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This study proposes a simple and reliable feature selection algorithm for ECG signals, termed the Range-
Overlaps Method. The proposed method has the advantages of good detection results, no complex math-
ematic computations, fast and low memory space and low time complexity. Both cluster analysis and
fuzzy logic methods are applied to evaluate the performance of the proposed method. Experimental
results show that the total classification accuracy is above 93%. Thus, the proposed algorithm provides
an efficient, simple and fast method for feature selection on ECG signals.
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1. Introduction

According to the medical definition in Rangayyan (2001), the
most important information in the ECG signal is concentrated in
the P wave, QRS complex and T wave. These data include positions
and/or magnitudes of the QRS interval, PR interval, QT interval, ST
interval, PR segment, and ST segment (see Fig. 1). Based on the
above data, doctors can correctly diagnose human heart diseases.
Therefore, analyzing the ECG signals of cardiac arrhythmia is very
important for doctors to make correct clinical diagnoses. In order
to perform ECG signals classification of the cardiac arrhythmia,
the first important task is to determine an appropriate set of fea-
tures. The feature selection method which chooses the best fea-
tures from original features to have the maximum recognition
rate, simplify classified computation and comprehend the causal
relation of classified question. In other words, the goal of feature
selection is to find the optimal subset consisting of m features cho-
sen from original features (total n features) and m is as small as
possible. Such as, let X = {x1, x2, . . . , xn} be a n-dimensional PQRST
complex feature set, its subset X

0
= {x1, x2, . . . , xm} is the optimal

subset which consists of qualitative features if it can be able to rep-
resent the original PQRST complex features faithfully so that min-
imal useful information is lost (see Fig. 2), where m 6 n.

Feature selection (Dash & Liu, 1997) is an extensively adopted
dimensionality reduction technique, and has been the focus of much
research in pattern recognition, machine learning and data mining.
Feature selection also improves understanding of data identifying
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the important features and their interrelationships. Principal Com-
ponent Analysis (PCA) (Pattarin, Paterlini, & Minerva, 2004) and
Fisher’s Linear Discriminate Analysis (Fisher’s LDA) (Ren & Chang,
2005) have been extensively adopted in pattern recognition and
general feature selection problems. These methods find a mapping
between the original feature space and a lower-dimensional feature
space. Several investigations on feature selection for pattern classi-
fication have been performed in recent years. For instance, Lin and
Meador (1992) proposed stepwise discriminant analysis for feature
selection, producing results that can be adopted as inputs to a neural
network that performs pattern recognition of circuitry faults. Lisboa
and Mehri-Dehnavi (1996) presented a multilayer perception for
feature selection. Genetic algorithms by Biswas, Goel, Mukerjee,
and Shawky (2005) and Oh, Kim, and Min (2005) are adopted to find
solutions of optimization problems, which in turn might adopt
some estimation model for objective function evaluation. In statis-
tics and machine learning, random multinomial logit (Prinzie &
Van den Poel, 2008) is a technique for (multi-class) statistical clas-
sification using repeated multinomial logit (RML) analyses via Leo
Breiman’s random forests. This method is also known in statistics
as ridge regression (Biswas et al., 2005; Chiang, Urbang, & Baldridge,
1996; Tarantola, 2004), and is related to the Levenberg–Marquardt
algorithm for non-linear least-squares problems. All the above
methods require some complicated mathematical calculations to
achieve their aims, as is well known. However, fast, reliable and effi-
cient algorithms become much important if the analysis of ECG sig-
nals for cardiac arrhythmia measurement systems is applied to
areas involving limited energy consumption. Hence, this study pro-
poses a simple, fast and reliable method called ‘‘Range-Overlaps
Method” (ROM) for effective feature selection.

In this study, the proposed Range-Overlaps Method for ECG
classification of the cardiac arrhythmia is a simple and reliable
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Fig. 2. Block diagram of feature selection.

Fig. 1. ECG waveform: (1) P wave; (2) QRS complex; (3) T wave; (4) PR interval; (5) QRS interval; (6) QT interval; (7) ST interval; (8) PR segment; (9) ST segment; (10) R-R
interval; (11) cardiac cycle.
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feature selection method. This study consists of three major steps:
(i) QRS extraction stage for detecting QRS waveform using the Dif-
ference Operation Method (DOM) proposed in Yeh and Wang
(2008); (ii) qualitative features stage for qualitative feature selec-
tion for an ECG signal; and (iii) evaluation. The ECG records avail-
able in the MIT-BIH arrhythmia database (Massachusetts Institute
of Technology, 1998) are experimented to illustrate the effective-
ness of the proposed method.

The paper is organized as follows. Section 2 shows QRS extrac-
tion stage for detecting QRS waveform. In Section 3, the PQRST
complex feature extraction of an ECG signal is introduced. Section
4 presents the qualitative feature selection which uses the Range-
Overlaps Method, and the effectiveness of the proposed method is
evaluated in Section 5. The paper is briefly concluded in Section 6.

2. QRS extraction stage: Difference Operation Method (DOM)

This section briefly reviews our previously proposed scheme
called the ‘‘Difference Operation Method (DOM)” in Yeh and Wang
(2008) for detecting QRS complex.

