split. It works by splitting
the dataset into k-parts (e.g. k = 5 or k = 10). Each split of the data is called a fold. The
algorithm is trained on k − 1 folds with one held back and tested on the held back fold. This is
repeated so that each fold of the dataset is given a chance to be the held back test set. After
running cross validation you end up with k-different performance scores that you can summarize
using a mean and a standard deviation.

The result is a more reliable estimate of the performance of the algorithm on new data given
your test data. It is more accurate because the algorithm is trained and evaluated multiple
times on different data. The choice of k must allow the size of each test partition to be large
enough to be a reasonable sample of the problem, whilst allowing enough repetitions of the
train-test evaluation of the algorithm to provide a fair estimate of the algorithms performance
on unseen data. For modest sized datasets in the thousands or tens of thousands of observations,
k values of 3, 5 and 10 are common.

We can use k-fold cross validation support provided in scikit-learn. First we must create the
KFold object specifying the number of folds and the size of the dataset. We can then use this
scheme with the specific dataset. The cross val score() function from scikit-learn allows us
to evaluate a model using the cross validation scheme and returns a list of the scores for each
model trained on each fold.

6.2. Evaluate Models With k-Fold Cross Validation 35

kfold = KFold(n=len(X), n_folds=10, random_state=7)

results = cross_val_score(model, X, Y, cv=kfold)

Listing 6.4: Example of Preparing k-Fold Cross Validation.

The full code listing for evaluating an XGBoost model with k-fold cross validation is provided
below for completeness.

k-fold cross validation evaluation of xgboost model

from numpy import loadtxt

from xgboost import XGBClassifier

from sklearn.cross_validation import KFold

from sklearn.cross_validation import cross_val_score

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

split data into X and y

X = dataset[:,0:8]

Y = dataset[:,8]

CV model

model = XGBClassifier()

kfold = KFold(n=len(X), n_folds=10, random_state=7)

results = cross_val_score(model, X, Y, cv=kfold)

print("Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))

Listing 6.5: XGBoost Evaluated With k-Fold Cross Validation.

Running this example summarizes the performance of the default model configuration on
the dataset including both the mean and standard deviation classification accuracy.

Accuracy: 76.69% (7.11%)

Listing 6.6: Output From Evaluating XGBoost with k-Fold Cross Validation.

If you have many classes for a classification type predictive modeling problem or the classes
are imbalanced (there are a lot more instances for one class than another), it can be a good idea to
create stratified folds when performing cross validation. This has the effect of enforcing the same
distribution of classes in each fold as in the whole training dataset when performing the cross
validation evaluation. The scikit-learn library provides this capability in the StratifiedKFold

class. Below is the same example modified to use stratified cross validation to evaluate an
XGBoost model.

stratified k-fold cross validation evaluation of xgboost model

from numpy import loadtxt

from xgboost import XGBClassifier

from sklearn.cross_validation import StratifiedKFold

from sklearn.cross_validation import cross_val_score

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

split data into X and y

X = dataset[:,0:8]

Y = dataset[:,8]

CV model

model = XGBClassifier()

kfold = StratifiedKFold(Y, n_folds=10, random_state=7)

results = cross_val_score(model, X, Y, cv=kfold)

print("Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))

6.3. What Techniques to Use When 36

Listing 6.7: XGBoost Evaluated With Stratified k-Fold Cross Validation.

Running this example produces the following output.

Accuracy: 76.95% (5.88%)

Listing 6.8: Output From Evaluating XGBoost with Stratified k-Fold Cross Validation.

You will notice that the performance is slightly higher and the variance is smaller in the
result.

6.3 What Techniques to Use When

� Generally k-fold cross validation is the gold-standard for evaluating the performance of a
machine learning algorithm on unseen data with k set to 3, 5, or 10.

� Use stratified cross validation to enforce class distributions when there are a large number
of classes or an imbalance in instances for each class.

� Using a train/test split is good for speed when using a slow algorithm and produces
performance estimates with lower bias when using large datasets.

The best advice is to experiment and find a technique for your problem that is fast and
produces reasonable estimates of performance that you can use to make decisions. If in doubt,
use 10-fold cross validation for regression problems and stratified 10-fold cross validation on
classification problems.

6.4 Summary

In this tutorial you discovered how you can evaluate your XGBoost models by estimating how
well they are likely to perform on unseen data. Specifically, you learned:

� How to split your dataset into train and test subsets for training and evaluating the
performance of your model.

� How you can create k XGBoost models on different subsets of the dataset and average
the scores to get a more robust estimate of model performance.

� Heuristics to help choose between train-test split and k-fold cross validation for your
problem.

In the next tutorial you will discover how you can use visualization to better understand the
boosted trees inside a trained mode.

Chapter 7

Visualize Individual Trees Within A
Model

Plotting individual decision trees can provide insight into the gradient boosting process for a
given dataset. In this tutorial you will discover how you can plot individual decision trees from
a trained gradient boosting model using XGBoost in Python. Let’s get started.

7.1 Plot a Single XGBoost Decision Tree

The XGBoost Python API provides a function for plotting decision trees within a trained
XGBoost model. This capability is provided in the plot tree() function that takes a trained
model as the first argument, for example:

plot_tree(model)

Listing 7.1: Example of Plotting The First Tree in the Model.

This plots the first tree in the model (the tree at index 0). This plot can be saved to file or
shown on the screen using Matplotlib and pyplot.show(). This plotting capability requires
that you have the graphviz library installed1. We can create an XGBoost model on the Pima
Indians onset of diabetes dataset and plot the first tree in the model (see Section 4.2). The full
code listing is provided below.

plot decision tree

from numpy import loadtxt

from xgboost import XGBClassifier

from xgboost import plot_tree

from matplotlib import pyplot

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

split data into X and y

X = dataset[:,0:8]

y = dataset[:,8]

fit model no training data

model = XGBClassifier()

model.fit(X, y)

plot single tree

1http://www.graphviz.org/

37

http://www.graphviz.org/

7.1. Plot a Single XGBoost Decision Tree 38

plot_tree(model)

pyplot.show()

Listing 7.2: Example of Plotting the First Tree in the XGBoost Model.

Running the code creates a plot of the first decision tree in the model (index 0), showing the
features and feature values for each split as well as the output leaf nodes.

Figure 7.1: XGBoost Plot of Single Decision Tree

You can see that variables are automatically named like f1 and f5 corresponding with the
feature indices in the input array. You can see the split decisions within each node and the
different colors for left and right splits (blue and red). The plot tree() function takes some
parameters. You can plot specific graphs by specifying their index to the num trees argument.
For example, you can plot the 5th boosted tree in the sequence as follows:

plot_tree(model, num_trees=4)

Listing 7.3: Plot a Specific Decision Tree within an XGBoost Model.

You can also change the layout of the graph to be left to right (easier to read) by changing
the rankdir argument as LR (left-to-right) rather than the default top to bottom (UT). For
example:

plot_tree(model, num_trees=0, rankdir='LR')

7.2. Summary 39

Listing 7.4: Use Left-to-Right Layout When Plotting Trees.

The result of plotting the tree in the left-to-right layout is shown below.

Figure 7.2: XGBoost Plot of Single Decision Tree Left-To-Right

7.2 Summary

In this tutorial you learned how to plot individual decision trees from a trained XGBoost
gradient boosted model in Python. This concludes Part II of this book. Next in Part III you
will build upon these basic skills with XGBoost, starting with how to save and load an XGBoost
model to file.

Part III

XGBoost Advanced

40

Chapter 8

Save and Load Trained XGBoost
Models

XGBoost can be used to create some of the most performant models for tabular data using the
gradient boosting algorithm. Once trained, it is often a good practice to save your model to
file for later use in making predictions new test and validation datasets and entirely new data.
In this tutorial you will discover how to save your XGBoost models to file using the standard
Python pickle API. After completing this tutorial, you will know:

� How to save and later load your trained XGBoost model using pickle.

� How to save and later load your trained XGBoost model using joblib.

Let’s get started.

8.1 Serialize Models with Pickle

Pickle is the standard way of serializing objects in Python. You can use the Python pickle
API1 to serialize your machine learning algorithms and save the serialized format to a file, for
example:

save model to file

pickle.dump(model, open("pima.pickle.dat", "wb"))

Listing 8.1: Example Saving an XGBoost Model using Pickle.

Later you can load this file to deserialize your model and use it to make new predictions, for
example:

load model from file

loaded_model = pickle.load(open("pima.pickle.dat", "rb"))

Listing 8.2: Example Loading an XGBoost Model using Pickle.

The example below demonstrates how you can train a XGBoost model on the Pima Indians
onset of diabetes dataset (see Section 4.2), save the model to file and later load it to make
predictions. The full code listing is provided below for completeness.

1https://docs.python.org/2/library/pickle.html

41

https://docs.python.org/2/library/pickle.html

8.2. Serialize Models with Joblib 42

Train XGBoost model, save to file using pickle, load and make predictions

from numpy import loadtxt

from xgboost import XGBClassifier

import pickle

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

split data into X and y

X = dataset[:,0:8]

Y = dataset[:,8]

split data into train and test sets

seed = 7

test_size = 0.33

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size,

random_state=seed)

fit model no training data

model = XGBClassifier()

model.fit(X_train, y_train)

save model to file

pickle.dump(model, open("pima.pickle.dat", "wb"))

print("Saved model to: pima.pickle.dat")

some time later...

load model from file

loaded_model = pickle.load(open("pima.pickle.dat", "rb"))

print("Loaded model from: pima.pickle.dat")

make predictions for test data

y_pred = loaded_model.predict(X_test)

predictions = [round(value) for value in y_pred]

evaluate predictions

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

Listing 8.3: Worked Example of Saving and Loading an XGBoost Model with Pickle.

Running this example saves your trained XGBoost model to the pima.pickle.dat pickle
file in the current working directory. After loading the model and making predictions on the
training dataset, the accuracy of the model is printed.

Saved model to: pima.pickle.dat

Loaded model from: pima.pickle.dat

Accuracy: 77.95%

Listing 8.4: Sample Output From Worked Example of Saving and Loading an XGBoost Model
with Pickle.

8.2 Serialize Models with Joblib

Joblib is part of the SciPy ecosystem and provides utilities for pipelining Python jobs. The
Joblib API2 provides utilities for saving and loading Python objects that make use of NumPy

2https://pypi.python.org/pypi/joblib

https://pypi.python.org/pypi/joblib

8.2. Serialize Models with Joblib 43

data structures, efficiently. It may be a faster approach for you to use with very large models.
The API looks a lot like the pickle API, for example, you may save your trained model as
follows:

save model to file

joblib.dump(model, "pima.joblib.dat")

Listing 8.5: Example Saving an XGBoost Model using Joblib.

You can later load the model from file and use it to make predictions as follows:

load model from file

loaded_model = joblib.load("pima.joblib.dat")

Listing 8.6: Example Loading an XGBoost Model using Joblib.

The example below demonstrates how you can train an XGBoost model for classification on
the Pima Indians onset of diabetes dataset, save the model to file using Joblib and load it at a
later time in order to make predictions.

Train XGBoost model, save to file using joblib, load and make predictions

from numpy import loadtxt

from xgboost import XGBClassifier

from sklearn.externals import joblib

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

split data into X and y

X = dataset[:,0:8]

Y = dataset[:,8]

split data into train and test sets

seed = 7

test_size = 0.33

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size,

random_state=seed)

fit model no training data

model = XGBClassifier()

model.fit(X_train, y_train)

save model to file

joblib.dump(model, "pima.joblib.dat")

print("Saved model to: pima.joblib.dat")

some time later...

load model from file

loaded_model = joblib.load("pima.joblib.dat")

print("Loaded model from: pima.joblib.dat")

make predictions for test data

y_pred = loaded_model.predict(X_test)

predictions = [round(value) for value in y_pred]

evaluate predictions

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

Listing 8.7: Worked Example of Saving and Loading an XGBoost Model with Joblib.

8.3. Summary 44

Running the example saves the model to file as pima.joblib.dat in the current working
directory and also creates one file for each NumPy array within the model (in this case two
additional files).

pima.joblib.dat

pima.joblib.dat_01.npy

pima.joblib.dat_02.npy

Listing 8.8: List of Files Created When Serializing a Model with Joblib.

After the model is loaded, it is evaluated on the training dataset and the accuracy of the
predictions is printed.

Saved model to: pima.joblib.dat

Loaded model from: pima.joblib.dat

Accuracy: 77.95%

Listing 8.9: Sample Output From Worked Example of Saving and Loading an XGBoost Model
with Joblib.

8.3 Summary

In this tutorial you discovered how to serialize your trained XGBoost models and later load
them in order to make predictions. Specifically, you learned:

� How to serialize and later load your trained XGBoost model using the pickle API.

� How to serialize and later load your trained XGBoost model using the Joblib API.

In the next tutorial you will discover how you can use feature importance calculated by an
XGBoost model to better understand your dataset and even perform feature selection.

Chapter 9

Feature Importance With XGBoost
and Feature Selection

A benefit of using ensembles of decision tree methods like gradient boosting is that they can
automatically provide estimates of feature importance from a trained predictive model. In this
tutorial you will discover how you can estimate the importance of features for a predictive
modeling problem using the XGBoost library in Python. After reading this tutorial you will
know:

� How feature importance is calculated using the gradient boosting algorithm.

� How to plot feature importance in Python calculated by the XGBoost model.

� How to use feature importance calculated by XGBoost to perform feature selection.

Let’s get started.

9.1 Feature Importance in Gradient Boosting

A benefit of using gradient boosting is that after the boosted trees are constructed, it is relatively
straightforward to retrieve importance scores for each attribute. Generally, importance provides
a score that indicates how useful or valuable each feature was in the construction of the boosted
decision trees within the model. The more an attribute is used to make key decisions with
decision trees, the higher its relative importance. This importance is calculated explicitly for
each attribute in the dataset, allowing attributes to be ranked and compared to each other.

Importance is calculated for a single decision tree by the amount that each attribute split
point improves the performance measure, weighted by the number of observations the node is
responsible for. The performance measure may be the purity (Gini index) used to select the
split points or another more specific error function. The feature importances are then averaged
across all of the decision trees within the model. For more technical information on how feature
importance is calculated in boosted decision trees, see Section 10.13.1 Relative Importance of
Predictor Variables of the book The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, page 367.

