
Machine Learning Algorithms In
Layman’s Terms, Part 1
(i.e. how to explain machine learning
algorithms to your grandma)

As a recent graduate of the Flatiron School’s Data Science Bootcamp,
I’ve been inundated with advice on how to ace technical interviews. A
soft skill that keeps coming to the forefront is the ability to explain
complex machine learning algorithms to a non-technical person.

This series of posts is me sharing with the world how I would explain
all the machine learning topics I come across on a regular basis...to
my grandma. Some get a bit in-depth, others less so, but all I believe
are useful to a non-Data Scientist. The topics in this first part are:

Gradient Descent / Line of Best Fit

Audrey Lorberfeld Follow

Mar 2 · 14 min read

•

https://wordstream‑files‑prod.s3.amazonaws.com/s3fs‑public/machine‑

learning.png

https://flatironschool.com/free-courses/data-science-bootcamp-prep/
https://medium.com/p/d0368d769a7b/edit#9c09
https://towardsdatascience.com/@AudreyLorberfeld
https://towardsdatascience.com/@AudreyLorberfeld
https://wordstream-files-prod.s3.amazonaws.com/s3fs-public/machine-learning.png


Linear Regression (includes regularization)

Logistic Regression

In the upcoming parts of this series, I’ll be going over:

Decision Trees

Random Forest

SVM

Naive Bayes

RNNs & CNNs

K-NN

K-Means

DBScan

Hierarchical Clustering

Agglomerative Clustering

eXtreme Gradient Boosting

AdaBoost

Before we start, a quick aside on the difference(s) between algorithms
and models, taken from this great Quora post:

“a model is like a Vending Machine, which given an input (money),
will give you some output (a soda can maybe) . . . An algorithm is
what is used to train a model, all the decisions a model is supposed
to take based on the given input, to give an expected output. For
example, an algorithm will decide based on the dollar value of the
money given, and the product you chose, whether the money is
enough or not, how much balance you are supposed to get [back],
and so on.”

To summarize, an algorithm is the mathematical life force behind a
model. What differentiates models are the algorithms they employ,
but without a model, an algorithm is just a mathematical equation
hanging out with nothing to do.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

https://medium.com/p/d0368d769a7b/edit#cdab
https://medium.com/p/d0368d769a7b/edit#ef31
https://www.quora.com/What-is-the-difference-between-an-algorithm-and-a-model-in-machine-learning


With that, onwards!

Gradient Descent / Line of
Best Fit
(While this first one isn’t traditionally thought of as a machine-
learning algorithm, understanding gradient descent is vital to
understanding how many machine learning algorithms work and are
optimized.)

Metograndma:

“Basically, gradient descent helps us get the most accurate predictions
based on some data.

Let me explain a bit more – let’s say you have a big list of the height
and weight of every person you know. And let’s say you graph that
data. It would probably look something like this:

Now let’s say there’s a local guessing competition where the person to
guess someone’s weight correctly, given their height, gets a cash
prize. Besides using your eyes to size the person up, you’d have to rely
pretty heavily on the list of heights and weights you have at your
disposal, right?

Our fake height and weight data set (…strangely geometric)



So, based on the graph of your data above, you could probably make
some pretty good predictions if only you had a line on the graph that
showed the trend of the data. With such a line, if you were given
someone’s height, you could just find that height on the x-axis, go up
until you hit your trend line, and then see what the corresponding
weight is on the y-axis, right?

But how in the world do you find that perfect line? You could
probably do it manually, but it would take forever. That’s where
gradient descent comes in!

It does this by trying to minimize something called RSS (the residual
sum of squares), which is basically the sum of the squares of the
differences between our dots and our line, i.e. how far away our real
data (dots) is from our line (red line). We get a smaller and smaller
RSS by changing where our line is on the graph, which makes
intuitive sense — we want our line to be wherever it’s closest to the
majority of our dots.

We can actually take this further and graph each different line’s
parameters on something called a cost curve. Using gradient descent,
we can get to the bottom of our cost curve. At the bottom of our cost
curve is our lowest RSS!

Our “line of best fit” is in red above.



There are more granular aspects of gradient descent like “step sizes”
(i.e. how fast we want to approach the bottom of our skateboard
ramp) and “learning rate” (i.e. what direction we want to take to
reach the bottom), but in essence: gradient descent gets our line of
best fit by minimizing the space between our dots and our line of best
fit. Our line of best fit, in turn, allows us to make predictions!”