2.1. The difference equation operation

A difference equation is a formula for calculating an output
sample at time n based on the past and present input samples
and the past output samples in the time domain (Deeba & Korvin,
1995). A general difference equation (or digital filtering operation)
is written as

yðnÞ ¼ bð0ÞxðnÞ þ bð1Þxðn� 1Þ þ bð2Þxðn� 2Þ þ � � � þ bðmÞxðn�mÞ
� að1Þyðn� 1Þ � að2Þyðn� 2Þ � � � � � aðkÞyðn� kÞ ð1Þ

where x, y, b(i), and a(j) are the input signal, the output signal, and
the constant coefficients, respectively for i = 0, 1, 2, . . . , m and
j = 0, 1, 2, . . . , k. Notably, Eq. (1) concerns the past output samples
(such as y(n � 1), y(n � 2), . . . , y(n � k)) in the calculation of the
present output y(n). This form with past output samples is called
‘‘feedback”. Any filter having one or more feedback paths is called
a recursive digital filter or an infinite-impulse-response (IFIR) digi-
tal filter. Conversely, a filter without feedback is called a non-recur-
sive or finite-impulse-response (FIR) digital filter. This study adopts
an FIR digital filter has been adopted:

yðnÞ ¼ bð0ÞxðnÞ þ bð1Þxðn� 1Þ þ bð2Þxðn� 2Þ þ � � � þ bðmÞxðn�mÞ
¼ xðnÞ � xðn� 1Þ ð2Þ

where we set the constants b(0) = 1, b(1) = �1, b(2) = b(3) = � � � =
b(m) = 0, and a(j) = 0; for j = 0, 1, 2, . . . , k. Eq. (2) is called ‘‘difference
operation” in this paper. For instance, Fig. 3 shows a difference
operation with the original input signal x(n) and the output signal
y(n).

The difference operation inhibits the low-frequency component
of a signal, and enhances its high-frequency component. The vio-
lent variation of the signal is emphasized as an eminent impulse
when the difference operation is applied to the relatively higher-
frequency component of the ECG signals (such as QRS complex).
Conversely, the relatively lower frequency part of the ECG signals
(such as baseline drifting signal with slow variation) is often neg-
ligible when it is passed through the difference operation due to
its nearly zero amplitude. The MIT-BIH arrhythmia database is
adopted here to illustrate the effectiveness of difference operation.
For instance, Tape 234 (see Fig. 4a) contains an ECG signal with
baseline drifting, making a fixed reference line for obtaining point
R difficult to achieve. If the difference operation is applied to the
ECG signal, then the difference signal with eminent impulse with-
out baseline drifting is obtained (shown in Fig. 4b). Therefore, point
R is easy to obtain. Consider another example. Tape 228 (see
Fig. 5a) has much larger variation on the amplitude size than Tape
234. The difference operation produces a series of positive impulse
and negative impulse pairs (see Fig. 5b). Since the difference oper-
ation has the above capability (inhibits the low-frequency compo-
nent of a signal, and enhances its high-frequency component), it is
adopted herein to detect QRS in ECG signals, as discussed in detail
in the following paragraph.



Fig. 3. An example for the difference operation.

Fig. 4. (a) The original ECG signal in the database of MIT-BIH – Tape 234; (b) the difference signal without baseline drifting after applying the difference operation.

Fig. 5. (a) The original ECG signal in the database of MIT-BIH – Tape 228; (b) the difference signal without baseline drifting after applying the difference operation.
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2.2. Difference Operation Method (DOM)

This section will review the DOM which uses the operation of
difference equation (difference operation) to detect the QRS
complex, P wave, and T wave in the original ECG signals. The
DOM procedure is presented as follows:

Step 1-1: Download the original ECG signal x (see Fig. 6a).
Step 1-2: Use a digital filter to eliminate noise from the ECG

signals.
Fig. 6. (a) x, th
threshold value
extreme value
The preprocessing filtration was based on methods
in Zhao and Chen (2006), Friesen et al. (1990), Raphi-
sak, Schuckers, and Curry (2004), and Hamilton and
Curley (2000), and the following procedures are
realized:
(i) 60 Hz power-line interference (see Fig. 7a). The 60 Hz
notch filter is used for rejecting the power-line inter-
ference (Zhao & Chen, 2006).
e original ECG signal; (b) xd, the ECG signal after applying the difference
s; (e) x̂df , the signal after going through thresholds; (f) pick up the extrem
points; (h) the position of positive maximum value is the point R.
(ii) Baseline drift (see Fig. 7b). The high-pass filter with a
cut-off frequency 0.5 Hz is used to remove interfer-
ence from baseline drift (Zhao & Chen, 2006).

(iii) Electromyogram (EMG) (see Fig. 7c). The morpholog-
ical filter for a unit square-wave structuring (the best
width is 0.07 s) is used to remove EMG interference
(Friesen et al., 1990; Raphisak et al., 2004).

(iv) Motion artifacts (see Fig. 7d). The adaptive filter
(duration time is about 100–500 ms) is employed to
remove the interference of motion artifacts (Hamilton
& Curley, 2000).

Step 1-3: Obtain the difference signal xd by the following
equation
operation; (c)
e value points (w
XdðnÞ ¼ xðnÞ � xðn� 1Þ ð3Þ

where x(n) and xd(n) are the input signal and the differ-
ence output signal at time n (see Fig. 6b), respectively.
xdf, the signal after applying a low pass filter; (d) the setting of the
here ‘‘�” represents extreme value points); (g) selecting the correct



Fig. 7. Noise of ECG signal: (a) 60 Hz power-line interference; (b) baseline drift; (c) EMG; (d) motion artifacts.
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Fig. 8. Tape #108, (a) the original ECG signal; (b) the signal after difference operation; (c) the detected R waves.

Table 1
Description of the PQRST complex features.

