
Boosting with AdaBoost and
Gradient Boosting

Have you ever been or seen a Kaggle competition? Most of the prize
winners do it by using boosting algorithms. Why is AdaBoost, GBM,
and XGBoost the goto algorithm of champions?

First of all, if you never heard of Ensemble Learning or Boosting
check out my post “Ensemble Learning: When everybody takes a
guess…I guess!” so you can understand better these algorithms.

More informed? Good, let’s start!

So, the idea of Boosting just as well any other ensemble algorithm is
to combine several weak learners into a stronger one. The general
idea of Boosting algorithms is to try predictors sequentially, where
each subsequent model attempts to fix the errors of its predecessor.
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Adaptive Boosting
Adaptive Boosting, or most commonly known AdaBoost, is a
Boosting algorithm. Shocker! The method this algorithm uses to
correct its predecessor is by paying more attention to underfitted
training instances by the previous model. Hence, at every new
predictor the focus will be, each time, on the harder cases.

Let’ts take the example of the image. To build a AdaBoost classifier,
imagine that as a first base classifier we train a Decision Tree
algorithm to make predictions on our training data. Now, following
the methodology of AdaBoost, the weight of the misclassified training
instances is increased. The second classifier is trained and
acknowledges the updated weights and it repeats the procedure over
and over again.

At the end of every model prediction we end
up boosting the weights of the misclassified
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instances so that the next model does a
better job on them, and so on.

This sequential learning technique sounds a bit like Gradient
Descent, except that instead of tweaking a single predictor’s
parameter to minimise the cost function, AdaBoost adds predictors to
the ensemble gradually making it better. The great disadvantage of
this algorithm is that the model cannot be parallelized since each
predictor can only be trained after the previous one has been trained
and evaluated.

Below are the steps for performing the AdaBoost algorithm:

Initially, all observations are given equal weights.

A model is built on a subset of data.

Using this model, predictions are made on the whole dataset.

Errors are calculated by comparing the predictions and actual
values.

While creating the next model, higher weights are given to the
data points which were predicted incorrectly.

Weights can be determined using the error value. For
instance,the higher the error the more is the weight assigned to
the observation.

This process is repeated until the error function does not change,
or the maximum limit of the number of estimators is reached.

Hyperparameters

base_estimators : specifies the base type estimator, i.e. the
algorithm to be used as base learner.

n_estimators : It defines the number of base estimators, where the
default is 10 but you can increase it in order to obtain a better
performance.

learning_rate  : same impact as in gradient descent algorithm
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max_depth  : Maximum depth of the individual estimator

n_jobs  : indicates the system how many processors it is allowed to
use. Value of ‘-1’ means there is no limit;

random_state  : makes the model’s output replicable. It will always
produce the same results when you give it a fixed value as well as the
same parameters and training data.

Gradient Boosting
This is another very popular Boosting algorithm whose work basis is
just like what we’ve seen for AdaBoost. Gradient Boosting works by
sequentially adding the previous predictors underfitted predictions to
the ensemble, ensuring the erros made previously are corrected.

The difference lies in what it does with the underfitted values of its
predecessor. Contrary to AdaBoost, which tweaks the instance
weights at every interaction, this method tries to fit the new
predictor to the residual errors made by the previous
predictor.

So that you can understand Gradient Boosting it is important to
understand Gradient Descent first.

Below are the steps for performing the Gradien Boosting algorithm:

A model is built on a subset of data.

Using this model, predictions are made on the whole dataset.

Errors are calculated by comparing the predictions and actual
values.

A new model is created using the errors calculated as target
variable. Our objective is to find the best split to minimise the
error.

The predictions made by this new model are combined with the
predictions of the previous.

New errors are calculated using this predicted value and actual
value.
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This process is repeated until the error function does not change,
or the maximum limit of the number of estimators is reached.

Hyperparameters
min_samples_split: Minimum number of observation which is

required in a node to be considered for splitting. It is used to control
overfitting.

min_samples_leaf  : Minimum samples required in a terminal or
leaf node. Lower values should be chosen for imbalanced class
problems since the regions in which the minority class will be in the
majority will be very small.

min_weight_fraction_leaf  : similar to the previous but defines a
fraction of the total number of observations instead of an integer.

max_depth  : maximum depth of a tree. Used to control overfitting.

max_lead_nodes  : maximum number of terminal leaves in a tree. If
this is defined max_depth  is ignored.

max_features  : number of features it should consider while
searching for the best split.

XGBoost
Extreme Gradient Boosting is an advanced implementation of the
Gradient Boosting. This algorithm has high predictive power and is
ten times faster than any other gradient boosting techniques.
Moreover, includes a variety of regularisation which reduces
overfitting and improves overall performance.

Advantages

Implements regularisation helping reduce overfit (GB does not
have);

Implements parallel processing being much faster than GB;

Allows users to define custom optimisation objectives and
evaluation criteria adding a whole new dimension to the model;
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XGBoost has an in-built routine to handle missing values;

XGBoost makes splits up to the max_depth  specified and then
starts pruning the tree backwards and removes splits beyond
which there is no positive gain;

XGBoost allows a user to run a cross-validation at each iteration
of the boosting process and thus it is easy to get the exact
optimum number of boosting iterations in a single run.

Light GB
For datasets which are extremely large Light Gradient Boosting is
the best, compared to all of the other, since it takes less time to run.

This algorithm is based on leaf-wise tree growth contrary to others
which work in a level-wise approach pattern. You can see
comparision between XGBoost and Light GB here.

If you liked it, follow me for more publications and don’t
forget, please, give it an applause!
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Resources :

Handson Machine Learning with ScikitLearn & TensorFlow
by Aurélien Géron, Chapter 7

Analytics Vidhya, A Comprehensive Guide to Ensemble
Learning (with Python codes)
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