45

9.2. Manually Plot Feature Importance 46

9.2 Manually Plot Feature Importance

A trained XGBoost model automatically calculates feature importance on your predictive
modeling problem. These importance scores are available in the feature importances member
variable of the trained model. For example, they can be printed directly as follows:

print(model.feature_importances_)

Listing 9.1: Example of Printing Feature Importances from an XGBoost Model.

We can plot these scores on a bar chart directly to get a visual indication of the relative
importance of each feature in the dataset. For example:

plot

pyplot.bar(range(len(model.feature_importances_)), model.feature_importances_)

pyplot.show()

Listing 9.2: Example of Plotting Feature Importances from an XGBoost Model.

We can demonstrate this by training an XGBoost model on the Pima Indians onset of diabetes
dataset (see Section 4.2) and creating a bar chart from the calculated feature importances.

plot feature importance manually

from numpy import loadtxt

from xgboost import XGBClassifier

from matplotlib import pyplot

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

split data into X and y

X = dataset[:,0:8]

y = dataset[:,8]

fit model no training data

model = XGBClassifier()

model.fit(X, y)

feature importance

print(model.feature_importances_)

plot

pyplot.bar(range(len(model.feature_importances_)), model.feature_importances_)

pyplot.show()

Listing 9.3: Worked Example of Manually Plotting Feature Importance.

Running this example first outputs the importance scores:

[0.089701 0 .17109634 0 .08139535 0 .04651163 0 .10465116 0 .2026578 0.1627907

0 .14119601]

Listing 9.4: Print of Raw Importance Scores.

We also get a bar chart of the relative importances.

9.3. Using theBuilt-in XGBoost Feature Importance Plot 47

Figure 9.1: Manual Bar Chart of XGBoost Feature Importance

A downside of this plot is that the features are ordered by their input index rather than
their importance. We could sort the features before plotting. Thankfully, there is a built in plot
function to help us.

9.3 Using theBuilt-in XGBoost Feature Importance Plot

The XGBoost library provides a built-in function to plot features ordered by their importance.
The function is called plot importance() and can be used as follows:

plot feature importance

plot_importance(model)

pyplot.show()

Listing 9.5: Example of Built-in Function To Plot Feature Importances.

For example, below is a complete code listing plotting the feature importance for the Pima
Indians dataset using the built-in plot importance() function.

plot feature importance using built-in function

from numpy import loadtxt

from xgboost import XGBClassifier

from xgboost import plot_importance

9.3. Using theBuilt-in XGBoost Feature Importance Plot 48

from matplotlib import pyplot

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

split data into X and y

X = dataset[:,0:8]

y = dataset[:,8]

fit model no training data

model = XGBClassifier()

model.fit(X, y)

plot feature importance

plot_importance(model)

pyplot.show()

Listing 9.6: Worked Example of Automatically Plotting Feature Importance.

Running the example gives us a more useful bar chart.

Figure 9.2: Bar Chart of XGBoost Feature Importance

You can see that features are automatically named according to their index in the input
array (X) from F0 to F7. Manually mapping these indices to names in the problem description1,
we can see that the plot shows F5 (body mass index) has the highest importance and F3 (skin
fold thickness) has the lowest importance.

1https://goo.gl/OhIfBw

https://goo.gl/OhIfBw

9.4. Feature Selection with XGBoost Feature Importance Scores 49

9.4 Feature Selection with XGBoost Feature Importance

Scores

Feature importance scores can be used for feature selection in scikit-learn. This is done using
the SelectFromModel class that takes a model and can transform a dataset into a subset with
selected features. This class can take a pre-trained model, such as one trained on the entire
training dataset. It can then use a threshold to decide which features to select. This threshold is
used when you call the transform() function on the SelectFromModel instance to consistently
select the same features on the training dataset and the test dataset.

In the example below we first train and then evaluate an XGBoost model on the entire
training dataset and test datasets respectively. Using the feature importances calculated from
the training dataset, we then wrap the model in a SelectFromModel instance. We use this to
select features on the training dataset, train a model from the selected subset of features, then
evaluate the model on the testset, subject to the same feature selection scheme. For example:

select features using threshold

selection = SelectFromModel(model, threshold=thresh, prefit=True)

select_X_train = selection.transform(X_train)

train model

selection_model = XGBClassifier()

selection_model.fit(select_X_train, y_train)

eval model

select_X_test = selection.transform(X_test)

y_pred = selection_model.predict(select_X_test)

Listing 9.7: Example of Feature Selection Using XGBoost Feature Importance.

For interest, we can test multiple thresholds for selecting features by feature importance.
Specifically, the feature importance of each input variable, essentially allowing us to test each
subset of features by importance, starting with all features and ending with a subset with the
most important feature. The complete code listing is provided below.

use feature importance for feature selection

from numpy import loadtxt

from numpy import sort

from xgboost import XGBClassifier

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.feature_selection import SelectFromModel

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

split data into X and y

X = dataset[:,0:8]

Y = dataset[:,8]

split data into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=7)

fit model on all training data

model = XGBClassifier()

model.fit(X_train, y_train)

make predictions for test data and evaluate

y_pred = model.predict(X_test)

predictions = [round(value) for value in y_pred]

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

9.5. Summary 50

Fit model using each importance as a threshold

thresholds = sort(model.feature_importances_)

for thresh in thresholds:

select features using threshold

selection = SelectFromModel(model, threshold=thresh, prefit=True)

select_X_train = selection.transform(X_train)

train model

selection_model = XGBClassifier()

selection_model.fit(select_X_train, y_train)

eval model

select_X_test = selection.transform(X_test)

y_pred = selection_model.predict(select_X_test)

predictions = [round(value) for value in y_pred]

accuracy = accuracy_score(y_test, predictions)

print("Thresh=%.3f, n=%d, Accuracy: %.2f%%" % (thresh, select_X_train.shape[1],

accuracy*100.0))

Listing 9.8: Worked Example of Feature Selection Using XGBoost Feature Importance.

Running this example prints the following output:

Accuracy: 77.95%

Thresh=0.071, n=8, Accuracy: 77.95%

Thresh=0.073, n=7, Accuracy: 76.38%

Thresh=0.084, n=6, Accuracy: 77.56%

Thresh=0.090, n=5, Accuracy: 76.38%

Thresh=0.128, n=4, Accuracy: 76.38%

Thresh=0.160, n=3, Accuracy: 74.80%

Thresh=0.186, n=2, Accuracy: 71.65%

Thresh=0.208, n=1, Accuracy: 63.78%

Listing 9.9: Output of Model Performance With Feature Subsets by Importance Scores.

We can see that the performance of the model generally decreases with the number of
selected features. On this problem there is a trade-off of features to test set accuracy and we
could decide to take a less complex model (fewer attributes such as n=4) and accept a modest
decrease in estimated accuracy from 77.95% down to 76.38%. This is likely to be a wash on
such a small dataset, but may be a more useful strategy on a larger dataset and using cross
validation as the model evaluation scheme.

9.5 Summary

In this tutorial you discovered how to access features and use importance in a trained XGBoost
gradient boosting model. Specifically, you learned:

� What feature importance is and generally how it is calculated in XGBoost.

� How to access and plot feature importance scores from an XGBoost model.

� How to use feature importance from an XGBoost model for feature selection.

In the next tutorial you will discover how to can monitor the performance of a model as it is
being trained and configure training to stop early under specific criteria.

Chapter 10

Monitor Training Performance and
Early Stopping

Overfitting is a problem with sophisticated nonlinear learning algorithms like gradient boosting.
In this tutorial you will discover how you can use early stopping to limit overfitting with
XGBoost in Python. After reading this tutorial, you will know:

� About early stopping as an approach to reducing overfitting of training data.

� How to monitor the performance of an XGBoost model during training and plot the
learning curve.

� How to use early stopping to prematurely stop the training of an XGBoost model at an
optimal epoch.

Let’s get started.

10.1 Early Stopping to Avoid Overfitting

Early stopping is an approach to training complex machine learning models to avoid overfitting.
It works by monitoring the performance of the model that is being trained on a separate test
dataset and stopping the training procedure once the performance on the test dataset has not
improved after a fixed number of training iterations.

It avoids overfitting by attempting to automatically select the inflection point where perfor-
mance on the test dataset starts to decrease while performance on the training dataset continues
to improve as the model starts to overfit. The performance measure may be the loss function
that is being optimized to train the model (such as logarithmic loss), or an external metric of
interest to the problem in general (such as classification accuracy).

10.2 Monitoring Training Performance With XGBoost

The XGBoost model can evaluate and report on the performance on a test set for the model
during training. It supports this capability by specifying both an test dataset and an evaluation
metric on the call to model.fit() when training the model and specifying verbose output. For

51

10.2. Monitoring Training Performance With XGBoost 52

example, we can report on the binary classification error rate (error) on a standalone test set
(eval set) while training an XGBoost model as follows:

eval_set = [(X_test, y_test)]

model.fit(X_train, y_train, eval_metric="error", eval_set=eval_set, verbose=True)

Listing 10.1: Example of Evaluating a Validation Dataset During Training.

XGBoost supports a suite of evaluation metrics not limited to:

� rmse for root mean squared error.

� mae for mean absolute error.

� logloss for binary logarithmic loss and mlogloss for multiclass log loss (cross entropy).

� error for classification error.

� auc for area under ROC curve.

The full list is provided in the Learning Task Parameters section of the XGBoost Parameters
webpage1. For example, we can demonstrate how to track the performance of the training of
an XGBoost model on the Pima Indians onset of diabetes dataset (see Section 4.2). The full
example is provided below:

monitor training performance

from numpy import loadtxt

from xgboost import XGBClassifier

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

split data into X and y

X = dataset[:,0:8]

Y = dataset[:,8]

split data into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=7)

fit model no training data

model = XGBClassifier()

eval_set = [(X_test, y_test)]

model.fit(X_train, y_train, eval_metric="error", eval_set=eval_set, verbose=True)

make predictions for test data

y_pred = model.predict(X_test)

predictions = [round(value) for value in y_pred]

evaluate predictions

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

Listing 10.2: Worked Example of Evaluating a Validation Dataset During Training.

Running this example trains the model on 67% of the data and evaluates the model every
training epoch on a 33% test dataset. The classification error is reported each iteration and
finally the classification accuracy is reported at the end. The output is provided below, truncated
for brevity. We can see that the classification error is reported each training iteration (after
each boosted tree is added to the model).

1http://xgboost.readthedocs.io/en/latest/parameter.html

http://xgboost.readthedocs.io/en/latest/parameter.html

10.3. Evaluate XGBoost Models With Learning Curves 53

...

[89] validation_0-error:0.204724

[90] validation_0-error:0.208661

[91] validation_0-error:0.208661

[92] validation_0-error:0.208661

[93] validation_0-error:0.208661

[94] validation_0-error:0.208661

[95] validation_0-error:0.212598

[96] validation_0-error:0.204724

[97] validation_0-error:0.212598

[98] validation_0-error:0.216535

[99] validation_0-error:0.220472

Accuracy: 77.95%

Listing 10.3: Sample Output of Worked Example of Evaluating a Validation Dataset During
Training.

Reviewing all of the output, we can see that the model performance on the test set sits flat
and even gets worse towards the end of training.

10.3 Evaluate XGBoost Models With Learning Curves

We can retrieve the performance of the model on the evaluation dataset and plot it to get
insight into how learning unfolded while training. We provide an array of X and y pairs to the
eval metric argument when fitting our XGBoost model. In addition to a test set, we can also
provide the training dataset. This will provide a report on how well the model is performing on
both training and test sets during training. For example:

eval_set = [(X_train, y_train), (X_test, y_test)]

model.fit(X_train, y_train, eval_metric="error", eval_set=eval_set, verbose=True)

Listing 10.4: Example of Evaluating a Validation Dataset During Training.

In addition, the performance of the model on each evaluation set is stored and made available
by the model after training by calling the model.evals result() function. This returns a
dictionary of evaluation datasets and scores, for example:

results = model.evals_result()

print(results)

Listing 10.5: Retrieve and Print Validation Results Collected During Training.

This will print results like the following (truncated for brevity):

{

'validation_0': {'error': [0.259843, 0.26378, 0.26378, ...]},

'validation_1': {'error': [0.22179, 0.202335, 0.196498, ...]}

}

Listing 10.6: Sample Output of Validation Performance Results.

Each of validation 0 and validation 1 correspond to the order that datasets were provided
to the eval set argument in the call to fit(). A specific array of results, such as for the first
dataset and the error metric can be accessed as follows:

10.3. Evaluate XGBoost Models With Learning Curves 54

results['validation_0']['error']

Listing 10.7: Access Validation Results By Dataset and Metric.

Additionally, we can specify more evaluation metrics to evaluate and collect by providing an
array of metrics to the eval metric argument of the fit() function. We can then use these
collected performance measures to create a line plot and gain further insight into how the model
behaved on train and test datasets over training epochs. Below is the complete code example
showing how the collected results can be visualized on a line plot.

plot learning curve

from numpy import loadtxt

from xgboost import XGBClassifier

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

from matplotlib import pyplot

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

split data into X and y

X = dataset[:,0:8]

Y = dataset[:,8]

split data into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=7)

fit model no training data

model = XGBClassifier()

eval_set = [(X_train, y_train), (X_test, y_test)]

model.fit(X_train, y_train, eval_metric=["error", "logloss"], eval_set=eval_set,

verbose=True)

make predictions for test data

y_pred = model.predict(X_test)

predictions = [round(value) for value in y_pred]

evaluate predictions

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

retrieve performance metrics

results = model.evals_result()

epochs = len(results['validation_0']['error'])

x_axis = range(0, epochs)

plot log loss

fig, ax = pyplot.subplots()

ax.plot(x_axis, results['validation_0']['logloss'], label='Train')

ax.plot(x_axis, results['validation_1']['logloss'], label='Test')

ax.legend()

pyplot.ylabel('Log Loss')

pyplot.title('XGBoost Log Loss')

pyplot.show()

plot classification error

fig, ax = pyplot.subplots()

ax.plot(x_axis, results['validation_0']['error'], label='Train')

ax.plot(x_axis, results['validation_1']['error'], label='Test')

ax.legend()

pyplot.ylabel('Classification Error')

pyplot.title('XGBoost Classification Error')

pyplot.show()

10.3. Evaluate XGBoost Models With Learning Curves 55

Listing 10.8: Worked Example of Plotting Training and Validation Performance.