Linear Regression
Metograndma:

“Super simply, linear regression is a way we analyze the strength of the
relationship between 1 variable (our “outcome variable”) and 1 or
more other variables (our “independent variables”).

A hallmark of linear regression, like the name implies, is that the
relationship between the independent variables and our outcome
variable is linear. For our purposes, all that means is that when we
plot the independent variable(s) against the outcome variable, we can
see the points start to take on a line-like shape, like they do below.

(If you can’t plot your data, a good way to think about linearity is by
answering the question: does a certain amount of change in my

Gradient Descent visualized (using MatplotLib), from the incredible Data

Scientist Bhavesh Bhatt

https://www.linkedin.com/feed/update/urn:li:ugcPost:6503460920944099328


independent variable(s) result in the same amount of change in my
outcome variable? If yes, your data is linear!)

Another important thing to know about linear regression is that the
outcome variable, or the thing that changes depending on how we
change our other variables, is always continuous. But what does that
mean?

Let’s say we wanted to measure what effect elevation has on rainfall
in New York State: our outcome variable (or the variable we care
about seeing a change in) would be rainfall, and our independent
variable would be elevation. With linear regression, that outcome
variable would have to be specifically how many inches of rainfall, as
opposed to just a True/False category indicating whether or not it
rained at x elevation. That is because our outcome variable has to be
continuous — meaning that it can be any number (including fractions)
in a range of numbers.

The coolest thing about linear regression is that it can predict things
using the line of best fit that we spoke about before! If we run a linear
regression analysis on our rainfall vs. elevation scenario above, we

This looks a ton like what we did above! That’s because the line of best fit

we discussed before IS our “regression line” in linear regression. The line

of best fit shows us the best possible linear relationship between our

points. That, in turn, allows us to make predictions.



can find the line of best fit like we did in the gradient descent section
(this time shown in blue), and then we can use that line to make
educated guesses as to how much rain one could reasonably expect at
some elevation.”

Ridge & LASSO Regression
Me, continuing to hopefullynottooscaredgrandma:

“So linear regression’s not that scary, right? It’s just a way to see what
effect something has on something else. Cool.

Now that we know about simple linear regression, there are even
cooler linear regression-like things we can discuss, like ridge
regression.

Like gradient descent’s relationship to linear regression, there’s one
back-story we need to cover to understand ridge regression, and
that’s regularization.

Simply put, data scientists use regularization methods to make sure
that their models only pay attention to independent variables that
have a significant impact on their outcome variable.

You’re probably wondering why we care if our model uses
independent variables that don’t have an impact. If they don’t have
an impact, wouldn’t our regression just ignore them? The answer is
no! We can get more into the details of machine learning later, but
basically we create these models by feeding them a bunch of
“training” data. Then, we see how good our models are by testing
them on a bunch of “test” data. So, if we train our model with a bunch
of independent variables, with some that matter and some that don’t,
our model will perform super well on our training data (because we
are tricking it to think all of what we fed it matters), but super poorly
on our test data. This is because our model isn’t flexible enough to
work well on new data that doesn’t have every. single. little. thing we
fed it during the training phase. When this happens, we say that the
model is “overfit.”

To understand over-fitting, let’s look at a (lengthy) example:



Let’s say you’re a new mother and your baby boy loves pasta. As the
months go by, you make it a habit to feed your baby pasta with the
kitchen window open because you like the breeze. Then your baby’s
cousin gets him a onesie, and you start a tradition of only feeding
him pasta when he’s in his special onesie. Then you adopt a dog who
diligently sits beneath the baby’s highchair to catch the stray
noodles while he’s eating his pasta . At this point, you only feed your
baby pasta while he’s wearing the special onesie …and the kitchen
window’s open …and the dog is underneath the highchair. As a new
mom you naturally correlate your son’s love of pasta with all of
these features: the open kitchen window, the onesie, and the dog.
Right now, your mental model of the baby’s feeding habits is pretty
complex!

One day, you take a trip to grandma’s. You have to feed your baby
dinner (pasta, of course) because you’re staying the weekend. You
go into a panic because there is no window in this kitchen, you
forgot his onesie at home, and the dog is with the neighbors! You
freak out so much that you forget all about feeding your baby his
dinner and just put him to bed.

Wow. You performed pretty poorly when you were faced with a
scenario you hadn’t faced before. At home you were perfect at it,
though! It doesn’t make sense!

After revisiting your mental model of your baby’s eating habits and
disregarding all the “noise,” or things you think probably don’t
contribute to your boy actually loving pasta, you realize that the
only thing that really matters is that it’s cooked by you.