Feature’s
serial #

Feature’s
symbol

Feature description Units

1 H-QR The amplitude between Q and R in a QRS complex mV
2 H-RS The amplitude between R and S in a QRS complex mV
3 QRS-dur The time duration between Q and S in a QRS complex ms
4 QTP-int The time duration between Q and T0 in a QRS complex ms
5 Ratio-RR The ratio of RRs and RRa, RRs is the length of a single RR-interval and RRa is the average length of all RR-intervals –
6 Slope-QR The slope between Q and R in a QRS complex mV/ms
7 Slope-RS The slope between R and S in a QRS complex mV/ms
8 Area-QRS The area of QRS complex mV �ms
9 Area-R0ST0 The area of R0 , S, and T0 in a QRS complex. The point R0 is the previous point which has the same amplitude as the point T0 mV �ms
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Step 1-4: Apply any low pass filter with a cut off frequency
about 100 Hz to xd for eliminating the small ampli-
tude but high frequency variation waveform (see
Fig. 6c). The filtered signal is denoted by xdf.

Step 1-5: Get the final signal x̂df (see Fig. 6e).
Fig. 9. The PQRST complex features: (1) F1: H-QR; (2) F2: H-RS; (3) F3: QRS-dur; (4)
F4: QTP-int; (5) F5: Ratio-RR; (6) F6: Slope-QR; (7) F7: Slope-RS; (8) F8: Area-QRS; (9)
F9: Area-R0ST0 .

Table 2
Heartbeat cases associated with the extracted beats for the full database from the
MIT-BIH arrhythmia database.

Heartbeat case Total
beats

NORM LBBB RBBB VPC APC Others

Number of
beats

75,054 8074 7259 7129 2544 9432 109,492

% of total beats 68.5 7.4 6.6 6.5 2.3 8.7 100.0

Table 3
Annotations of the MIT-BIH database (‘‘–‘‘represents no such heartbeat case in this
Tape).

Tape no. Total beats (30-min) Heartbeat case

NORM LBBB RBBB VPC APC

103 2085 2083 – – – 2
111 2124 – 2123 – 1 –
113 1795 1789 – – – 6
118 2278 – – 2166 16 96
123 1518 1515 – – 3 –
200 2599 1743 – – 826 30
212 2748 2073 – 675 – –
214 2258 – 2002 – 256 –
221 2427 2031 – – 396 –
222 2483 2274 – – – 209
231 1571 1007 – 562 2 –
232 1780 398 – – – 1382
233 3068 2230 – – 831 7
234 2753 2700 – – 3 50

Table 4
The ranges of the PQRST complex feature values for Tape #103.

Total beats: 2083 H-QR H-RS QRS-dur QTP-int

Minimum 2.125 2.050 44.0 58.0
Maximum 2.665 2.625 64.0 75.0
Unit mV mV ms ms

Table 5
The ranges of the PQRST complex feature values for NORM case.

Total beats: 8087 H-QR H-RS QRS-dur QTP-int

Minimum 0.695 0.800 33.0 43.0
Maximum 2.690 3.645 79.0 90.0
Unit mV mV ms ms
Ratio-RR

0.828
1.145
–

Ratio-RR

0.800
1.200
–

x̂df ¼
0; if 0 < xdf < T1; or T2 < xdf < 0

xdf ; if xdf P T1; or xdf 6 T2

( )
ð4Þ
where T1 = 2 �MVp and T2 = 2 �MVn are thresholds (see Fig. 6d).
MVp and MVn denote the mean values of all positive and negative
waveform amplitudes in each MIT-BIH arrhythmia database record,
respectively.

Step 1-6: Find the extreme value points for each interval,
where each interval contains 50 sampling points
with sampling frequency 360 Hz (see Fig. 6f).

Step 1-7: Select the correct extreme value points (see Fig. 6g).
Step 1-8: Match the positions of those extreme points to the

original ECG signal, the position of maximum posi-
tive value is point R in the interval (see Fig. 6h).

Step 1-9: Look for points Q and S based on point R to find the
QRS complex (see Figs. 6h and 8).

Step 1-10: Find points P and T according to the method of
Gritzali, Frangakis, and Papakonstantinou (1989)
(see Fig. 6h).

Remark 1-10: Method in Gritzali et al. (1989) is based on a
‘‘length” transformation which exhibits interesting
characteristics and can be utilized for one-channel
or multichannel waveforms.

The paper (Yeh & Wang, 2008) showed that DOM is effective for
finding QRS complexes correctly. In performing pattern classifica-
tion, the first important task is to determine a suitable set of fea-
tures. The classification accuracy and efficiency can be improved
by selecting a proper subset of features. The qualitative features
stage is described in the following two parts, namely the PQRST
complex feature extraction and the other is the qualitative feature
selection (Range-Overlaps Method).

3. PQRST complex feature extraction

The PQRST complex features are the location, duration, ampli-
tudes, and shapes of the waves. These features can be recognized
by the experienced cardio-doctors for diagnosing human heart
diseases (Zigel, Cohen, & Katz, 2000). Based on many times of
experiments, nine PQRST complex features listed in Table 1 are
selected and their waveforms are shown in Fig. 9. Let Fi, i =
1, 2, 3, 4, 5, 6, 7, 8, 9, denotes PQRST complex features ‘‘H-QR”,
‘‘H-RS”, ‘‘QRS-dur”, ‘‘QTP-int”, ‘‘Ratio-RR”, ‘‘Slope-QR”, ‘‘Slope-RS”,
‘‘Area-QRS”, and ‘‘Area-R0ST0, respectively (see Fig. 9).