Running this code reports the classification error on both the train and test datasets each
epoch. We can turn this off by setting verbose=False (the default) in the call to the fit()

function. Two plots are created. The first shows the logarithmic loss of the XGBoost model for
each epoch on the training and test datasets.

Figure 10.1: XGBoost Learning Curves For Log Loss

The second plot shows the classification error of the XGBoost model for each epoch on the
training and test datasets.

10.4. Early Stopping With XGBoost 56

Figure 10.2: XGBoost Learning Curves For Classification Error

From reviewing the logloss plot, it looks like there is an opportunity to stop the learning
early, perhaps somewhere around epoch 20 to epoch 40. We see a similar story for classification
error, where error appears to go back up at around epoch 40.

10.4 Early Stopping With XGBoost

XGBoost supports early stopping after a fixed number of iterations. In addition to specifying a
metric and test dataset for evaluation each epoch, you must specify a window of the number of
epochs over which no improvement is observed. This is specified in the early stopping rounds

parameter. For example, we can check for no improvement in logarithmic loss over the 10 epochs
as follows:

eval_set = [(X_test, y_test)]

model.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="logloss",

eval_set=eval_set, verbose=True)

Listing 10.9: Example of Configuring Early Stopping.

If multiple evaluation datasets or multiple evaluation metrics are provided, then early
stopping will use the last in the list. Below provides a full example for completeness with early
stopping.

10.4. Early Stopping With XGBoost 57

early stopping

from numpy import loadtxt

from xgboost import XGBClassifier

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

load data

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")

split data into X and y

X = dataset[:,0:8]

Y = dataset[:,8]

split data into train and test sets

seed = 7

test_size = 0.33

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size,

random_state=seed)

fit model no training data

model = XGBClassifier()

eval_set = [(X_test, y_test)]

model.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="logloss",

eval_set=eval_set, verbose=True)

make predictions for test data

y_pred = model.predict(X_test)

predictions = [round(value) for value in y_pred]

evaluate predictions

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

Listing 10.10: Worked Example of Early Stopping During Training.

Running the example provides the following output, truncated for brevity:

...

[35] validation_0-logloss:0.487962

[36] validation_0-logloss:0.488218

[37] validation_0-logloss:0.489582

[38] validation_0-logloss:0.489334

[39] validation_0-logloss:0.490969

[40] validation_0-logloss:0.48978

[41] validation_0-logloss:0.490704

[42] validation_0-logloss:0.492369

Stopping. Best iteration:

[32] validation_0-logloss:0.487297

Listing 10.11: Sample Output of Worked Example of Early Stopping During Training.

We can see that the model stopped training at epoch 42 (close to what we expected by
our manual judgment of learning curves) and that the model with the best loss was observed
at epoch 32. It is generally a good idea to select the early stopping rounds as a reasonable
function of the total number of training epochs (10% in this case) or attempt to correspond to
the period of inflection points as might be observed on a plots of learning curves.

10.5. Summary 58

10.5 Summary

In this tutorial you discovered how to monitor the performance of an XGBoost model being
trained and to support early stopping to limit overfitting. You learned:

� About the early stopping technique to stop model training before the model overfits the
training data.

� How to monitor the performance of XGBoost models during training and to plot learning
curves.

� How to configure early stopping when training XGBoost models.

In the next tutorial, you will discover how XGBoost can be configured to use all of the CPU
cores of your system and how to best configure it to get the most from your hardware.

Chapter 11

Tune Multithreading Support for
XGBoost

The XGBoost library for gradient boosting uses is designed for efficient multi-core parallel
processing. This allows it to efficiently use all of the CPU cores in your system when training.
In this tutorial you will discover the parallel processing capabilities of the XGBoost in Python.
After reading this tutorial you will know:

� How to confirm that XGBoost multi-threading support is working on your system.

� How to evaluate the effect of increasing the number of threads on XGBoost.

� How to get the most out of multithreaded XGBoost when using cross validation and grid
search.

Let’s get started.

11.1 Problem Description: Otto Dataset

In this tutorial we will use the Otto Group Product Classification Challenge1 dataset. This
dataset is available from Kaggle (you will need to sign-up to Kaggle to be able to download
this dataset). You can download the training dataset train.csv.zip from the Data page2 and
place the unzipped trian.csv file into your working directory.

This dataset describes the 93 obfuscated details of more than 61,000 products grouped into
10 product categories (e.g. fashion, electronics, etc.). Input attributes are counts of different
events of some kind. The goal is to make predictions for new products as an array of probabilities
for each of the 10 categories and models are evaluated using multiclass logarithmic loss (also
called cross entropy). This competition completed in May 2015 and this dataset is a good
challenge for XGBoost because of the nontrivial number of examples and the difficulty of the
problem and the fact that little data preparation is required (other than encoding the string
class variables as integers).

1https://www.kaggle.com/c/otto-group-product-classification-challenge
2https://www.kaggle.com/c/otto-group-product-classification-challenge/data

59

https://www.kaggle.com/c/otto-group-product-classification-challenge
https://www.kaggle.com/c/otto-group-product-classification-challenge/data

11.2. Impact of the Number of Threads 60

11.2 Impact of the Number of Threads

XGBoost is implemented in C++ to explicitly make use of the OpenMP API3 for parallel
processing. The parallelism in gradient boosting can be implemented in the construction of
individual trees, rather than in creating trees in parallel like random forest. This is because in
boosting, trees are added to the model sequentially. The speed of XGBoost is both in adding
parallelism in the construction of individual trees, and in the efficient preparation of the input
data to aid in the speed up in the construction of trees.

Depending on your platform, you may need to compile XGBoost specifically to support
multithreading. See the XGBoost installation instructions for more details4. The XGBClassifier
and XGBRegressor wrapper classes for XGBoost for use in scikit-learn provide the nthread

parameter to specify the number of threads that XGBoost can use during training.
By default this parameter is set to -1 to make use of all of the cores in your system.

model = XGBClassifier(nthread=-1)

Listing 11.1: Example of Setting the Number of Threads used by XGBoost.

Generally, you should get multithreading support for your XGBoost installation without any
extra work. Depending on your Python environment (e.g. Python 3) you may need to explicitly
enable multithreading support for XGBoost. The XGBoost library provides an example if you
need help5. You can confirm that XGBoost multi-threading support is working by building a
number of different XGBoost models, specifying the number of threads and timing how long
it takes to build each model. The trend will both show you that multi-threading support is
enabled and give you an indication of the effect it has when building models. For example, if
your system has 4 cores, you can train 8 different models and time how long in seconds it takes
to create each, then compare the times.

evaluate the effect of the number of threads

results = []

num_threads = [1, 2, 3, 4]

for n in num_threads:

start = time.time()

model = XGBClassifier(nthread=n)

model.fit(X_train, y_train)

elapsed = time.time() - start

print(n, elapsed)

results.append(elapsed)

Listing 11.2: Example of Evaluating the Effect of the Number of Threads on Model Training.

We can use this approach on the Otto dataset. The full example is provided below for
completeness. You can change the num threads array to meet the number of cores on your
system.

Otto, tune number of threads

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn.preprocessing import LabelEncoder

import time

3https://en.wikipedia.org/wiki/OpenMP
4https://github.com/dmlc/xgboost/blob/master/doc/build.md
5https://github.com/dmlc/xgboost/blob/master/demo/guide-python/sklearn_parallel.py

https://en.wikipedia.org/wiki/OpenMP
https://github.com/dmlc/xgboost/blob/master/doc/build.md
https://github.com/dmlc/xgboost/blob/master/demo/guide-python/sklearn_parallel.py

11.2. Impact of the Number of Threads 61

from matplotlib import pyplot

load data

data = read_csv('train.csv')

dataset = data.values

split data into X and y

X = dataset[:,0:94]

y = dataset[:,94]

encode string class values as integers

label_encoded_y = LabelEncoder().fit_transform(y)

evaluate the effect of the number of threads

results = []

num_threads = [1, 2, 3, 4]

for n in num_threads:

start = time.time()

model = XGBClassifier(nthread=n)

model.fit(X, label_encoded_y)

elapsed = time.time() - start

print(n, elapsed)

results.append(elapsed)

plot results

pyplot.plot(num_threads, results)

pyplot.ylabel('Speed (seconds)')

pyplot.xlabel('Number of Threads')

pyplot.title('XGBoost Training Speed vs Number of Threads')

pyplot.show()

Listing 11.3: Worked Example of Timing Training With Different Numbers of Threads.

Running this example summarizes the execution time in seconds for each configuration, for
example:

(1, 115.51652717590332)

(2, 62.7727689743042)

(3, 46.042901039123535)

(4, 40.55334496498108)

Listing 11.4: Sample Output of Worked Example of Timing Training With Different Numbers
of Threads.

A plot of these timings is provided below.

11.2. Impact of the Number of Threads 62

Figure 11.1: XGBoost Tune Number of Threads for Single Model

We can see a nice trend in the decrease in execution time as the number of threads is
increased. If you do not see an improvement in running time for each new thread, you may
want to investigate how to enable multithreading support in XGBoost as part of your install or
at runtime. We can run the same code on a machine with a lot more cores. The large Amazon
Web Services EC2 instance is reported to have 32 cores (see Chapter 12). We can adapt the
above code to time how long it takes to train the model with 1 to 32 cores. The results are
plotted below.

11.3. Parallelism When Cross Validating XGBoost Models 63

Figure 11.2: XGBoost Time to Train Model on 1 to 32 Cores

It is interesting to note that we do not see much improvement beyond 16 threads (at about
7 seconds). I expect the reason for this is that the Amazon instance only provides 16 cores in
hardware and the additional 16 cores are available by hyperthreading. The results suggest that
if you have a machine with hyperthreading, you may want to set nthread to equal the number
of physical CPU cores in your machine. The low-level optimized implementation of XGBoost
with OpenMP squeezes every last cycle out of a large machine like this.

11.3 Parallelism When Cross Validating XGBoost Mod-

els

The k-fold cross validation support in scikit-learn also supports multithreading. For example,
the n jobs argument on the cross val score() function used to evaluate a model on a dataset
using k-fold cross validation allows you to specify the number of parallel jobs to run. By default,
this is set to 1, but can be set to -1 to use all of the CPU cores on your system, which is good
practice. For example:

results = cross_val_score(model, X, label_encoded_y, cv=kfold, scoring='log_loss',

n_jobs=-1, verbose=1)

Listing 11.5: Example of k-fold Cross Validation Using all CPU Cores.

11.3. Parallelism When Cross Validating XGBoost Models 64

This raises the question as to how cross validation should be configured:

� Disable multi-threading support in XGBoost and allow cross validation to run on all cores.

� Disable multi-threading support in cross validation and allow XGBoost to run on all cores.

� Enable multi-threading support for both XGBoost and Cross validation.

We can get an answer to this question by simply timing how long it takes to evaluate the
model in each circumstance. In the example below we use 10-fold cross validation to evaluate the
default XGBoost model on the Otto training dataset. Each of the above scenarios is evaluated
and the time taken to evaluate the model is reported. The full code example is provided below.

Otto, parallel cross validation

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn.cross_validation import StratifiedKFold

from sklearn.cross_validation import cross_val_score

from sklearn.preprocessing import LabelEncoder

import time

load data

data = read_csv('train.csv')

dataset = data.values

split data into X and y

X = dataset[:,0:94]

y = dataset[:,94]

encode string class values as integers

label_encoded_y = LabelEncoder().fit_transform(y)

prepare cross validation

kfold = StratifiedKFold(label_encoded_y, n_folds=10, shuffle=True, random_state=7)

Single Thread XGBoost, Parallel Thread CV

start = time.time()

model = XGBClassifier(nthread=1)

results = cross_val_score(model, X, label_encoded_y, cv=kfold, scoring='log_loss',

n_jobs=-1)

elapsed = time.time() - start

print("Single Thread XGBoost, Parallel Thread CV: %f" % (elapsed))

Parallel Thread XGBoost, Single Thread CV

start = time.time()

model = XGBClassifier(nthread=-1)

results = cross_val_score(model, X, label_encoded_y, cv=kfold, scoring='log_loss', n_jobs=1)

elapsed = time.time() - start

print("Parallel Thread XGBoost, Single Thread CV: %f" % (elapsed))

Parallel Thread XGBoost and CV

start = time.time()

model = XGBClassifier(nthread=-1)

results = cross_val_score(model, X, label_encoded_y, cv=kfold, scoring='log_loss',

n_jobs=-1)

elapsed = time.time() - start

print("Parallel Thread XGBoost and CV: %f" % (elapsed))

Listing 11.6: Worked Example of Timing Training With Multithreading of CV and XGBoost.

Running the example prints the following results:

11.4. Summary 65

Single Thread XGBoost, Parallel Thread CV: 359.854589

Parallel Thread XGBoost, Single Thread CV: 330.498101

Parallel Thread XGBoost and CV: 313.382301

Listing 11.7: Sample Output of Worked Example of Timing Training With Multithreading of
CV and XGBoost.

We can see that there is a benefit from parallelizing XGBoost over the cross validation folds.
This makes sense as 10 sequential fast tasks is better than (10 divided by nthread) slow tasks.
Interestingly we can see that the best result is achieved by enabling both multi-threading within
XGBoost and in cross validation. This is surprising because it means that nthread number
of parallel XGBoost models are competing for the same nthread in the construction of their
models. Nevertheless, this achieves the fastest results and is the suggested usage of XGBoost
for cross validation. Because grid search uses the same underlying approach to parallelism, we
expect the same finding to hold for optimizing the hyperparameters for XGBoost.

11.4 Summary

In this tutorial you discovered how to get the most from your hardware when using the XGBoost
model. You learned:

� How to check that the multi-threading support in XGBoost is enabled on your system.

� How increasing the number of threads affects the performance of training XGBoost models.

� How to best configure XGBoost and Cross Validation in Python for minimum running
time.

In the next tutorial you will discover how you can scale up your model to use many more
cores using Amazon cloud infrastructure.

Chapter 12

Train XGBoost Models in the Cloud
with Amazon Web Services

The XGBoost library provides an implementation of gradient boosting designed for speed and
performance. It is implemented to make best use of your computing resources, including all CPU
cores and memory. In this tutorial you will discover how you can setup a server on Amazon’s
cloud service to quickly and cheaply create very large models. After reading this tutorial you
will know:

� How to setup and configure an Amazon EC2 server instance for use with XGBoost.