The next night at grandma’s you feed him his beloved pasta in her
windowless kitchen while he’s wearing just a diaper and there’s no
dog to be seen. And everything goes fine! Your idea of why he loves
pasta is a lot simpler now.

That is exactly what regularization can do for a machine learning
model.



So, regularization helps your model only pay attention to what
matters in your data and gets rid of the noise.

In all types of regularization, there is something called a penalty
term (the Greek letter lambda: λ). This penalty term is what
mathematically shrinks the noise in our data.

In ridge regression, sometimes known as “L2 regression,” the penalty
term is the sum of the squared value of the coefficients of your
variables. (Coefficients in linear regression are basically just numbers
attached to each independent variable that tell you how much of an
effect each will have on the outcome variable. Sometimes we refer to
them as “weights.”) In ridge regression, your penalty term shrinks the
coefficients of your independent variables, but never actually does
away with them totally. This means that with ridge regression, noise
in your data will always be taken into account by your model a little
bit.

Another type of regularization is LASSO, or “L1” regularization. In
LASSO regularization, instead of penalizing every feature in your
data, you only penalize the high coefficient-features. Additionally,

On the left: LASSO regression (you can see that the coefficients,

represented by the red rungs, can equal zero when they cross the y‑axis).

On the right: Ridge regression (you can see that the coefficients approach,

but never equal zero, because they never cross the y‑axis). Meta‑credit:

“Regularization in Machine Learning” by Prashant Gupta

https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a
https://towardsdatascience.com/@prashantgupta17


LASSO has the ability to shrink coefficients all the way to zero. This
essentially deletes those features from your data set because they now
have a “weight” of zero (i.e. they’re essentially being multiplied by
zero).” With LASSO regression, your model has the potential to get
rid of most all of the noise in your dataset. This is super helpful in
some scenarios!

Logistic Regression
Metograndma:

“So, cool, we have linear regression down. Linear regression = what
effect some variable(s) has on another variable, assuming that 1) the
outcome variable is continuous and 2) the relationship(s) between
the variable(s) and the outcome variable is linear.

But what if your outcome variable is “categorical”? That’s where
logistic regression comes in!

Categorical variables are just variables that can be only fall within in a
single category. Good examples are days of the week —if you have a
bunch of data points about things that happened on certain days of
the week, there is no possibility that you’ll ever get a datapoint that
could have happened sometime between Monday and Tuesday. If
something happened on Monday, it happened on Monday, end of
story.

But if we think of how our linear regression model works, how would
it be possible for us to figure out a line of best fit for something
categorical? It would be impossible! That is why logistic regression
models output a probability of your datapoint being in one category
or another, rather than a regular numeric value. That’s why logistic
regression models are primarily used for classification.



But back to both linear regression and logistic regression being
“linear.” If we can’t come up with a line of best fit in logistic
regression, where does the linear part of logistic regression come in?
Well in the world of logistic regression, the outcome variable has a
linear relationship with the logodds of the independent variables.

But what in the world are the log-odds? Okay here we go….

Odds
The core of logistic regression = odds.

Intuitively, odds are something we understand —they are the
probability of success to the probability of failure. In other words,
they are the probability of something happening compared to the
probability of something not happening.

Scary looking graph that’s actual super intuitive if you stare at it long

enough. From Brandon Rohrer via LinkedIn.

https://www.linkedin.com/feed/update/urn:li:activity:6493249916125663232/


For a concrete example of odds, we can think of a class of students.
Let’s say the odds of women passing the test are 5:1, while the odds of
men passing the test are 3:10. This means that, of 6 women, 5 are
likely to pass the test, and that, of 13 men, 3 are likely to pass the test.
The total class size here is 19 students (6 women+ 13 men).

So…aren’t odds just the same as
probability?
Sadly, no! While probability measures the ratio of the number of
times something happened out of the total number of times
everything happened (e.g. 10 heads out 30 coin tosses), odds
measures the ratio of the number of times something happened to
the number of times something didn’t happen (e.g. 10 heads to 20
tails).

That means that while probability will always be confined to a scale of
0–1, odds can continuously grow from 0 to positive infinity! This
presents a problem for our logistic regression model, because we
know that our expected output is a probability (i.e. a number from
0–1).