The MIT-BIH arrhythmia database contains forty-eight 30-min
long records of ECG signals with a sampling rate of 360 Hz, there
Slope-QR Slope-RS Area-QRS Area-R0ST0

0.061 0.079 51.81 2.70
0.095 0.156 79.20 6.01
mV/ms mV/ms mV �ms mV �ms

Slope-QR Slope-RS Area-QRS Area-R0ST0

0. 019 0.017 20.0 0.00
0.134 0.214 82.0 24.50
mV/ms mV/ms mV �ms mV �ms



Table 6
The ranges of the PQRST complex feature values for each case.

Features Heartbeat case

NORM LBBB RBBB VPC APC

Range Mean Range Mean Range Mean Range Mean Range Mean

H-QR [0.695, 2.690] 2.178 [0.205, 2.060] 1.313 [0.695, 2.240] 1.629 [0.105, 3.095] 1.303 [0.275, 1.870] 0.882
H-RS [0.800, 3.645] 2.630 [0.705, 2.815] 1.750 [0.955, 3.300] 2.309 [0.870, 3.575] 2.473 [0.490, 2.345] 1.263
QRS-dur [33.0, 79.0] 55.0 [86.0, 153.0] 109.2 [46.0, 130.0] 74.6 [52.0, 210.0] 120.4 [34.0, 61.0] 54.3
QTP-int [43.0, 90.0] 70.0 [135.0, 230.0] 172.8 [110.0, 210.0] 144.3 [120.0, 485.0] 291.8 [50.0, 112.0] 91.3
Ratio-RR [0.80, 1.20] 0.995 [0.85, 1.30] 1.002 [0.775, 1.50] 1.028 [0.45, 0.76] 0.640 [0.41, 0.76] 0.706
Slope-QR [0.019, 0.134] 0.067 [0.004, 0.050] 0.023 [0.012, 0.111] 0.049 [0.002, 0.061] 0.021 [0.006, 0.079] 0.022
Slope-RS [0.017, 0.214] 0.138 [0.043, 0.055] 0.048 [0.023, 0.136] 0.063 [0.011, 0.108] 0.053 [0.013, 0.162] 0.064
Area-QRS [20.0, 82.0] 24.9 [0.0, 146.15] 73.88 [25.01, 120.96] 60.17 [4.16, 289.92] 85.0 [10.59, 69.35] 27.43
Area-R0ST0 [0.0, 24.5] 9.3 [20.0, 32.0] 25.0 [34.0, 88.0] 55.8 [0.0, 265.0] 149.9 [0.0, 155.0] 8.00

Fig. 10. Procedure QFS.
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are about 109,492 labeled ventricular beats from 15 different
heartbeat cases (see Table 2). The following five largest heartbeat
cases in the MIT-BIH arrhythmia database were classified in this
study, as listed in Table 2: (i) NORM – about 75,054 beats; (ii) LBBB
– about 8074 beats; (iii) RBBB – about 7259 beats; (iv) VPC – about
7129 beats; (v) APC – about 2544 beats. Because NORM, LBBB,
RBBB, VPC, and APC are symbols for labeling each heart ‘‘beat”,
and hence it can have different rhythms in different time sections.
Table 3 lists annotations of the MIT-BIH database. For example,
Tape #103 contains two cases of beats (NORM and APC), Tape
#111 contains two cases of beats (LBBB and VPC). In this study,
four records of NORM case (Tape #103:2083 beats, #113:1789
beats, #123:1515 beats, #234:2700 beats of MIT-BIH database,
see Table 3) are used as examples to explain how to obtain the
range of each complex feature value. For Tape #103, 30-min long
ECG signals are selected. The ranges of the PQRST complex feature
values are listed in Table 4. The same process is applied to the
other three NORM cases, and then nine complex features of the
files are united to obtain the results of the four records listed in
Table 5. The same process is also applied to the abnormal heart
ECG signals, and thus two records of the left bundle branch block
(LBBB) database (Tape #111:2123 beats, #214:2002 beats), three
records of the right bundle branch block (RBBB) database (Tape
#118:2166 beats, #212:675 beats, #231:562 beats), three records
of ventricular premature contractions (VPC) database (Tape
#200:826 beats, #221:396 beats, #233:831 beats), and two re-
cords of atrial premature contractions (APC) database (Tape
#222:209 beats, #232:1382 beats) are provided. Table 6 lists the
ranges of the PQRST complex feature values for each case.
4. Qualitative feature selection: Range-Overlaps Method (ROM)

The qualitative features selection (QFS) is performed after
obtaining the PQRST complex features.

The following procedure is run to perform QFS (see Fig. 10).

Step 2-0: Define Ri,j.

Let Ri,j be the feature value range of the ith PQRST complex
feature for the jth heartbeat case. The sub-index i =
1, 2, 3, 4, 5, 6, 7, 8, 9 denotes ‘‘H-QR”, ‘‘H-RS”, ‘‘QRS-dur”, ‘‘QTP-int”,
‘‘Ratio-RR”, ‘‘Slope-QR”, ‘‘Slope-RS”, ‘‘Area -QRS”, and ‘‘Area-R0ST0,
respectively. The sub-index j = 1, 2, 3, 4, 5 denotes the heartbeat
cases of ‘‘NORM”, ‘‘LBBB”, ‘‘RBBB”, ‘‘VPC”, and ‘‘APC”, respectively.
According to Table 6, Ri,j are shown in Fig. 11. In Fig. 11, the X-axis
of each figure is the feature value ranges and the Y-axis denotes the
‘‘heartbeat case”. For example, R1,1 = [0.695, 2.69] mV, R1,2 =
[0.205, 2.06] mV, R1,3 = [0.695, 2.24] mV, R1,4 = [0.105, 3.095] mV,
and R1,5 = [0.275, 1.870] mV in Fig. 11a. Similarly, R3,1 = [33,
79] ms, R3,2 = [86, 153] ms, R3,3 = [46, 130] ms, R3,4 = [52, 210] ms,
R3,5 = [34, 61] ms in Fig. 11c.