� How to confirm the parallel capabilities of XGBoost are working on your server.

� How to transfer data and code to your server and train a very large model.

Let’s get started.

12.1 Tutorial Overview

The process is quite simple. Below is an overview of the steps we are going to complete in this
tutorial.

1. Setup Your AWS Account (if needed).

2. Launch Your AWS Instance.

3. Login and Run Your Code.

4. Train an XGBoost Model.

5. Close Your AWS Instance.

Note, it costs money to use a virtual server instance on Amazon. The cost is very low
for ad hoc model development (e.g. less than one US dollar per hour), which is why this is
so attractive, but it is not free. The server instance runs Linux. It is desirable although not
required that you know how to navigate Linux or a Unix-like environment. We’re just running
our Python scripts, so no advanced skills are needed.

66

12.2. Setup Your AWS Account (if needed) 67

12.2 Setup Your AWS Account (if needed)

You need an account on Amazon Web Services.

� 1. You can create an account using the Amazon Web Services portal by clicking Sign in
to the Console. From there you can sign in using an existing Amazon account or create a
new account.

Figure 12.1: AWS Sign-in Button

� 2. If creating an account, you will need to provide your details as well as a valid credit
card that Amazon can charge. The process is a lot quicker if you are already an Amazon
customer and have your credit card on file.

Note: If you have created a new account, you may have to request to Amazon support in
order to be approved to use larger (non-free) server instance in the rest of this tutorial.

12.3 Launch Your Server Instance

Now that you have an AWS account, you want to launch an EC2 virtual server instance on
which you can run XGBoost. Launching an instance is as easy as selecting the image to load and
starting the virtual server. se an existing Fedora Linux image and install Python and XGBoost
manually.

12.3. Launch Your Server Instance 68

� 1. Login to your AWS console if you have not already1.

Figure 12.2: AWS Console

� 2. Click on EC2 for launching a new virtual server.

� 3. Select N. California from the drop-down in the top right hand corner. This is important
otherwise you may not be able to find the image (called an AMI) that we plan to use.

Figure 12.3: Select N California

� 4. Click the Launch Instance button.

� 5. Click Community AMIs. An AMI is an Amazon Machine Image. It is a frozen instance
of a server that you can select and instantiate on a new virtual server.

1https://console.aws.amazon.com/console/home

https://console.aws.amazon.com/console/home

12.3. Launch Your Server Instance 69

Figure 12.4: Community AMIs

� 6. Enter AMI: ami-02d09662 in the Search community AMIs search box and press enter.
You should be presented with a single result.

This is an image for a base installation of Fedora Linux version 242. A very easy to use
Linux distribution.

Figure 12.5: Select the c3.8xlarge Instance Type

� 9. Click Review and Launch to finalize the configuration of your server instance.

You will see a warning like Your instance configuration is not eligible for the free usage tier.
This is just indicating that you will be charged for your time on this server. We know this,
ignore this warning.

Figure 12.6: Warning Message That You Will be Charged.

� 10. Click the Launch button.

� 11. Select your SSH key pair.

– If you have a key pair because you have used EC2 before, select Choose an existing
key pair and choose your key pair from the list. Then check I acknowledge....

2https://getfedora.org/

https://getfedora.org/

12.4. Login and Configure 70

– If you do not have a key pair, select the option Create a new key pair and enter a
Key pair name such as xgboost-keypair. Click the Download Key Pair button.

� 12. Open a Terminal and change directory to where you downloaded your key pair.

� 13. If you have not already done so, restrict the access permissions on your key pair file.
This is required as part of the SSH access to your server. For example, on your console
you can type:

cd Downloads

chmod 600 xgboost-keypair.pem

Listing 12.1: Set Permissions on Your SSH Keys.

� 14. Click Launch Instances.

Note: If this is your first time using AWS, Amazon may have to validate your request and
this could take up to 2 hours (often just a few minutes).

� 15. Click View Instances to review the status of your instance.

Figure 12.7: Review Your Running Instance and Note its IP Address.

Your server is now running and ready for you to log in.

12.4 Login and Configure

Now that you have launched your server instance, it is time to login and configure it for use.
You will need to configure your server each time you launch it. Therefore, it is a good idea to
batch all work so you can make good use of your configured server. Configuring the server will
not take long, perhaps 10 minutes total.

12.4. Login and Configure 71

� 1. Click View Instances in your Amazon EC2 console if you have not already.

� 2. Copy Public IP (down the bottom of the screen in Description) to clipboard.

In this example my IP address is 52.53.185.166.
Do not use this IP address, your IP address will be different.

� 3. Open a Terminal and change directory to where you downloaded your key pair. Login
in to your server using SSH, for example you can type:

ssh -i xgboost-keypair.pem fedora@52.53.185.166

Listing 12.2: Log Into Your Server Using SSH from the Command Line.

� 4. You may be prompted with a warning the first time you log into your server instance.
You can ignore this warning, just type yes and press enter.

You are now logged into your server. Double check the number of CPU cores on your
instance, by typing:

cat /proc/cpuinfo | grep processor | wc -l

Listing 12.3: Check the Number of Available CPU Cores.

You should see:

32

Listing 12.4: Sample Output from Checking the Number of Available CPU Cores.

12.4.1 Install Supporting Packages

The first step is to install all of the packages to support XGBoost. This includes GCC, Python
and the SciPy stack. We will use the Fedora package manager dnf (the new yum). This is a
single line:

sudo dnf install gcc gcc-c++ make git unzip python python2-numpy python2-scipy

python2-scikit-learn python2-pandas python2-matplotlib

Listing 12.5: Install Packages Required for XGBoost.

Type y and press Enter when prompted to confirm the packages to install. This will take
a few minutes to download and install all of the required packages. Once completed, we can
confirm the environment was installed successfully.

Check GCC

Type:

gcc --version

Listing 12.6: Print the GCC Version.

You should see:

12.4. Login and Configure 72

gcc (GCC) 6.1.1 20160621 (Red Hat 6.1.1-3)

Copyright (C) 2016 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Listing 12.7: Sample Output From Printing the GCC Version.

Check Python

Type:

python --version

Listing 12.8: Print the Python Version.

You should see:

Python 2.7.12

Listing 12.9: Sample Output From Printing the Python Version.

Check SciPy

Type:

python -c "import scipy;print(scipy.__version__)"

python -c "import numpy;print(numpy.__version__)"

python -c "import pandas;print(pandas.__version__)"

python -c "import sklearn;print(sklearn.__version__)"

Listing 12.10: Print the SciPy Stack Versions.

You should see:

0.16.1

1.11.0

0.18.0

0.17.1

Listing 12.11: Sample Output From Printing the SciPy Stack Versions.

Note: If any of these checks failed, stop and correct any errors. You must have a complete
working environment before moving on.

We are now ready to install XGBoost.

12.4.2 Build and Install XGBoost

The installation instructions for XGBoost are complete and we can follow them directly3. First
we need to download the project on the server.

git clone --recursive https://github.com/dmlc/xgboost

cd xgboost

Listing 12.12: Download the XGBoost Project.

3https://xgboost.readthedocs.io/en/latest/build.html

https://xgboost.readthedocs.io/en/latest/build.html

12.5. Train an XGBoost Model 73

Next we need to compile it. The -j argument can be used to specify the number of cores to
expect. We can set this to 32 for the 32 cores on our AWS instance. If you chose different AWS
hardware, you can set this appropriately.

make -j32

Listing 12.13: Compile the XGBoost Project.

The XGBoost project should build successfully (e.g. no errors). We are now ready to install
the Python version of the library.

cd python-package

sudo python setup.py install

Listing 12.14: Install the Python XGBoost Wrappers.

That is it. We can confirm the installation was successful by typing:

python -c "import xgboost;print(xgboost.__version__)"

Listing 12.15: Print the XGBoost Version.

This should print something like:

0.4

Listing 12.16: Sample Output From Printing the XGBoost Version.

12.5 Train an XGBoost Model

Let’s test out your large AWS instance by running XGBoost with a lot of cores. In this tutorial
we will use the Otto Group Product Classification Challenge dataset (see Section 11.1). Create
a new directory called work/ on your workstation. You can download the training dataset
train.csv.zip from the Data page4 and place it in your work/ directory on your workstation.

We will evaluate the time taken to train an XGBoost on this dataset using different numbers
of cores. We will try 1 core, half the cores 16 and all of the 32 cores. We can specify the number
of cores used by the XGBoost algorithm by setting the nthread parameter in the XGBClassifier
class (the scikit-learn wrapper for XGBoost). The complete example is listed below. Save it in a
file with the name work/script.py. Now, we can copy your work/ directory with the data and
script to your AWS server. From your workstation in the current directory where the work/

directory is located, type:

scp -r -i xgboost-keypair.pem work fedora@52.53.185.166:/home/fedora/

Listing 12.17: Copy the work Directory to your Server.

Of course, you will need to use your key file and the IP address of your server. This will
create a new work/ directory in your home directory on your server. Log back onto your server
instance (if needed):

ssh -i xgboost-keypair.pem fedora@52.53.185.166

Listing 12.18: Log Into Your Server With SSH.

4https://www.kaggle.com/c/otto-group-product-classification-challenge/data

https://www.kaggle.com/c/otto-group-product-classification-challenge/data

12.6. Close Your AWS Instance 74

Change directory to your work directory and unzip the training data.

cd work

unzip ./train.csv.data

Listing 12.19: Unzip The Otto Dataset.

Now we can run the script and train our XGBoost models and calculate how long it takes
using different numbers of cores:

python script.py

Listing 12.20: Run the Python Script on the Server.

You should see output like:

(1, 84.26896095275879)

(16, 6.597043037414551)

(32, 7.6703619956970215)

Listing 12.21: Output of Evaluating Training Time With Different Numbers of Threads.

You can see little difference between 16 and 32 cores. I believe the reason for this is that
AWS is giving access to 16 physical cores with hyperthreading, offering an additional virtual
cores. Nevertheless, building a large XGBoost model in 7 seconds is great. You can use this as
a template for your copying your own data and scripts to your AWS instance. A good tip is to
run your scripts as a background process and forward any output to a file. This is just in case
your connection to the server is interrupted or you want to close it down and let the server run
your code all night. You can run your code as a background process and redirect output to a
file by typing:

nohup python script.py >script.py.out 2>&1 &

Listing 12.22: Example of Running a Python Script as a Background Process.

Now that we are done, we can shut down the AWS instance.

12.6 Close Your AWS Instance

When you are finished with your work you must close your instance. Remember you are charged
by the amount of time that you use the instance. It is cheap, but you do not want to leave an
instance on if you are not using it.

� 1. Log out of your instance at the terminal, for example you can type: exit

� 2. Log in to your AWS account with your web browser.

� 3. Click EC2.

� 4. Click Instances from the left-hand side menu.

� 5. Select your running instance from the list (it may already be selected if you only have
one running instance).

12.7. Summary 75

� 6. Click the Actions button and select Instance State and choose Terminate. Confirm
that you want to terminate your running instance.

It may take a number of seconds for the instance to close and to be removed from your list
of instances. That’s it.

12.7 Summary

In this tutorial you discovered how to train large XGBoost models on Amazon cloud infrastructure.
Specifically, you learned:

� How to start and configure a Linux server instance on Amazon EC2 for XGBoost.

� How to install all of the required software needed to run the XGBoost library in Python.

� How to transfer data and code to your server and train a large model making use of all of
the cores on the server.

This concludes Part III of this book. Next, in Part IV you will discover how to configure
gradient boosting models and tune the hyperparameters, starting with an introduction to
common configuration heuristics.

Part IV

XGBoost Tuning

76

Chapter 13

How to Configure the Gradient
Boosting Algorithm

Gradient boosting is one of the most powerful techniques for applied machine learning and as
such is quickly becoming one of the most popular. But how do you configure gradient boosting
on your problem? In this tutorial you will discover how you can configure gradient boosting on
your machine learning problem by looking at configurations reported in books, papers and as a
result of competitions. After reading this tutorial, you will know:

� How to configure gradient boosting according to the original sources.

� Ideas for configuring the algorithm from defaults and suggestions in standard implementa-
tions.

� Rules of thumb for configuring gradient boosting and XGBoost from a top Kaggle com-
petitors.

Let’s get started.

13.1 Configuration Advice from Primary Sources

In the 1999 paper Greedy Function Approximation: A Gradient Boosting Machine, Jerome
Friedman comments on the trade-off between the number of trees (M) and the learning rate (v):

The v-M trade-off is clearly evident; smaller values of v give rise to larger optimal
M -values. They also provide higher accuracy, with a diminishing return for v < 0.125.
The misclassification error rate is very flat for M > 200, so that optimal M-values
for it are unstable. [...] the qualitative nature of these results is fairly universal.

He suggests to first set a large value for the number of trees, then tune the shrinkage
parameter to achieve the best results. Studies in the paper preferred a shrinkage value of 0.1, a
number of trees in the range 100 to 500 and the number of terminal nodes in a tree between 2
and 8. In the 1999 paper Stochastic Gradient Boosting, Friedman reiterated the preference for
the shrinkage parameter:

77

13.1. Configuration Advice from Primary Sources 78

The “shrinkage” parameter 0 < v < 1 controls the learning rate of the procedure.
Empirically [...], it was found that small values (v ≤ 0.1) lead to much better
generalization error.

In the paper, Friedman introduces and empirically investigates stochastic gradient boosting
(row-based sub-sampling). He finds that almost all subsampling percentages are better than
so-called deterministic boosting and perhaps 30%-to-50% is a good value to choose on some
problems and 50%-to-80% on others.

... the best value of the sampling fraction [...] is approximately 40% (f =
0.4) [...] However, sampling only 30% or even 20% of the data at each iteration
gives considerable improvement over no sampling at all, with a corresponding
computational speed-up by factors of 3 and 5 respectively.

He also studied the effect of the number of terminal nodes in trees finding values like 3 and
6 better than larger values like 11, 21 and 41.

In both cases the optimal tree size as averaged over 100 targets is L = 6. Increasing
the capacity of the base learner by using larger trees degrades performance through
“over-fitting”.

In his talk titled Gradient Boosting Machine Learning at H2O1, Trevor Hastie made the
comment that in general gradient boosting performs better than random forest, which in turn
performs better than individual decision trees.