So, how do we get from odds to
probability?
Let’s think of a classification problem…say your favorite soccer team
winning over another soccer team. You might say that the odds of
your team losing are 1:6, or 0.17. And the odds of your team winning,
because they’re a great team, are 6:1, or 6. You could represent those
odds on a number line like below:

Now, you wouldn’t want your model to predict that your team will
win on a future game just because the magnitude of the odds of them

https://www.youtube.com/watch?v=ARfXDSkQf1Y

https://www.youtube.com/watch?v=ARfXDSkQf1Y


winning in the past is so much bigger than the magnitude of the odds
of them losing in the past, right? There is so much more you want
your model to take into account (maybe weather, maybe starting
players, etc.)! So, to get the magnitude of the odds to be evenly
distributed, or symmetrical, we calculate something called the log
odds.

Log‑Odds

Log-odds is a shorthand way of referring to taking the natural
logarithm of the odds. When you take the natural logarithm of
something, you basically make it more normally distributed. When
we make something more normally distributed, we are essentially
putting it on a scale that’s super easy to work with.

When we take the log-odds, we transform the scale of our odds from
0-positive infinity to negative infinity-positive infinity. You can see
this well on the bell curve above.

Even though we still need our output to be between 0–1, the
symmetry we achieve by taking the log-odds gets us closer to the
output we want than we were before!

What we mean by “normally distributed”: the classic bell‑shaped curve!



Logit Function
The “logit function” is simply the math we do to get the log-odds!

The logit function puts our odds on a scale of negative infinity to
positive infinity by taking their natural logarithm, as you can see
above.

Sigmoid Function
Okay, but we’re still not at the point where our model is giving us a
probability. Right now, all we have are numbers on a scale of negative
infinity to positive infinity. Enter: the sigmoid function.

The sigmoid function, named after the s-shape it assumes when
graphed, is just the inverse of the log-odds. By taking the inverse of
the log-odds, we are mapping our values from negative infinity-
positive infinity to 0–1. This, in turn, let’s us get probabilities, which
are exactly what we want!

Some scary math thingymabob. Er, I mean the logit function.

The logit function, graphed.



As opposed to the graph of the logit function where our y-values
range from negative infinity to positive infinity, the graph of our
sigmoid function has y-values from 0–1. Yay!

With this, we can now plug in any x-value and trace it back to its
predicted y-value. That y-value will be the probability of that x-value
being in one class or another.

Maximum Likelihood Estimation
…Not finished just yet.

You remember how we found the line of best fit during linear
regression by minimizing the RSS (a method sometimes called the
“ordinary least squares,” or OLS, method)? Here, we use something
called Maximum Likelihood Estimation (MLE) to get our most
accurate predictions.

MLE gets us the most accurate predictions by determining
the parameters of the probability distribution that best
describe our data.

Why would we care about figuring out the distribution of our data?
Because it’s cool! …But really, it just makes our data easier to work
with and makes our model generalizable to lots of different data.

The lovely sigmoid function.

https://hackernoon.com/introduction-to-machine-learning-algorithms-logistic-regression-cbdd82d81a36


Super generally, to get the MLE for our data, we take the data points
on our s-curve and add up their log-likelihoods. Basically, we want to
find the s-curve that maximizes the log-likelihood of our data. We
just keep calculating the log-likelihood for every log-odds line (sort of
like what we do with the RSS of each line-of-best-fit in linear
regression) until we get the largest number we can.

(As an aside — we revert back to the world of natural logs because logs
are the easiest form of number to work with sometimes. This is
because logs are “monotonically increasing” functions, which
basically just means that it consistently increases or decreases.)

The estimates that we come up with in the MLE process are those
that maximize something called the “likelihood function” (which we
won’t go into here).”

Logistic Regression Details, Part 2

https://www.youtube.com/watch?v=BfKanl1aSG0


And that’s it! Now you know all about gradient descent, linear
regression, and logistic regression.”

Coming Up
Coming up on Audrey-explains-machine-learning-algorithms-to-her-
grandma: Decision Trees, Random Forest, and SVM. Stay tuned!

Update: Part 2 is now live! Check it out here.

. . .

If you have any feedback, please reach out by commenting on this
post, messaging me on LinkedIn, or shooting me an email
(aulorbe[at]gmail.com).

http://incolors.club/collectiongdwn‑great‑job‑funny‑meme.htm

https://medium.com/@AudreyLorberfeld/machine-learning-algorithms-in-laymans-terms-part-2-a0a74df9a9ac
https://www.linkedin.com/in/audreysage/
http://incolors.club/collectiongdwn-great-job-funny-meme.htm