Step 2-1: Obtain feature Fi using the following algorithm:

If eR ¼ 1, then feature Fi (see Fig. 9) is obtained for 1 6 i 6 9,
1 6 k 6 5, 1 6 j 6 5, k – j, where eR ¼ Ri;k \ Ri;j, and the index i, j
(or k) is defined as the same as that of Ri,j (see Fig. 11), Fig. 12
shows the flowchart of Step 2-1.



Fig. 11. The feature value range of each PQRST complex feature for each heartbeat case of the corresponding feature range: (a) R1: H-QR; (b) R2: H-RS; (c) R3: QRS-dur; (d) R4:
QTP-int; (e) R5: Ratio-RR; (f) R6: Slope-QR; (g) R7: Slope-RS; (h) R8: Area-QRS; (i) R9: Area-R0ST0 . (Note – 1: minimum value, 2: mean value, 3: maximum value.)
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Remark 2-1: Let eR ¼ Ri;k \ Ri;j ¼ 1 if the two feature value ranges
Ri,k and Ri,j do not overlap. Thus, feature Fi is obtained
to discriminate heartbeats case-k and case-j, and NFi

is increased by 1, where NFi denotes the total number
of cases in which feature Fi can discriminate two
disjoint heartbeats case-k and case-j. For instance, if
R3,1 = [33, 79] ms, R3,2 = [86, 153] ms (see Fig. 11c),
then eR ¼ R3;1 \ R3;2 ¼ 1; meaning that feature F3

(‘‘QRS-dur”) can discriminate heartbeats case-1
(NORM case) and case-2 (LBBB case), the experiment
results of eR ¼ R3;k \ R3;j for feature F3 see Table 7.
Similarly, let eR ¼ Ri;k \ Ri;j ¼ 0 if Ri,k and Ri,j overlap,
that is, feature Fi is not obtained and heartbeats
case-k and case-j cannot be discriminated. In this
case, the value of NFi remains unchanged. For
instance, if R1,1 = [0.695, 2.69] mV, R1,2 = [0.205,
2.06] mV (see Fig. 11a), then eR ¼ R1;1 \ R1;2 ¼ 0;
meaning that feature F1 (‘‘H-QR”) cannot discrimi-
nate heartbeats case-1 (NORM case) and case-2
(LBBB case), the experiment results of eR ¼ R1;k \ R1;j

for feature F1 see Table 8. Table 9 shows the experi-
mental results of Step 2-1. In Table 9, for instance,
the feature F3 (‘‘QRS-dur”) or F4 (‘‘QTP-int‘‘) can dis-
criminate heartbeats case-1 (NORM case) and case-
2 (LBBB case). Let us see another example, the feature
F4 (‘‘QTP-int‘‘) or F9 (‘‘Area-R0ST0”) can discriminate
heartbeats case-1 (NORM case) and case-3 (RBBB
case) (see Table 9).

Step 2-2: Sort NFi, i = 1, 2, . . . , 9, with the order of decreasing
values, and then select the index with the highest
value, that is,
i ¼ argðMaxfNFig; i ¼ 1;2; . . . ;9Þ ð5Þ

For instance, suppose that NF1 = 4, NF2 = 2, NF3 = 3, the
sorted sequence becomes NF1, NF3 and NF2.Thus, the
index with the biggest value is NF1 and the sequence
of sub-indexes NFi with the order of decreasing values
of NFi is 1, 3, and 2.



Fig. 12. A flowchart of Step 2-1.

Table 9
Summary of the experiment results of Step 2-1.

Heartbeats case NORM LBBB RBBB VPC APC

NORM – F3, F4 F4, F9 F4, F5 F5

LBBB F3, F4 – F9 F5 F3, F4, F5

RBBB F4, F9 F9 – F5 F4, F5

VPC F4, F5 F5 F5 – F4

APC F5 F3, F4, F5 F4, F5 F4 –
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Step 2-3: Obtain qualitative feature Fi.

A feature Fi is selected as a qualitative feature if it satisfies both
the following conditions:
Table 8
The experiment results of eR ¼ R1;k \ R1;j for feature F1, where 1 6 k 6 5, 1 6 j 6 5, and k –

Heartbeats case NORM(j = 1) LBBB(j = 2)

NORM(k = 1) – R1,1 \ R1,2 = 0
LBBB(k = 2) R1,2 \ R1,1 = 0 –
RBBB(k = 3) R1,3 \ R1,1 = 0 R1,3 \ R1,2 = 0
VPC(k = 4) R1,4 \ R1,1 = 0 R1,4 \ R1,2 = 0
APC(k = 5) R1,5 \ R1,1 = 0 R1,5 \ R1,2 = 0

Table 7
The experiment results of eR ¼ R3;k \ R3;j for feature F3, where 1 6 k 6 5, 1 6 j 6 5, and k –

Heartbeats case NORM(j = 1) LBBB(j = 2)

NORM(k = 1) – R3,1 \ R3,2 = 1
LBBB(k = 2) R3,2 \ R3,1 = 1 –
RBBB(k = 3) R3,3 \ R3,1 = 0 R3,3 \ R3,2 = 0
VPC(k = 4) R3,4 \ R3,1 = 0 R3,4 \ R3,2 = 0
APC(k = 5) R3,5 \ R3,1 = 0 R3,5 \ R3,2 = 1
Condition 1: Feature Fi can discriminate heartbeats case-k and
case-j, where sub-indexes i are obtained from Step
2-2.