Gradient Boosting > Random Forest > Bagging > Single Trees

Chapter 10 titled Boosting and Additive Trees of the book The Elements of Statistical
Learning: Data Mining, Inference, and Prediction is dedicated to boosting. In it they provide
both heuristics for configuring gradient boosting as well as some empirical studies. They
comment that a good value the number of nodes in the tree (J) is about 6, with generally good
values in the range of 4-to-8.

Although in many applications J = 2 will be insufficient, it is unlikely that
J > 10 will be required. Experience so far indicates that 4 ≤ J ≤ 8 works well in
the context of boosting, with results being fairly insensitive to particular choices in
this range.

They suggest monitoring the performance on a validation dataset in order to calibrate the
number of trees and to use an early stopping procedure once performance on the validation
dataset begins to degrade. As in Friedman’s first gradient boosting paper, they comment on the
trade-off between the number of trees (M) and the learning rate (v) and recommend a small
value for the learning rate < 0.1.

Smaller values of v lead to larger values of M for the same training risk, so that
there is a tradeoff between them. [...] In fact, the best strategy appears to be to set
v to be very small (v < 0.1) and then choose M by early stopping.

Also, as in Friedman’s stochastic gradient boosting paper, they recommend a subsampling
percentage (n) without replacement with a value of about 50%.

A typical value for n can be 1
2
, although for large N , n can be substantially

smaller than 1
2
.

1https://www.youtube.com/watch?v=wPqtzj5VZus

https://www.youtube.com/watch?v=wPqtzj5VZus

13.2. Configuration Advice From R 79

13.2 Configuration Advice From R

The gradient boosting algorithm is implemented in R as the gbm package. Reviewing the
package documentation2, the gbm() function specifies sensible defaults:

� n.trees = 100 (number of trees).

� interaction.depth = 1 (number of leaves).

� n.minobsinnode = 10 (minimum number of samples in tree terminal nodes).

� shrinkage = 0.001 (learning rate).

It is interesting to note that a smaller shrinkage factor is used and that stumps are the
default. The small shrinkage is explained by Ridgeway next. In the vignette for using the gbm
package in R titled Generalized Boosted Models: A guide to the gbm package3, Greg Ridgeway
provides some usage heuristics. He suggest firs setting the learning rate (lambda) to as small as
possible then tuning the number of trees (iterations or T) using cross validation.

In practice I set lambda to be as small as possible and then select T by cross-
validation. Performance is best when lambda is as small as possible performance
with decreasing marginal utility for smaller and smaller lambda.

He comments on his rationale for setting the default shrinkage to the small value of 0.001
rather than 0.1.

It is important to know that smaller values of shrinkage (almost) always give
improved predictive performance. That is, setting shrinkage=0.001 will almost
certainly result in a model with better out-of-sample predictive performance than
setting shrinkage=0.01. [...] The model with shrinkage=0.001 will likely require ten
times as many iterations as the model with shrinkage=0.01

Ridgeway also uses quite large numbers of trees (called iterations here), thousands rather
than hundreds.

I usually aim for 3,000 to 10,000 iterations with shrinkage rates between 0.01
and 0.001.

13.3 Configuration Advice From scikit-learn

The Python library provides an implementation of gradient boosting for classification called the
GradientBoostingClassifier class and regression called the GradientBoostingRegressor

class. It is useful to review the default configuration for the algorithm in this library. There are
many parameters, but below are a few key defaults.

� learning rate = 0.1 (shrinkage).

2https://cran.r-project.org/web/packages/gbm/gbm.pdf
3http://www.saedsayad.com/docs/gbm2.pdf

https://cran.r-project.org/web/packages/gbm/gbm.pdf
http://www.saedsayad.com/docs/gbm2.pdf

13.4. Configuration Advice From XGBoost 80

� n estimators = 100 (number of trees).

� max depth = 3.

� min samples split = 2.

� min samples leaf = 1.

� subsample = 1.0.

It is interesting to note that the default shrinkage does match Friedman and that the tree
depth is not set to stumps like the R package. A tree depth of 3 (if the created tree was
symmetrical) will have 8 leaf nodes, matching the upper bound of the preferred number of
terminal nodes in Friedman’s studies (alternately max leaf nodes can be set). In the scikit-learn
user guide under the section titled Gradient Tree Boosting4 the authors comment that setting
the maximum leaf nodes has a similar effect to setting the max depth to one minus the maximum
leaf nodes, but results in worse performance.

We found that max leaf nodes=k gives comparable results to max depth=k − 1
but is significantly faster to train at the expense of a slightly higher training error.

In a small study demonstrating regularization methods for gradient boosting titled Gradient
Boosting regularization5, the results show the benefit of using both shrinkage and sub-sampling.

13.4 Configuration Advice From XGBoost

The XGBoost library is dedicated to the gradient boosting algorithm. It too specifies default
parameters that are interesting to note, firstly the XGBoost Parameters page6:

� eta = 0.3 (a.k.a learning rate).

� max depth = 6.

� subsample = 1.

This shows a higher learning rate and a larger max depth than we see in most studies and
other libraries. Similarly, we can summarize the default parameters for XGBoost in the Python
API Reference7.

� max depth = 3.

� learning rate = 0.1.

� n estimators = 100.

� subsample = 1.

These defaults are generally more in-line with scikit-learn defaults and recommendations
from the papers. In a talk to TechEd Europe titled xgboost: An R package for Fast and Accurate
Gradient Boosting8, when asked how to configure XGBoost, Tong He suggested the three most

4http://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting
5http://goo.gl/aHSSCA
6https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
7https://xgboost.readthedocs.io/en/latest/python/python_api.html
8https://www.youtube.com/watch?v=0IhraqUVJ_E

http://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting
http://goo.gl/aHSSCA
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://xgboost.readthedocs.io/en/latest/python/python_api.html
https://www.youtube.com/watch?v=0IhraqUVJ_E

13.4. Configuration Advice From XGBoost 81

important parameters to tune are: the number of trees, tree depth and learning rate. He also
provide a terse configuration strategy for new problems:

1. Run the default configuration (and presumably review learning curves?).

2. If the system is overlearning, slow the learning down (using shrinkage?).

3. If the system is underlearning, speed the learning up to be more aggressive (using
shrinkage?).

In Owen Zhang’s talk to the NYC Data Science Academy in 2015 titled Winning Data Science
Competitions9, he provides some general tips for configuring gradient boost with XGBoost.
Owen is a heavy user of gradient boosting.

My confession: I (over)use GBM. When in doubt, use GBM.

He provides some tips for configuring gradient boosting:

� Target 500-to-1000 trees and then tune the learning rate (n estimators).

� Set the number of samples in the leaf nodes to enough observations needed to make a
good mean estimate (min child weight).

� Configure the interaction depth to about 10 or more (max depth).

In an updated slide deck for the same talk10, he provides a table of common parameters he
uses for XGBoost, summarized as follows:

� Number of Trees (n estimators) set to a fixed value between 100 and 1000, depending
on the dataset size.

� Learning Rate (learning rate) simplified to the ratio: [2 to 10]
trees

, depending on the
number of trees.

� Row Sampling (subsample) grid searched values in the range [0.5, 0.75, 1.0].

� Column Sampling (colsample bytree and maybe colsample bylevel) grid searched
values in the range [0.4, 0.6, 0.8, 1.0].

� Min Leaf Weight (min child weight) simplified to the ratio 3
rare events

, where rare events

is the percentage of rare event observations in the dataset.

� Tree Size (max depth) grid searched values in the rage [4, 6, 8, 10].

� Min Split Gain (gamma) fixed with a value of zero.

9https://www.youtube.com/watch?v=LgLcfZjNF44
10http://goo.gl/OqIRIc

https://www.youtube.com/watch?v=LgLcfZjNF44
http://goo.gl/OqIRIc

13.5. Summary 82

What is interesting to note is that this world class practitioner does not fiddle with gamma

or the terms for the regularization penalty (reg alpha and reg lambda). In a similar talk by
Owen at ODSC Boston 2015 titled Open Source Tools and Data Science Competitions11, he
again summarized common parameters he uses. We can see some minor differences that may be
relevant:

� Number of Trees and Learning Rate: Fix the number of trees at around 100 (rather
than 1000) and then tune the learning rate.

� Max Tree Depth: Start with a value of 6 and presumably tune from there.

� Min Leaf Weight: Use a modified ratio of 1
sqrt(rare events)

, where rare events is the
percentage of rare event observations in the dataset.

� Column Sampling: Grid search values in the range of 0.3 to 0.5 (more constrained).

� Row Sampling: Fixed at the value 1.0.

� Min Split Gain: Fixed at the value 0.0.

Finally, Abhishek Thakur, in his tutorial titled Approaching (Almost) Any Machine Learning
Problem12 provided a similar table listing out key XGBoost parameters and suggestions for
tuning. The tuning ranges for each parameter are much the same with some notable differences.
Specifically, he suggests grid searching values for the Min Split Gain (gamma) and the regular-
ization penalty terms (reg alpha and reg lambda). He also explore large values for tree size
(max depth) values above 10 as well as fixed Min Leaf Weight (min child weight) values in
the range of about 1 to 10.

13.5 Summary

In this tutorial you got insight into how to configure gradient boosting for your own machine
learning problems. Specifically you learned:

� About the trade-off in the number of trees and the shrinkage and good defaults for
sub-sampling.

� Different ideas on limiting tree size and good defaults for tree depth and the number of
terminal nodes.

� Grid search strategies used by a top Kaggle competition winner.

In the next tutorial you will learn how to design controlled experiments to tune the number
and size of trees in an XGBoost model.

11https://www.youtube.com/watch?v=7YnVZrabTA8
12https://goo.gl/fOyhF3

https://www.youtube.com/watch?v=7YnVZrabTA8
https://goo.gl/fOyhF3

Chapter 14

Tune the Number and Size of Decision
Trees with XGBoost

Gradient boosting involves the creation and addition of decision trees sequentially, each at-
tempting to correct the mistakes of the learners that came before it. This raises the question as
to how many trees (weak learners or estimators) to configure in your gradient boosting model
and how big each tree should be. In this tutorial you will discover how to design a systematic
experiment to select the number and size of decision trees to use on your problem. After reading
this tutorial you will know:

� How to evaluate the effect of adding more decision trees to your XGBoost model.

� How to evaluate the effect of creating larger decision trees to your XGBoost model.

� How to investigate the relationship between the number and depth of trees on your
problem.

Let’s get started.

14.1 Tune the Number of Decision Trees

Most implementations of gradient boosting are configured by default with a relatively small
number of trees, such as hundreds or thousands. The general reason is that on most problems,
adding more trees beyond a limit does not improve the performance of the model. The reason
is in the way that the boosted tree model is constructed, sequentially where each new tree
attempts to model and correct for the errors made by the sequence of previous trees. Quickly,
the model reaches a point of diminishing returns.

We can demonstrate this point of diminishing returns easily on the Otto dataset (see
Section 11.1). The number of trees (or rounds) in an XGBoost model is specified to the
XGBClassifier or XGBRegressor class in the n estimators argument. The default in the
XGBoost library is 100. Using scikit-learn we can perform a grid search of the n estimators

model parameter, evaluating a series of values from 50 to 350 with a step size of 50 (50, 150,
200, 250, 300, 350).

grid search

model = XGBClassifier()

83

14.1. Tune the Number of Decision Trees 84

n_estimators = range(50, 400, 50)

param_grid = dict(n_estimators=n_estimators)

kfold = StratifiedKFold(label_encoded_y, n_folds=10, shuffle=True, random_state=7)

grid_search = GridSearchCV(model, param_grid, scoring="log_loss", n_jobs=-1, cv=kfold)

result = grid_search.fit(X, label_encoded_y)

Listing 14.1: Example of Grid Searching the Number of Trees.

We can perform this grid search on the Otto dataset, using 10-fold cross validation, requiring
60 models to be trained (6 configurations × 10 folds). The full code listing is provided below
for completeness.

XGBoost on Otto dataset, Tune n_estimators

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn.grid_search import GridSearchCV

from sklearn.cross_validation import StratifiedKFold

from sklearn.preprocessing import LabelEncoder

import matplotlib

matplotlib.use('Agg')

from matplotlib import pyplot

load data

data = read_csv('train.csv')

dataset = data.values

split data into X and y

X = dataset[:,0:94]

y = dataset[:,94]

encode string class values as integers

label_encoded_y = LabelEncoder().fit_transform(y)

grid search

model = XGBClassifier()

n_estimators = range(50, 400, 50)

param_grid = dict(n_estimators=n_estimators)

kfold = StratifiedKFold(label_encoded_y, n_folds=10, shuffle=True, random_state=7)

grid_search = GridSearchCV(model, param_grid, scoring="log_loss", n_jobs=-1, cv=kfold)

result = grid_search.fit(X, label_encoded_y)

summarize results

print("Best: %f using %s" % (result.best_score_, result.best_params_))

means, stdevs = [], []

for params, mean_score, scores in result.grid_scores_:

stdev = scores.std()

means.append(mean_score)

stdevs.append(stdev)

print("%f (%f) with: %r" % (mean_score, stdev, params))

plot

pyplot.errorbar(n_estimators, means, yerr=stdevs)

pyplot.title("XGBoost n_estimators vs Log Loss")

pyplot.xlabel('n_estimators')

pyplot.ylabel('Log Loss')

pyplot.savefig('n_estimators.png')

Listing 14.2: Worked Example of Tuning the Number of Trees.

Running this example prints the following results.

Best: -0.001152 using {'n_estimators': 250}

-0.010970 (0.001083) with: {'n_estimators': 50}

14.1. Tune the Number of Decision Trees 85

-0.001239 (0.001730) with: {'n_estimators': 100}

-0.001163 (0.001715) with: {'n_estimators': 150}

-0.001153 (0.001702) with: {'n_estimators': 200}

-0.001152 (0.001702) with: {'n_estimators': 250}

-0.001152 (0.001704) with: {'n_estimators': 300}

-0.001153 (0.001706) with: {'n_estimators': 350}

Listing 14.3: Sample Output of Worked Example of Tuning the Number of Trees.

We can see that the cross validation log loss scores are negative. This is because the scikit-
learn cross validation framework inverted them. The reason is that internally, the framework
requires that all metrics that are being optimized are to be maximized, whereas log loss is a
minimization metric. It can easily be made maximizing by inverting the scores.

The best number of trees was n estimators=250 resulting in a log loss of 0.001152, but
really not a significant difference from n estimators=200. In fact, there is not a large relative
difference in the number of trees between 100 and 350 if we plot the results. Below is line graph
showing the relationship between the number of trees and mean (inverted) logarithmic loss,
with the standard deviation shown as error bars.

Figure 14.1: Plot of the Results from Tuning the Number of Trees in XGBoost

14.2. Tune the Size of Decision Trees 86

14.2 Tune the Size of Decision Trees

In gradient boosting, we can control the size of decision trees, also called the number of layers
or the depth. Shallow trees are expected to have poor performance because they capture few
details of the problem and are generally referred to as weak learners. Deeper trees generally
capture too many details of the problem and overfit the training dataset, limiting the ability
to make good predictions on new data. Generally, boosting algorithms are configured with
weak learners, decision trees with few layers, sometimes as simple as just a root node, also
called a decision stump rather than a decision tree. The maximum depth can be specified in the
XGBClassifier and XGBRegressor wrapper classes for XGBoost in the max depth parameter.
This parameter takes an integer value and defaults to a value of 3.

model = XGBClassifier(max_depth=3)

Listing 14.4: Example of Setting the Max Tree Depth.

We can tune this hyperparameter of XGBoost using the grid search infrastructure in scikit-
learn on the Otto dataset. Below we evaluate odd values for max depth between 1 and 9 (1, 3,
5, 7, 9). Each of the 5 configurations is evaluated using 10-fold cross validation, resulting in 50
models being constructed. The full code listing is provided below for completeness.

XGBoost on Otto dataset, Tune max_depth

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn.grid_search import GridSearchCV

from sklearn.cross_validation import StratifiedKFold

from sklearn.preprocessing import LabelEncoder

import matplotlib

matplotlib.use('Agg')

from matplotlib import pyplot

load data

data = read_csv('train.csv')

dataset = data.values

split data into X and y

X = dataset[:,0:94]

y = dataset[:,94]

encode string class values as integers

label_encoded_y = LabelEncoder().fit_transform(y)

grid search

model = XGBClassifier()

max_depth = range(1, 11, 2)

print(max_depth)

param_grid = dict(max_depth=max_depth)

kfold = StratifiedKFold(label_encoded_y, n_folds=10, shuffle=True, random_state=7)

grid_search = GridSearchCV(model, param_grid, scoring="log_loss", n_jobs=-1, cv=kfold,

verbose=1)

result = grid_search.fit(X, label_encoded_y)

summarize results

print("Best: %f using %s" % (result.best_score_, result.best_params_))

means, stdevs = [], []

for params, mean_score, scores in result.grid_scores_:

stdev = scores.std()

means.append(mean_score)

stdevs.append(stdev)

print("%f (%f) with: %r" % (mean_score, stdev, params))

14.2. Tune the Size of Decision Trees 87

plot

pyplot.errorbar(max_depth, means, yerr=stdevs)

pyplot.title("XGBoost max_depth vs Log Loss")

pyplot.xlabel('max_depth')

pyplot.ylabel('Log Loss')

pyplot.savefig('max_depth.png')

Listing 14.5: Worked Example of Tuning the Tree Depth.

Running this example prints the log loss for each max depth. The optimal configuration was
max depth=5 resulting in a log loss of 0.001236.

Best: -0.001236 using {'max_depth': 5}

-0.026235 (0.000898) with: {'max_depth': 1}

-0.001239 (0.001730) with: {'max_depth': 3}

-0.001236 (0.001701) with: {'max_depth': 5}

-0.001237 (0.001701) with: {'max_depth': 7}

-0.001237 (0.001701) with: {'max_depth': 9}

Listing 14.6: Sample Output of Worked Example of Tuning the Tree Depth.

Reviewing the plot of log loss scores, we can see a marked jump from max depth=1 to
max depth=3 then pretty even performance for the rest the values of max depth. Although the
best score was observed for max depth=5, it is interesting to note that there was practically little
difference between using max depth=3 or max depth=7. This suggests a point of diminishing
returns in max depth on a problem that you can tease out using grid search. A graph of
max depth values is plotted against (inverted) logarithmic loss below.

14.3. Tune The Number and Size of Trees 88

Figure 14.2: Plot of the Results from Tuning the Tree Size in XGBoost

14.3 Tune The Number and Size of Trees

There is a relationship between the number of trees in the model and the depth of each tree.
We would expect that deeper trees would result in fewer trees being required in the model, and
the inverse where simpler trees (such as decision stumps) require many more trees to achieve
similar results. We can investigate this relationship by evaluating a grid of n estimators and
max depth configuration values. To avoid the evaluation taking too long, we will limit the total
number of configuration values evaluated. Parameters were chosen to tease out the relationship
rather than optimize the model.

We will create a grid of 4 different n estimators values (50, 100, 150, 200) and 4 different
max depth values (2, 4, 6, 8) and each combination will be evaluated using 10-fold cross
validation. A total of 4 × 4 × 10 or 160 models will be trained and evaluated. The full code
listing is provided below.

XGBoost on Otto dataset, Tune n_estimators and max_depth

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn.grid_search import GridSearchCV

from sklearn.cross_validation import StratifiedKFold

from sklearn.preprocessing import LabelEncoder

import matplotlib

14.3. Tune The Number and Size of Trees 89

matplotlib.use('Agg')

from matplotlib import pyplot

import numpy

load data

data = read_csv('train.csv')

dataset = data.values

split data into X and y

X = dataset[:,0:94]

y = dataset[:,94]

encode string class values as integers

label_encoded_y = LabelEncoder().fit_transform(y)

grid search

model = XGBClassifier()

n_estimators = [50, 100, 150, 200]

max_depth = [2, 4, 6, 8]

print(max_depth)

param_grid = dict(max_depth=max_depth, n_estimators=n_estimators)

kfold = StratifiedKFold(label_encoded_y, n_folds=10, shuffle=True, random_state=7)

grid_search = GridSearchCV(model, param_grid, scoring="log_loss", n_jobs=-1, cv=kfold,

verbose=1)

result = grid_search.fit(X, label_encoded_y)

summarize results

print("Best: %f using %s" % (result.best_score_, result.best_params_))

means, stdevs = [], []

for params, mean_score, scores in result.grid_scores_:

stdev = scores.std()

means.append(mean_score)

stdevs.append(stdev)

print("%f (%f) with: %r" % (mean_score, stdev, params))

plot results

scores = [x[1] for x in result.grid_scores_]

scores = numpy.array(scores).reshape(len(max_depth), len(n_estimators))

for i, value in enumerate(max_depth):

pyplot.plot(n_estimators, scores[i], label='depth: ' + str(value))

pyplot.legend()

pyplot.xlabel('n_estimators')

pyplot.ylabel('Log Loss')

pyplot.savefig('n_estimators_vs_max_depth.png')

Listing 14.7: Worked Example of Tuning the Number of Trees and Tree Depth.

Running the code produces a listing of the logloss for each parameter pair.

Best: -0.001141 using {'n_estimators': 200, 'max_depth': 4}

-0.012127 (0.001130) with: {'n_estimators': 50, 'max_depth': 2}

-0.001351 (0.001825) with: {'n_estimators': 100, 'max_depth': 2}

-0.001278 (0.001812) with: {'n_estimators': 150, 'max_depth': 2}

-0.001266 (0.001796) with: {'n_estimators': 200, 'max_depth': 2}

-0.010545 (0.001083) with: {'n_estimators': 50, 'max_depth': 4}

-0.001226 (0.001721) with: {'n_estimators': 100, 'max_depth': 4}

-0.001150 (0.001704) with: {'n_estimators': 150, 'max_depth': 4}

-0.001141 (0.001693) with: {'n_estimators': 200, 'max_depth': 4}

-0.010341 (0.001059) with: {'n_estimators': 50, 'max_depth': 6}

-0.001237 (0.001701) with: {'n_estimators': 100, 'max_depth': 6}

-0.001163 (0.001688) with: {'n_estimators': 150, 'max_depth': 6}

-0.001154 (0.001679) with: {'n_estimators': 200, 'max_depth': 6}

-0.010342 (0.001059) with: {'n_estimators': 50, 'max_depth': 8}

14.3. Tune The Number and Size of Trees 90

-0.001237 (0.001701) with: {'n_estimators': 100, 'max_depth': 8}

-0.001161 (0.001688) with: {'n_estimators': 150, 'max_depth': 8}

-0.001153 (0.001679) with: {'n_estimators': 200, 'max_depth': 8}

Listing 14.8: Sample Output of Worked Example of Tuning the Number of Trees and Tree
Depth.

We can see that the best result was achieved with a n estimators=200 and max depth=4,
similar to the best values found from the previous two rounds of standalone parameter tun-
ing (n estimators=250, max depth=5). We can plot the relationship between each series of
max depth values for a given n estimators.

Figure 14.3: Plot of the Results from Tining the Number of Trees and Max Tree Depth in
XGBoost.

The lines overlap making it hard to see the relationship, but generally we can see the
interaction we expect. Fewer boosted trees are required with increased tree depth. Further, we
would expect the increase complexity provided by deeper individual trees to result in greater
overfitting of the training data which would be exacerbated by having more trees, in turn
resulting in a lower cross validation score. We don’t see this here as our trees are not that deep
nor do we have too many. Exploring this expectation is left as an exercise you could explore
yourself.

14.4. Summary 91

14.4 Summary

In this tutorial you discovered how to tune the number and depth of decision trees when using
gradient boosting with XGBoost in Python. Specifically you learned:

� How to tune the number of decision trees in an XGBoost model.

� How to tune the depth of decision trees in an XGBoost model.

� How to jointly tune the number of trees and tree depth in an XGBoost model.

In the next tutorial you will discover how you can tune the learning rate and number of
trees in an XGBoost model.

Chapter 15

Tune Learning Rate and Number of
Trees with XGBoost

A problem with gradient boosted decision trees is that they are quick to learn and overfit
training data. One effective way to slow down learning in the gradient boosting model is to
use a learning rate, also called shrinkage (or eta in XGBoost documentation). In this tutorial
you will discover the effect of the learning rate in gradient boosting and how to tune it on your
machine learning problem using the XGBoost library in Python. After reading this tutorial you
will know:

� The effect learning rate has on the gradient boosting model.

� How to tune learning rate on your machine learning on your problem.

� How to tune the trade-off between the number of boosted trees and learning rate on your
problem.

Let’s get started.

15.1 Slow Learning in Gradient Boosting with a Learn-

ing Rate

Gradient boosting involves creating and adding trees to the model sequentially. New trees are
created to correct the residual errors in the predictions from the existing sequence of trees.
The effect is that the model can quickly fit, then overfit the training dataset. A technique to
slow down the learning in the gradient boosting model is to apply a weighting factor for the
corrections by new trees when added to the model. This weighting is called the shrinkage factor
or the learning rate, depending on the literature or the tool.

Naive gradient boosting is the same as gradient boosting with shrinkage where the shrinkage
factor is set to 1.0. Setting values less than 1.0 has the effect of making less corrections for each
tree added to the model. This in turn results in more trees that must be added to the model. It
is common to have small values in the range of 0.1 to 0.3, as well as values less than 0.1. Let’s
investigate the effect of the learning rate on a standard machine learning dataset.

92

15.2. Tuning Learning Rate 93

15.2 Tuning Learning Rate

When creating gradient boosting models with XGBoost using the scikit-learn wrapper, the
learning rate parameter can be set to control the weighting of new trees added to the model.
We can use the grid search capability in scikit-learn to evaluate the effect on logarithmic loss of
training a gradient boosting model with different learning rate values. We will hold the number
of trees constant at the default of 100 and evaluate of suite of standard values for the learning
rate on the Otto dataset (see Section 11.1).

learning_rate = [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3]

Listing 15.1: Example of Learning Rates to Evaluate.

There are 6 variations of learning rate to be tested and each variation will be evaluated
using 10-fold cross validation, meaning that there is a total of 6 × 10 or 60 XGBoost models to
be trained and evaluated. The log loss for each learning rate will be printed as well as the value
that resulted in the best performance.

XGBoost on Otto dataset, Tune learning_rate

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn.grid_search import GridSearchCV

from sklearn.cross_validation import StratifiedKFold

from sklearn.preprocessing import LabelEncoder

import matplotlib

matplotlib.use('Agg')

from matplotlib import pyplot

load data

data = read_csv('train.csv')

dataset = data.values

split data into X and y

X = dataset[:,0:94]

y = dataset[:,94]

encode string class values as integers

label_encoded_y = LabelEncoder().fit_transform(y)

grid search

model = XGBClassifier()

learning_rate = [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3]

param_grid = dict(learning_rate=learning_rate)

kfold = StratifiedKFold(label_encoded_y, n_folds=10, shuffle=True, random_state=7)

grid_search = GridSearchCV(model, param_grid, scoring="log_loss", n_jobs=-1, cv=kfold)

result = grid_search.fit(X, label_encoded_y)

summarize results

print("Best: %f using %s" % (result.best_score_, result.best_params_))

means, stdevs = [], []

for params, mean_score, scores in result.grid_scores_:

stdev = scores.std()

means.append(mean_score)

stdevs.append(stdev)

print("%f (%f) with: %r" % (mean_score, stdev, params))

plot

pyplot.errorbar(learning_rate, means, yerr=stdevs)

pyplot.title("XGBoost learning_rate vs Log Loss")

pyplot.xlabel('learning_rate')

pyplot.ylabel('Log Loss')

15.2. Tuning Learning Rate 94

pyplot.savefig('learning_rate.png')

Listing 15.2: Worked Example of Tuning the Learning Rate.

Running this example prints the best result as well as the log loss for each of the evaluated
learning rates.

Best: -0.001156 using {'learning_rate': 0.2}

-2.155497 (0.000081) with: {'learning_rate': 0.0001}

-1.841069 (0.000716) with: {'learning_rate': 0.001}

-0.597299 (0.000822) with: {'learning_rate': 0.01}

-0.001239 (0.001730) with: {'learning_rate': 0.1}

-0.001156 (0.001684) with: {'learning_rate': 0.2}

-0.001158 (0.001666) with: {'learning_rate': 0.3}

Listing 15.3: Sample Output of Worked Example of Tuning the Learning Rate.

Interestingly, we can see that the best learning rate was 0.2. This is a high learning rate and
it suggest that perhaps the default number of trees of 100 is too low and needs to be increased.
We can also plot the effect of the learning rate of the (inverted) log loss scores, although the
log10-like spread of chosen learning rate values means that most are squashed down the
left-hand side of the plot near zero.