Condition 2: The qualitative feature for discriminate between
heartbeats case-k and case-j is not found yet, where
k, j = 1, 2, 3, 4, 5, and k – j.

If the feature Fi is selected as qualitative feature, then both
heartbeat cases k and j are recorded in data items for the feature
Fi and OUT Fi (that is, Fi is a qualitative feature). If the feature Fi can-
not be selected as qualitative feature, then go to Step 2-4. Fig. 13
shows the flowchart of Step 2-3.

Remark 2-3: Index k and j = 1, 2, 3, 4, 5 denote the heartbeat cases
of ‘‘NORM”, ‘‘LBBB”, ‘‘RBBB”, ‘‘VPC” and ‘‘APC”,
respectively.

Step 2-4: Obtain the next qualitative feature.
If the qualitative features obtained from Step 2-3 are enough to
discriminate each heartbeat case, then go to Step 2-5, otherwise go
to Step 2-3.

Step 2-5: End.
After performing the Procedure QFS, four qualitative features
QRS-dur, QTP-int, Ratio-RR, and Area-R0ST0 are selected. Fig. 14
shows that each heartbeat case has its own range of values for each
qualitative feature. Thus, these specific value ranges can be used to
determine whether the patient has the case of cardiac arrhythmia
by the existing methods.

5. Evaluation

The heartbeat classification abilities are compared by the five
statistical indices: sensitivity (Se), specificity (Sp), positive
predictive value (PPV), negative predictive value (NPV), and total
classification accuracy (TCA), which are defined in Eqs. (6)–(10),
respectively (Christov et al., 2006; Dokur & Olmez, 2001).
j.

RBBB(j = 3) VPC(j = 4) APC(j = 5)

R1,1 \ R1,3 = 0 R1,1 \ R1,4 = 0 R1,1 \ R1,5 = 0
R1,2 \ R1,3 = 0 R1,2 \ R1,4 = 0 R1,2 \ R1,5 = 0
– R1,3 \ R1,4 = 0 R1,3 \ R1,5 = 0
R1,4 \ R1,3 = 0 – R1,4 \ R1,5 = 0
R1,5 \ R1,3 = 0 R1,5 \ R1,4 = 0 –

j.

RBBB(j = 3) VPC(j = 4) APC(j = 5)

R3,1 \ R3,3 = 0 R3,1 \ R3,4 = 0 R3,1 \ R3,5 = 0
R3,2 \ R3,3 = 0 R3,2 \ R3,4 = 0 R3,2 \ R3,5 = 1
– R3,3 \ R3,4 = 0 R3,3 \ R3,5 = 0
R3,4 \ R3,3 = 0 – R3,4 \ R3,5 = 0
R3,5 \ R3,3 = 0 R3,5 \ R3,4 = 0 –



Fig. 13. A flowchart of Step 2-3.
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ðiÞ Sei ¼
TPi

TPi þ FNi
ð6Þ

ðiiÞ Spi ¼
TNi

TNi þ FPi
ð7Þ

ðiiiÞ PPVi ¼
TPi

TPi þ FPi
ð8Þ

ðivÞ NPVi ¼
TNi

TNi þ FNi
ð9Þ

ðvÞ TCA ¼ the number of correct diagnosis beats
the number of total beats

¼
X5

i¼1

TPi

Tr
ð10Þ

where TPi (true positives) is the number of heartbeats of the ith
class, which are correctly classified (that is, NORM classified as
NORM); FNi (false negatives) is the number of heartbeats of class
i, classified in a different class (that is, NORM not classified as
NORM); TNi (true negatives) is the number of heartbeats not
belonging to the ith class and not classified in the ith class (that
is, LBBB, RBBB, VPC, and APC not classified as NORM); FPi (false pos-
itives) is the number of the heartbeats classified erroneously in the
ith class (that is, LBBB, RBBB, VPC, and APC classified as NORM); and
Tr is the number of total heartbeats in Table 3. In this study, identi-
fication of TP, FN, TN, and FP are listed in Table 10.
This study uses two experiments for performance evaluation of
the proposed method including Se, Sp, PPV, NPV, TCA, and Receiver
Operating Characteristic (ROC) curves (Fawcett, 2006). In these
experiments, the proposed method is implemented via MATLAB
software on a personal computer. We explain these experiments
in the following subsections.

5.1. The first experiment: fuzzy logic method (FLM)

Fuzzy logic theory (Zadeh, 1978) is widely adopted in various
fields, such as pole-balancing robot control, electric washing ma-
chine control, speech recognition, image retrieval and pattern rec-
ognition. A fuzzy system is characterized by a set of linguistic
statements according to experience and knowledge, usually of
the form of If–Then rules, which can be easily implemented by fuz-
zy conditional statements via fuzzy logic. Fuzzy If–Then rules are
expressions of the form IF A THEN B, where A and B denote labels
of fuzzy sets characterized by appropriate membership functions.