Figure 15.1: Plot of the Results from Tuning the Learning Rate in XGBoost

Next, we will look at varying the number of trees whilst varying the learning rate.

15.3. Tuning Learning Rate and the Number of Trees 95

15.3 Tuning Learning Rate and the Number of Trees

Smaller learning rates generally require more trees to be added to the model. We can explore
this relationship by evaluating a grid of parameter pairs. The number of decision trees will be
varied from 100 to 500 and the learning rate varied on a log10 scale from 0.0001 to 0.1.

n_estimators = [100, 200, 300, 400, 500]

learning_rate = [0.0001, 0.001, 0.01, 0.1]

Listing 15.4: Example of Learning Rates and Number of Trees to Evaluate.

There are 5 variations of n estimators and 4 variations of learning rate. Each combi-
nation will be evaluated using 10-fold cross validation, so that is a total of 4 × 5 × 10 or 200
XGBoost models that must be trained and evaluated. The expectation is that for a given
learning rate, performance will improve and then plateau as the number of trees is increased.
The full code listing is provided below.

XGBoost on Otto dataset, Tune learning_rate and n_estimators

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn.grid_search import GridSearchCV

from sklearn.cross_validation import StratifiedKFold

from sklearn.preprocessing import LabelEncoder

import matplotlib

matplotlib.use('Agg')

from matplotlib import pyplot

import numpy

load data

data = read_csv('train.csv')

dataset = data.values

split data into X and y

X = dataset[:,0:94]

y = dataset[:,94]

encode string class values as integers

label_encoded_y = LabelEncoder().fit_transform(y)

grid search

model = XGBClassifier()

n_estimators = [100, 200, 300, 400, 500]

learning_rate = [0.0001, 0.001, 0.01, 0.1]

param_grid = dict(learning_rate=learning_rate, n_estimators=n_estimators)

kfold = StratifiedKFold(label_encoded_y, n_folds=10, shuffle=True, random_state=7)

grid_search = GridSearchCV(model, param_grid, scoring="log_loss", n_jobs=-1, cv=kfold)

result = grid_search.fit(X, label_encoded_y)

summarize results

print("Best: %f using %s" % (result.best_score_, result.best_params_))

means, stdevs = [], []

for params, mean_score, scores in result.grid_scores_:

stdev = scores.std()

means.append(mean_score)

stdevs.append(stdev)

print("%f (%f) with: %r" % (mean_score, stdev, params))

plot results

scores = [x[1] for x in result.grid_scores_]

scores = numpy.array(scores).reshape(len(learning_rate), len(n_estimators))

for i, value in enumerate(learning_rate):

pyplot.plot(n_estimators, scores[i], label='learning_rate: ' + str(value))

15.3. Tuning Learning Rate and the Number of Trees 96

pyplot.legend()

pyplot.xlabel('n_estimators')

pyplot.ylabel('Log Loss')

pyplot.savefig('n_estimators_vs_learning_rate.png')

Listing 15.5: Worked Example of Tuning the Learning Rate and Number of Trees.

Running the example prints the best combination as well as the log loss for each evaluated
pair.

Best: -0.001152 using {'n_estimators': 300, 'learning_rate': 0.1}

-2.155497 (0.000081) with: {'n_estimators': 100, 'learning_rate': 0.0001}

-2.115540 (0.000159) with: {'n_estimators': 200, 'learning_rate': 0.0001}

-2.077211 (0.000233) with: {'n_estimators': 300, 'learning_rate': 0.0001}

-2.040386 (0.000304) with: {'n_estimators': 400, 'learning_rate': 0.0001}

-2.004955 (0.000373) with: {'n_estimators': 500, 'learning_rate': 0.0001}

-1.841069 (0.000716) with: {'n_estimators': 100, 'learning_rate': 0.001}

-1.572384 (0.000692) with: {'n_estimators': 200, 'learning_rate': 0.001}

-1.364543 (0.000699) with: {'n_estimators': 300, 'learning_rate': 0.001}

-1.196490 (0.000713) with: {'n_estimators': 400, 'learning_rate': 0.001}

-1.056687 (0.000728) with: {'n_estimators': 500, 'learning_rate': 0.001}

-0.597299 (0.000822) with: {'n_estimators': 100, 'learning_rate': 0.01}

-0.214311 (0.000929) with: {'n_estimators': 200, 'learning_rate': 0.01}

-0.080729 (0.000982) with: {'n_estimators': 300, 'learning_rate': 0.01}

-0.030533 (0.000949) with: {'n_estimators': 400, 'learning_rate': 0.01}

-0.011769 (0.001071) with: {'n_estimators': 500, 'learning_rate': 0.01}

-0.001239 (0.001730) with: {'n_estimators': 100, 'learning_rate': 0.1}

-0.001153 (0.001702) with: {'n_estimators': 200, 'learning_rate': 0.1}

-0.001152 (0.001704) with: {'n_estimators': 300, 'learning_rate': 0.1}

-0.001153 (0.001708) with: {'n_estimators': 400, 'learning_rate': 0.1}

-0.001153 (0.001708) with: {'n_estimators': 500, 'learning_rate': 0.1}

Listing 15.6: Sample Output of Worked Example of Tuning the Learning Rate and Number of
Trees.

We can see that the best result observed was a learning rate of 0.1 with 300 trees. It is hard
to pick out trends from the raw data and small negative log loss results. Below is a plot of each
learning rate as a series showing log loss performance as the number of trees is varied.

15.3. Tuning Learning Rate and the Number of Trees 97

Figure 15.2: Plot of the Results from Tuning the Learning Rate and Number of Trees in
XGBoost

We can see that the expected general trend holds, where the performance (inverted log loss)
improves as the number of trees is increased. Performance is generally poor for the smaller
learning rates, suggesting that a much larger number of trees may be required. We may need to
increase the number of trees to many thousands which may be quite computationally expensive.
The results for learning rate=0.1 are obscured due the large y-axis scale of the graph. We
can extract the performance measure for just learning rate=0.1 and plot them directly.

Plot performance for learning_rate=0.1

from matplotlib import pyplot

n_estimators = [100, 200, 300, 400, 500]

loss = [-0.001239, -0.001153, -0.001152, -0.001153, -0.001153]

pyplot.plot(n_estimators, loss)

pyplot.xlabel('n_estimators')

pyplot.ylabel('Log Loss')

pyplot.title('XGBoost learning_rate=0.1 n_estimators vs Log Loss')

pyplot.show()

Listing 15.7: Plot Performance of learning rate

Running this code shows the increased performance as the number of trees are added,
followed by a plateau in performance across 400 and 500 trees.

15.4. Summary 98

Figure 15.3: Plot of Learning Rate=0.1 and varying the Number of Trees in XGBoost.

15.4 Summary

In this tutorial you discovered the effect of weighting the addition of new trees to a gradient
boosting model, called shrinkage or the learning rate. Specifically, you learned:

� That adding a learning rate is intended to slow down the adaptation of the model to the
training data.

� How to evaluate a range of learning rate values on your machine learning problem.

� How to evaluate the relationship of varying both the number of trees and the learning
rate on your problem.

In the next tutorial you will discover how to tune the sampling methods for stochastic
gradient boosting models in XGBoost.

Chapter 16

Tuning Stochastic Gradient Boosting
with XGBoost

A simple technique for ensembling decision trees involves training trees on subsamples of the
training dataset. Subsets of the rows in the training data can be taken to train individual trees
called bagging. When subsets of rows of the training data are also taken when calculating each
split point, this is called random forest. These techniques can also be used in the gradient tree
boosting model in a technique called stochastic gradient boosting. In this tutorial you will
discover stochastic gradient boosting and how to tune the sampling parameters using XGBoost
with scikit-learn in Python. After reading this tutorial you will know:

� The rationale behind training trees on subsamples of data and how this can be used in
gradient boosting.

� How to tune row-based subsampling in XGBoost using scikit-learn.

� How to tune column-based subsampling by both tree and split-point in XGBoost.

Let’s get started.

16.1 Stochastic Gradient Boosting

Gradient boosting is a greedy procedure. New decision trees are added to the model to correct
the residual error of the existing model. Each decision tree is created using a greedy search
procedure to select split points that best minimize an objective function. This can result in
trees that use the same attributes and even the same split points again and again. Bagging
is a technique where a collection of decision trees are created, each from a different random
subset of rows from the training data. The effect is that better performance is achieved from
the ensemble of trees because the randomness in the sample allows slightly different trees to be
created, adding variance to the ensembled predictions.

Random forest takes this one step further, by allowing the features (columns) to be subsam-
pled when choosing split points, adding further variance to the ensemble of trees. These same
techniques can be used in the construction of decision trees in gradient boosting in a variation
called stochastic gradient boosting. It is common to use aggressive sub-samples of the training
data such as 40% to 80%.

99

16.2. Tutorial Overview 100

16.2 Tutorial Overview

In this tutorial we are going to look at the effect of different subsampling techniques in gradient
boosting. We will tune three different flavors of stochastic gradient boosting supported by the
XGBoost library in Python, specifically:

1. Subsampling of rows in the dataset when creating each tree.

2. Subsampling of columns in the dataset when creating each tree.

3. Subsampling of columns for each split in the dataset when creating each tree.

16.3 Tuning Row Subsampling

Row subsampling involves selecting a random sample of the training dataset without replacement.
Row subsampling can be specified in the scikit-learn wrapper of the XGBoost class in the
subsample parameter. The default is 1.0 which is no sub-sampling. We can use the grid search
capability built into scikit-learn to evaluate the effect of different subsample values from 0.1 to
1.0 on the Otto dataset (see Section 11.1).

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0]

Listing 16.1: Example of Row Sampling Rates To Evaluate.

There are 9 variations of subsample and each model will be evaluated using 10-fold cross
validation, meaning that 9 × 10 or 90 models need to be trained and tested. The complete code
listing is provided below.

XGBoost on Otto dataset, tune subsample

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn.grid_search import GridSearchCV

from sklearn.cross_validation import StratifiedKFold

from sklearn.preprocessing import LabelEncoder

import matplotlib

matplotlib.use('Agg')

from matplotlib import pyplot

load data

data = read_csv('train.csv')

dataset = data.values

split data into X and y

X = dataset[:,0:94]

y = dataset[:,94]

encode string class values as integers

label_encoded_y = LabelEncoder().fit_transform(y)

grid search

model = XGBClassifier()

subsample = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0]

param_grid = dict(subsample=subsample)

kfold = StratifiedKFold(label_encoded_y, n_folds=10, shuffle=True, random_state=7)

grid_search = GridSearchCV(model, param_grid, scoring="log_loss", n_jobs=-1, cv=kfold)

result = grid_search.fit(X, label_encoded_y)

summarize results

print("Best: %f using %s" % (result.best_score_, result.best_params_))

16.3. Tuning Row Subsampling 101

means, stdevs = [], []

for params, mean_score, scores in result.grid_scores_:

stdev = scores.std()

means.append(mean_score)

stdevs.append(stdev)

print("%f (%f) with: %r" % (mean_score, stdev, params))

plot

pyplot.errorbar(subsample, means, yerr=stdevs)

pyplot.title("XGBoost subsample vs Log Loss")

pyplot.xlabel('subsample')

pyplot.ylabel('Log Loss')

pyplot.savefig('subsample.png')

Listing 16.2: Worked Example of Tuning the Row Sampling Rate.

Running this example prints the best configuration as well as the log loss for each tested
configuration. We can see that the best results achieved were 0.3, or training trees using a 30%
sample of the training dataset.

Best: -0.000647 using {'subsample': 0.3}

-0.001156 (0.000286) with: {'subsample': 0.1}

-0.000765 (0.000430) with: {'subsample': 0.2}

-0.000647 (0.000471) with: {'subsample': 0.3}

-0.000659 (0.000635) with: {'subsample': 0.4}

-0.000717 (0.000849) with: {'subsample': 0.5}

-0.000773 (0.000998) with: {'subsample': 0.6}

-0.000877 (0.001179) with: {'subsample': 0.7}

-0.001007 (0.001371) with: {'subsample': 0.8}

-0.001239 (0.001730) with: {'subsample': 1.0}

Listing 16.3: Sample Output of Worked Example of Tuning the Row Sampling Rate.

We can plot these mean and standard deviation log loss values to get a better understanding
of how performance varies with the subsample value.

16.4. Tuning Column Subsampling By Tree 102

Figure 16.1: Plot of the Results from Tuning the Row Sample Rate in XGBoost

We can see that indeed 30% has the best mean performance, but we can also see that as
the ratio increased, the variance in performance grows quite markedly. It is interesting to note
that the mean performance of all subsample values outperforms the mean performance without
subsampling (subsample=1.0).

16.4 Tuning Column Subsampling By Tree

We can also create a random sample of the features (or columns) to use prior to creating each
decision tree in the boosted model. In the XGBoost wrapper for scikit-learn, this is controlled
by the colsample bytree parameter. The default value is 1.0 meaning that all columns are
used in each decision tree. We can evaluate values for colsample bytree between 0.1 and 1.0
incrementing by 0.1.

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0]

Listing 16.4: Example of Column Sampling Rates By Tree To Evaluate.

The full code listing is provided below.

XGBoost on Otto dataset, tune colsample_bytree

from pandas import read_csv

from xgboost import XGBClassifier

16.4. Tuning Column Subsampling By Tree 103

from sklearn.grid_search import GridSearchCV

from sklearn.cross_validation import StratifiedKFold

from sklearn.preprocessing import LabelEncoder

import matplotlib

matplotlib.use('Agg')

from matplotlib import pyplot

load data

data = read_csv('train.csv')

dataset = data.values

split data into X and y

X = dataset[:,0:94]

y = dataset[:,94]

encode string class values as integers

label_encoded_y = LabelEncoder().fit_transform(y)

grid search

model = XGBClassifier()

colsample_bytree = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0]

param_grid = dict(colsample_bytree=colsample_bytree)

kfold = StratifiedKFold(label_encoded_y, n_folds=10, shuffle=True, random_state=7)

grid_search = GridSearchCV(model, param_grid, scoring="log_loss", n_jobs=-1, cv=kfold)

result = grid_search.fit(X, label_encoded_y)

summarize results

print("Best: %f using %s" % (result.best_score_, result.best_params_))

means, stdevs = [], []

for params, mean_score, scores in result.grid_scores_:

stdev = scores.std()

means.append(mean_score)

stdevs.append(stdev)

print("%f (%f) with: %r" % (mean_score, stdev, params))

plot

pyplot.errorbar(colsample_bytree, means, yerr=stdevs)

pyplot.title("XGBoost colsample_bytree vs Log Loss")

pyplot.xlabel('colsample_bytree')

pyplot.ylabel('Log Loss')

pyplot.savefig('colsample_bytree.png')

Listing 16.5: Worked Example of Tuning the Column Sampling Rate By Tree.