This section introduces a fuzzy logic system for the diagnosis of
the cardiac arrhythmia is. The fuzzy logic consists of four parts:
fuzzy sets definition, fuzzy rule base establishment, fuzzy infer-
ence engine design and defuzzification (see Fig. 15) (Zadeh,
1978). The input variables of the fuzzy rule base are four qualita-



Fig. 14. Box-and-Whisker plots of the four qualitative feature values for each heartbeat case: (a) QRS-dur; (b) QTP-int; (c) Ratio-RR; (d) Area-R0ST0 . (Note – 1: smallest value;
2: first quartile; 3: median; 4: third quartile; 5: largest value; 6: mean value; N: NORM; L: LBBB; R: RBBB; V: VPC; A: APC.)

Table 10
Identification of TP, FN, TN, and FP in this study for (i) NORM case; (ii) LBBB case; (iii) RBBB case; (iv) VPC case; and (v) APC case.

Algorithm label

NORM LBBB RBBB VPC APC

Reference label NORM NN NL NR NV NA
LBBB LN LL LR LV LA
RBBB RN RL RR RV RA
VPC VN VL VR VV VA
APC AN AL AR AV AA

(i) NORM case: TP = NN; FN = NL + NR + NV + NA; FP = LN + RN + VN + AN; TN = LL + LR + LV + LA + RL + RR + RV + RA + VL + VR + VV + VA + AL + AR + AV + AA.

(ii) LBBB case: TP = LL; FN = LN + LR + LV + LA; FP = NL + RL + VL + AL; TN = NN + NR + NV + NA + RN + RR + RV + RA + VN + VR + VV + VA + AN + AR + AV + AA.

(iii) RBBB case: TP = RR; FN = RN + RL + RV + RA; FP = NR + LR + VR + AR; TN = NN + NL + NV + NA + LN + LL + LV + LA + VN + VL + VV + VA + AN + AL + AV + AA.

(iv) VPC case: TP = VV; FN = VN + VL + VR + VA; FP = NV + LV + RV + AV; TN = NN + NL + NR + NA + LN + LL + LR + LA + RN + RL + RR + RA + AN + AL + AR + AA.

(v) APC case: TP = AA; FN = AN + AL + AR + AV; FP = NA + LA + RA + VA; TN = NN + NL + NR + NV + LN + LL + LR + LV + RN + RL + RR + RV + VN + VL + VR + VV.

Fig. 15. Block diagram of fuzzy logic.
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tive features, namely ‘‘QRS-dur”, ‘‘QTP-int”, ‘‘Ratio-RR” and ‘‘Area-
R0ST0 ‘‘(see Fig. 14). The output variable is ‘‘Heartbeat case”, which
has five cases of NORM, LBBB, RBBB, VPC, and APC. The first exper-
iment was performed on a portion of the MIT-BIH arrhythmia data-
base records with four records from the NORM database (Tape
#103 (2083 NORM beats), #113 (1789 NORM beats), #123 (1515
NORM beats) and #234 (2700 NORM beats), see Table 2), two re-
cords from the LBBB database (Tape #111 (2123 LBBB beats) and
#214 (2002 LBBB beats)), three records from the RBBB database
(Tape #118 (2166 RBBB beats), #212 (675 RBBB beats) and #231



Table 11
The first experiment results for four qualitative features (according to Table 3).

Tape
#

Respective heartbeats Classified results (%)

Se Sp PPV NPV TCA

103 NORM (2083 NORM
beats)

113 NORM (1789 NORM
beats)

123 NORM (1515 NORM
beats)

234 NORM (2700 NORM
beats)

97.41 98.36 97.77 98.09

111 LBBB (2123 LBBB beats)
214 LBBB (2002 LBBB beats) 88.94 97.57 91.73 96.68

118 RBBB (2166 RBBB beats)
212 RBBB (675 RBBB beats)
231 RBBB (562 RBBB beats) 87.36 96.91 86.93 97.03

200 VPC (826 VPC beats)
221 VPC (396 VPC beats)
233 VPC (831 VPC beats) 96.17 98.95 87.65 99.70

222 APC (209 APC beats)
232 APC (1382 APC beats) 97.89 99.73 96.99 99.81 93.17

Table 12
The first experiment results for any three qualitative features (for example, QRS-dur,
QTP-int, and Area-R0ST are selected).

Se (%) Sp (%) PPV (%) NPV (%)

NORM 65.84 92.43 86.55 78.54
LBBB 51.93 95.05 76.07 86.71
RBBB 52.20 94.89 70.58 89.42
VPC 43.89 82.52 16.28 94.99
APC 54.02 84.77 23.66 95.48

Fig. 16. ROC curves of f
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(562 RBBB beats)), three records from the VPC database (Tape #200
(826 VPC beats), #221 (396 VPC beats) and #233 (831 VPC beats))
and two records from the APC database (Tape #222 (209 APC
beats) and #232 (1382 APC beats)).

Results of the first experiment indicate that the four qualitative
features are the best choice for discriminating each heartbeat case
using fuzzy logic. The verification procedure is described as fol-
lows. First, four qualitative features (QRS-dur, QTP-int, Ratio-RR,
and Area-R0ST0, see Fig. 14) are selected. In the experiments, the
sensitivities were 97.41%, 88.94%, 87.36%, 96.17% and 97.89% for
NORM, LBBB, RBBB, VPC and APC, respectively (see Table 11). The
uzzy logic method.



Fig. 17. A flowchart of the cluster analysis (CA) method.