Running this example prints the best configuration as well as the log loss for each tested
configuration. We can see that the best performance for the model was colsample bytree=1.0.
This suggests that subsampling columns on this problem does not add value.

Best: -0.001239 using {'colsample_bytree': 1.0}

-0.298955 (0.002177) with: {'colsample_bytree': 0.1}

-0.092441 (0.000798) with: {'colsample_bytree': 0.2}

-0.029993 (0.000459) with: {'colsample_bytree': 0.3}

-0.010435 (0.000669) with: {'colsample_bytree': 0.4}

-0.004176 (0.000916) with: {'colsample_bytree': 0.5}

-0.002614 (0.001062) with: {'colsample_bytree': 0.6}

-0.001694 (0.001221) with: {'colsample_bytree': 0.7}

-0.001306 (0.001435) with: {'colsample_bytree': 0.8}

-0.001239 (0.001730) with: {'colsample_bytree': 1.0}

Listing 16.6: Sample Output of Worked Example of Tuning the Column Sampling Rate By
Tree.

16.5. Tuning Column Subsampling By Split 104

Plotting the results, we can see the performance of the model plateau (at least at this scale)
with values between 0.5 to 1.0.

Figure 16.2: Plot of the Results from Tuning the Column Sample Rate By Tree in XGBoost

16.5 Tuning Column Subsampling By Split

Rather than subsample the columns once for each tree, we can subsample them at each split
in the decision tree. In principle, this is the approach used in random forest. We can set the
size of the sample of columns used at each split in the colsample bylevel parameter in the
XGBoost wrapper classes for scikit-learn. As before, we will vary the ratio from 10% to the
default of 100%. The full code listing is provided below.

XGBoost on Otto dataset, tune colsample_bylevel

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn.grid_search import GridSearchCV

from sklearn.cross_validation import StratifiedKFold

from sklearn.preprocessing import LabelEncoder

import matplotlib

matplotlib.use('Agg')

from matplotlib import pyplot

load data

16.5. Tuning Column Subsampling By Split 105

data = read_csv('train.csv')

dataset = data.values

split data into X and y

X = dataset[:,0:94]

y = dataset[:,94]

encode string class values as integers

label_encoded_y = LabelEncoder().fit_transform(y)

grid search

model = XGBClassifier()

colsample_bylevel = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0]

param_grid = dict(colsample_bylevel=colsample_bylevel)

kfold = StratifiedKFold(label_encoded_y, n_folds=10, shuffle=True, random_state=7)

grid_search = GridSearchCV(model, param_grid, scoring="log_loss", n_jobs=-1, cv=kfold)

result = grid_search.fit(X, label_encoded_y)

summarize results

print("Best: %f using %s" % (result.best_score_, result.best_params_))

means, stdevs = [], []

for params, mean_score, scores in result.grid_scores_:

stdev = scores.std()

means.append(mean_score)

stdevs.append(stdev)

print("%f (%f) with: %r" % (mean_score, stdev, params))

plot

pyplot.errorbar(colsample_bylevel, means, yerr=stdevs)

pyplot.title("XGBoost colsample_bylevel vs Log Loss")

pyplot.xlabel('colsample_bylevel')

pyplot.ylabel('Log Loss')

pyplot.savefig('colsample_bylevel.png')

Listing 16.7: Worked Example of Tuning the Column Sampling Rate By Split.

Running this example prints the best configuration as well as the log loss for each tested
configuration. We can see that the best results were achieved by setting colsample bylevel

to 70%, resulting in an (inverted) log loss of -0.001062, which is better than -0.001239 seen
when setting the per-tree column sampling to 100%. This suggest to not give up on column
subsampling if per-tree results suggest using 100% of columns, and to instead try per-split
column subsampling.

Best: -0.001062 using {'colsample_bylevel': 0.7}

-0.159455 (0.007028) with: {'colsample_bylevel': 0.1}

-0.034391 (0.003533) with: {'colsample_bylevel': 0.2}

-0.007619 (0.000451) with: {'colsample_bylevel': 0.3}

-0.002982 (0.000726) with: {'colsample_bylevel': 0.4}

-0.001410 (0.000946) with: {'colsample_bylevel': 0.5}

-0.001182 (0.001144) with: {'colsample_bylevel': 0.6}

-0.001062 (0.001221) with: {'colsample_bylevel': 0.7}

-0.001071 (0.001427) with: {'colsample_bylevel': 0.8}

-0.001239 (0.001730) with: {'colsample_bylevel': 1.0}

Listing 16.8: Sample Output of Worked Example of Tuning the Column Sampling Rate By
Split.

We can plot the performance of each colsample bylevel variation. The results show
relatively low variance and seemingly a plateau in performance after a value of 0.3 at this scale.

16.6. Summary 106

Figure 16.3: Plot of the Results from Tuning the Column Sample Rate By Split in XGBoost

16.6 Summary

In this tutorial you discovered stochastic gradient boosting with XGBoost in Python. Specifically,
you learned:

� About stochastic boosting and how you can subsample your training data to improve the
generalization of your model

� How to tune row subsampling with XGBoost in Python and scikit-learn.

� How to tune column subsampling with XGBoost both per-tree and per-split.

This concludes Part IV of this book. Next in Part V the book will be concluded and you will
discover resources that you can use to get help with gradient boosting and the XGBoost library.

Part V

Conclusions

107

Chapter 17

How Far You Have Come

You made it. Well done. Take a moment and look back at how far you have come.

� You learned about the gradient boosting algorithm and variations such as the addition of
shrinkage, penalties and stochastic gradient boosting.

� You developed your first XGBoost model, learned how to best prepare data for modeling
with XGBoost and discovered how to effectively evaluate the performance of trained
models.

� You learned how to serialized trained models for later use and to evaluate the importance
of input variables. You also learned how to scale up XGBoost models to use all of the
cores on your system, and how to best use a large number of scores on very hardware
systems in the cloud.

� You learned how to configure gradient boosted models including common configuration
heuristics. You also learned how to design controlled experiments to tune important
hyperparameters in the model.

Don’t make light of this. You have come a long way in a short amount of time. You have
developed the important and valuable skill of being able to work through machine learning
problems with gradient boosting end-to-end using Python. This is a platform that is used by a
majority of working data scientist professionals. The sky is the limit.

I want to take a moment and sincerely thank you for letting me help you start your XGBoost
journey with in Python. I hope you keep learning and have fun as you continue to master
machine learning.

108

Chapter 18

Getting More Help

This book has given you a foundation for applying XGBoost in your own machine learning
projects, but there is still a lot more to learn. In this chapter you will discover the places that
you can go to get more help with the XGBoost library as well as gradient boosting in general.

18.1 Gradient Boosting Papers

The seminal papers on gradient boosting are quite readable, containing lots of useful tips for
configuring and applying the algorithm to your problem. Below are a few select papers you may
consider reading.

� Arcing the edge, 1998.
http://goo.gl/Kedl7V

� Boosting Algorithms as Gradient Descent in Function Space, 1999.
http://goo.gl/Tz9hNg

� Greedy Function Approximation: A Gradient Boosting Machine, 1999.
https://goo.gl/5dbi4V

� Stochastic Gradient Boosting, 1999.
https://goo.gl/LHKp4T

� XGBoost: A Scalable Tree Boosting System, 2016 (XGBoost paper).
http://goo.gl/aFfSef

18.2 Gradient Boosting in Textbooks

Most good machine learning textbooks cover the gradient boosting algorithm in great detail.
These can provide a good resource if you are looking to better understand how the algorithm
works.

� Section 8.2.3 Boosting, page 321, An Introduction to Statistical Learning: with Applications
in R.
http://www.amazon.com/dp/1461471370?tag=inspiredalgor-20

109

http://goo.gl/Kedl7V
http://goo.gl/Tz9hNg
https://goo.gl/5dbi4V
https://goo.gl/LHKp4T
http://goo.gl/aFfSef
http://www.amazon.com/dp/1461471370?tag=inspiredalgor-20

18.3. Python Machine Learning 110

� Section 8.6 Boosting, page 203 and Section 14.5 Stochastic Gradient Boosting, page 390,
in Applied Predictive Modeling.
http://www.amazon.com/dp/1461468485?tag=inspiredalgor-20

� Section 16.4 Boosting, page 556, Machine Learning: A Probabilistic Perspective.
http://www.amazon.com/dp/0262018020?tag=inspiredalgor-20

� Chapter 10 Boosting and Additive Trees, page 337, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction.
http://www.amazon.com/dp/0387848576?tag=inspiredalgor-20

18.3 Python Machine Learning

Python is a growing platform for applied machine learning. The strong attraction is because
Python is a fully featured programming language (unlike R) and as such you can use the same
code and libraries in developing your model as you use to deploy the model into operations.
The premier machine learning library in Python is scikit-learn built on top of SciPy.

� Visit the scikit-learn home page to learn more about the library and it’s capabilities.
http://scikit-learn.org

� Visit the SciPy home page to learn more about the SciPy platform for scientific computing
in Python.
http://scipy.org

� Machine Learning Mastery with Python, the precursor to this book.
https://machinelearningmastery.com/machine-learning-with-python

18.4 XGBoost Library

XGBoost is a fantastic but fast moving library. Large updates are still being made to the API
and it is good to stay abreast of changes. You also need to know where you can ask questions
to get more help with the platform.

� XGBoost GitHub repository containing code, documentation and demos.
https://github.com/dmlc/xgboost

� XGBoost Documentation Homepage.
https://xgboost.readthedocs.io

� XGBoost Python API.
http://xgboost.readthedocs.io/en/latest/python/python_api.html

� XGBoost User Group for asking detailed questions about the library.
https://groups.google.com/forum/#!forum/xgboost-user/

� Awesome XGBoost, listing useful resources.
https://github.com/dmlc/xgboost/blob/master/demo/README.md

I am always here to help if have any questions. You can email me directly via
jason@MachineLearningMastery.com and put this book title in the subject of your email.

http://www.amazon.com/dp/1461468485?tag=inspiredalgor-20
http://www.amazon.com/dp/0262018020?tag=inspiredalgor-20
http://www.amazon.com/dp/0387848576?tag=inspiredalgor-20
http://scikit-learn.org
http://scipy.org
https://machinelearningmastery.com/machine-learning-with-python
https://github.com/dmlc/xgboost
https://xgboost.readthedocs.io
http://xgboost.readthedocs.io/en/latest/python/python_api.html
https://groups.google.com/forum/#!forum/xgboost-user/
https://github.com/dmlc/xgboost/blob/master/demo/README.md

	I Introduction
	Welcome
	Book Organization
	Requirements For This Book
	Your Outcomes From Reading This Book
	What This Book is Not
	Summary

	II XGBoost Basics
	A Gentle Introduction to Gradient Boosting
	Origin of Boosting
	AdaBoost the First Boosting Algorithm
	Generalization of AdaBoost as Gradient Boosting
	How Gradient Boosting Works
	Improvements to Basic Gradient Boosting
	Summary

	A Gentle Introduction to XGBoost
	What is XGBoost?
	XGBoost Features
	Why Use XGBoost?
	What Algorithm Does XGBoost Use?
	Summary

	Develop Your First XGBoost Model in Python with scikit-learn
	Install XGBoost for Use in Python
	Problem Description: Predict Onset of Diabetes
	Load and Prepare Data
	Train the XGBoost Model
	Make Predictions with XGBoost Model
	Tie it All Together
	Summary

	Data Preparation for Gradient Boosting
	Label Encode String Class Values
	One Hot Encode Categorical Data
	Support for Missing Data
	Summary

	How to Evaluate XGBoost Models
	Evaluate Models With Train and Test Sets
	Evaluate Models With k-Fold Cross Validation
	What Techniques to Use When
	Summary

	Visualize Individual Trees Within A Model
	Plot a Single XGBoost Decision Tree
	Summary

	III XGBoost Advanced
	Save and Load Trained XGBoost Models
	Serialize Models with Pickle
	Serialize Models with Joblib
	Summary

	Feature Importance With XGBoost and Feature Selection
	Feature Importance in Gradient Boosting
	Manually Plot Feature Importance
	Using theBuilt-in XGBoost Feature Importance Plot
	Feature Selection with XGBoost Feature Importance Scores
	Summary

	Monitor Training Performance and Early Stopping
	Early Stopping to Avoid Overfitting
	Monitoring Training Performance With XGBoost
	Evaluate XGBoost Models With Learning Curves
	Early Stopping With XGBoost
	Summary

	Tune Multithreading Support for XGBoost
	Problem Description: Otto Dataset
	Impact of the Number of Threads
	Parallelism When Cross Validating XGBoost Models
	Summary

	Train XGBoost Models in the Cloud with Amazon Web Services
	Tutorial Overview
	Setup Your AWS Account (if needed)
	Launch Your Server Instance
	Login and Configure
	Train an XGBoost Model
	Close Your AWS Instance
	Summary

	IV XGBoost Tuning
	How to Configure the Gradient Boosting Algorithm
	Configuration Advice from Primary Sources
	Configuration Advice From R
	Configuration Advice From scikit-learn
	Configuration Advice From XGBoost
	Summary

	Tune the Number and Size of Decision Trees with XGBoost
	Tune the Number of Decision Trees
	Tune the Size of Decision Trees
	Tune The Number and Size of Trees
	Summary

	Tune Learning Rate and Number of Trees with XGBoost
	Slow Learning in Gradient Boosting with a Learning Rate
	Tuning Learning Rate
	Tuning Learning Rate and the Number of Trees
	Summary

	Tuning Stochastic Gradient Boosting with XGBoost
	Stochastic Gradient Boosting
	Tutorial Overview
	Tuning Row Subsampling
	Tuning Column Subsampling By Tree
	Tuning Column Subsampling By Split
	Summary

	V Conclusions
	How Far You Have Come
	Getting More Help
	Gradient Boosting Papers
	Gradient Boosting in Textbooks
	Python Machine Learning
	XGBoost Library