Table 13
The second experiment results for four qualitative features.

Tape
#

Respective heartbeats Classified results (%)

Se Sp PPV NPV TCA

103 NORM (2083 NORM
beats)

113 NORM (1789 NORM
beats)

123 NORM (1515 NORM
beats)

234 NORM (2700 NORM
beats)

98.28 98.04 97.38 98.72

111 LBBB (2123 LBBB beats)
214 LBBB (2002 LBBB beats) 90.35 97.28 90.97 97.08
118 RBBB (2166 RBBB beats)
212 RBBB (675 RBBB beats)
231 RBBB (562 RBBB beats) 86.97 96.96 87.07 96.94
200 VPC (826 VPC beats)
221 VPC (396 VPC beats)
233 VPC (831 VPC beats) 92.19 98.91 86.82 99.39
222 APC (209 APC beats)
232 APC (1382 APC beats) 94.86 99.41 93.87 99.51 93.57
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total classification accuracy (TCA) was about 93.17%. Second, five
disjoint features are selected from four qualitative features (QRS-
dur, QTP-int, Ratio-RR, and Area-R0ST0, see Fig. 14) and one feature
from Table 6. The experimental results are similar to Table 11.
Third, any three qualitative features, for example, QRS-dur, QTP-
int, and Area-R0ST were selected. Experimental results indicate that
Fig. 18. ROC curves of the clus
the sensitivities were 65.84%, 51.93%, 52.20%, 43.89% and 54.02%
for NORM, LBBB, RBBB, VPC and APC, respectively (see Table 12).
Fig. 16 shows the ROC curves for the experiment results using
three, four and five qualitative features, and indicates that the best
choice is to use four qualitative features (QRS-dur, QTP-int, Ratio-
RR, and Area-R0ST0) to discriminate each heartbeat case.
ter analysis (CA) method.
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5.2. The second experiment: cluster analysis (CA) method

CA is a data classification method that has been widely adopted
in many applications, including speech recognition, image retrieval
and pattern recognition. For instance, consider K pattern classes
and assume that they are represented by prototype patterns
x1, x2, . . ., xk. The Mahalanobis distance Di between an arbitrary
pattern vector y and the ith prototype is given by (Johnson & Wich-
ern, 2007).

Di ¼ ðy� XiÞ0S�1ðy� XiÞ; for i ¼ 1;2; . . . ; k ð11Þ

In Eq. (11), S denotes the covariance matrix of a pattern population,
and Xi denotes the mean vector for the ith class. A minimum-dis-
tance classifier calculates the distance from a pattern y to the pro-
totype of each class, and the pattern y is assigned to class j if its
Mahalanobis distance has the lowest value among prototype class
i (i = 1, 2, . . . , k). Fig. 17 shows a flowchart of the CA method, which
consists of three main stages: (i) QRS extraction stage for detecting
QRS waveform using the Difference Operation Method (DOM)
method proposed in Yeh and Wang (2008); (ii) qualitative features
stage for qualitative feature selection on ECG signals and (iii) classi-
fication stage for determining patient’s heartbeat cases. The ECG
signals in the MIT-BIH arrhythmia database are adopted as the ref-
erence data for accomplishing the first two stages, and the CA meth-
od is used to determine the heartbeat cases for the patient.

Results of the second experiment indicate that the four qualita-
tive features are the best choice for discriminating each heartbeat
case using CA method. The verification procedure is described as
follows. First, four qualitative features (QRS-dur, QTP-int, Ratio-
RR, and Area-R0ST0, see Fig. 14) are selected. In these experiments,
the sensitivities were 98.28%, 90.35%, 86.97%, 92.19% and 94.86%
for NORM, LBBB, RBBB, VPC and APC, respectively (see Table 13).
The TCA was about 93.57%. Second, five disjoint features are se-
lected from four qualitative features (QRS-dur, QTP-int, Ratio-RR,
and Area-R0ST0, see Fig. 14) and one feature from Table 6. The
experimental results are similar to Table 13. Third, any three qual-
itative features, for example, QRS-dur, QTP-int, and Area-R0ST were
selected. Fig. 18 shows the ROC curves for this experiment, and
indicates that the best choice is again one using four qualitative
features (QRS-dur, QTP-int, Ratio-RR, and Area-R0ST0) to discrimi-
nate each heartbeat case.

6. Conclusion

This study proposes a simple, fast and reliable method called
‘‘Range-Overlaps Method” for effective feature selection. The
Range-Overlaps Method has the following advantages: (1) good
detection results (high-reliability): the average failure rate for pro-
cessing 10-min long records of ECG signals is 0.19% by DOM (Yeh &
Wang, 2008); (2) it does not need complex mathematics computa-
tions (such as cross-correlation and Fourier transformation); (3) hi-
speed and low memory space: the average time required to process
10-min long of ECG data is less than 1 min, and the maximum
memory requirement is only about 1.5 MB for a 30-min long
(about 2100 beats) recording with 16-bit sampling points, and
(4) the time complexity for this method is O(n), where n denotes
the number of sampling vectors. After performing the Procedure
QFS (qualitative feature selection), four qualitative features (QRS-
dur, QTP-int, Ratio-RR, and Area-R0ST0) were selected from the ori-
ginal PQRST features. In these experiments, the total classification
accuracy was about 93.57% for cluster analysis, and 93.17% for fuz-
zy logic. Experimental results indicate that the proposed algorithm
provides an efficient, simple and fast method for feature selection
on ECG signals.
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