
AN ARM NEON OPTIMISED IMAGE ABSTRACTION METHOD UTILISING THE

COSINE INTEGRAL IMAGE METHOD

Ryan Mark Gibson, David John James Round, Mark David Jenkins, Peter Barrie and Gordon Morison

School of Engineering and Built Environment, Glasgow Caledonian University

Cowcaddens Road, G4 0BA, Glasgow, Scotland, UK

phone: + (44)141-331-3352, fax: + (44)141-331-3370, email: gordon.morison@gcu.ac.uk

web: www.gcu.ac.uk

ABSTRACT

In this paper we present a fast implementation of an

automatic non-photorealistic image processing technique

which transforms an input image frame of a video stream

into a non-photorealistic abstracted cartoon stylised

render. The approach presented utilises a fast cosine

integral image method to create a separable bilateral

filtering stage which operates in constant time. This is

subsequently put through a colour quantisation stage and

combined with an edge overlay system to generate the

abstracted image output. The algorithm is implemented

with OpenCV on a Beagleboard-xM running Angstrom

GNU/Linux to demonstrate the improved performance

obtained utilising the cosine integral image bilateral filter

over the OpenCV standard bilateral filter implementation,

and to demonstrate further performance improvements can

be obtained through utilising optimised routines on the

ARM NEON floating point unit of the Beagleboard-xM.

1. INTRODUCTION

Non-photorealistic image abstraction simplifies images

through efficient smoothing functions, while

simultaneously enhancing object boundaries and details,

resulting in a stylised and abstracted image similar to that

of a cartoon. Developed image abstraction frameworks

within literature utilise significant mathematically complex

and multiple stage algorithms for image smoothing and edge

boundary enhancement functions to obtain a non-

photorealistic abstract stylised effect. Smoothing functions

are utilised to reduce image detail, while simultaneously

preserving the high-spatial frequency edge components.

Complex edge preserving smoothing operations such as the

Kuwahara [1], bilateral [2] and mean shift filters [3], have

been previously utilised within non-photorealistic image

abstraction framework techniques demonstrated from

Kyprianidis et al. [4], Winnemöller et al. [5] and DeCarlo and

Santella [6] respectively. Frequent approaches to visually

enhancing object edge boundaries and details within non-

photorealistic image abstraction algorithms involve

overlaying the associated edge gradients as black

components on top of the efficiently smoothed image. There

are many high-spatial frequency edge detection algorithms

available, while mathematically complex methods such as

the Difference of Gaussian (DoG) has extensively been

utilised in non-photorealistic algorithms due to Gooch et al.

[7] demonstrating DoG edges can produce highly

recognisable monochrome stylised facial abstractions, which

led to Winnemöller et al. [5] utilising DoG edge components

for obtaining abstracted images through DoG edge overlay.

Zhao et al. [8] further demonstrated an improved DoG edge

stylisation response for image abstraction through feature-

flow techniques.

 The previously described non-photorealistic

abstraction and stylisation algorithms are mathematically

complex and intensive, multiple stage techniques, where

extensive implementation occurs on high level GPU and

CPU devices with a significant abundance of available

resources [4, 5, 8 9]. Embedded device non-photorealistic

abstraction implementation in comparison requires

significant optimisation and design consideration for the

stylisation algorithm to efficiently operate within resource

limited platforms.

 In this paper we present a fast abstraction algorithm

for implementation on a Texas Instruments Beagleboard-xM

DM3730 ARM Cortex-A8 embedded platform [10]. The fast

abstraction algorithm is designed and optimised for resource

limited embedded devices, where the implementation utilises

the Neon optimised instruction set [11] and cosine integral

image decomposition [12] to obtain significant frame rate

performance improvement for abstracted non-photorealistic

image and video.

 The significant work in image abstraction literature

and associated complex algorithms have been described, in

addition to presenting the problem of image abstraction

suitability within embedded devices. The developed fast

abstraction algorithm and the various stages designed and

optimised for embedded implementation are presented in

Section 2. Section 3 describes the abstraction algorithms

implemented realisation on a Beagleboard-xM device

running Angstrom GNU/Linux [13] with a camera input

video and monitor output. Section 4 presents the fast

abstraction implementation performance results for the

various optimisations, while Section 5 discusses and

concludes the work presented in this paper.

2. ABSTRACTION ALGORITHM FOR EMBEDDED

PLATFORMS

The developed non-photorealistic abstraction algorithm for

image and video rendering is demonstrated in Figure 1. The

image and video frame input is converted from RGB colour

space to YCrCb space, where the luminance Y component

Proceedings of the 6th European Embedded Design in Education and Research, 2014

978-1-4799-6843-5/14/$31.00 ©2014 IEEE 55

Figure 1 – Non-photorealistic abstraction algorithm framework

is extracted and modified to control the perceptual colour

contrast levels when converted back to RGB for the system

output [14]. The extracted luminance component is

efficiently smoothed through a bilateral filter implemented

with the Cosine Integral Image (CII) decomposition method

[12], which then has its associated edge components

extracted through an edge gradient operator. The smoothed

luminance frame is then quantised to further enhance the

non-photorealistic abstraction effect before being combined

with the original frame colour components CrCb and

converted back to RGB colour space. The edge components

are then overlaid and presented as black on the output

frame as shown in Figure 1.

2.1 CII Bilateral Filter Decomposition

The bilateral filter is a nonlinear region adaptive image

processing algorithm, which efficiently smooth’s an image

while preserving the images important high-spatial

frequency edge components. The bilateral filter H performs

an image region weighted average of image f as

demonstrated in (1). The pixel weight value applied within

the image region mask E is determined through Gaussian

spatial �� and intensity �� components shown in (2) and (3).

The spatially variant bilateral function determines only

pixels spatially close and of a similar intensity range value,

which are used for obtaining the output. Abstraction

algorithms frequently implement multiple iterative bilateral

 ���, �	

∑ ��
,�	���
,�	���
,�	��,�	∈�∑ ���
,�	���
,�	��,�	∈� (1)

 ����, �	
 ���‖���,���‖	����� (2)

 ����, �	
 ���|���,���|	����� (3)

filters for image smoothing as demonstrated by

Winnemöller et al. [5] and Kypriandis et al. [9].

 Embedded devices are significantly resource limited

and require efficient algorithm design to improve realised

performance. The CII approach presented by Elboher and

Werman [12] allows the bilateral filters spatial and range

characteristics to be represented through frequency

decomposed cosine functions to obtain a significant

performance improvement in comparison to standard

bilateral filtering. The bilateral filters Gaussian kernels are

decomposed to less complex operations with the Discrete

Cosine Transform (DCT) to obtain an integral image with a

constant number of operations per pixel, regardless of filter

size. The bilateral filters associated Gaussian kernels are

approximated through inverse DCT functions of k-terms,

56

where highly accurate approximations of Gaussian kernels

can be achieved with 3 cosine function terms as

demonstrated by Elboher and Werman. These linear cosine

functions are combined, with a constant number of

computations, to obtain CII approximated functions of the

bilateral filters Gaussian spatial and intensity kernels.

 A cosine kernel function cos(ux), with various

frequencies u, can be efficiently convolved with a 1D

image f(x) for a spatial mask E, where � ∈ �, as

demonstrated as follows:

 ���	
 ∑ ���	�∈� cos#$�� − �	& (4)

The convolution may be expanded through the

trigonometric identity cos�' − (
 cos�'	 cos�(+sin�'	 sin	�(, resulting in the function demonstrated in (5),

where cos�$�	 and sin�$�	 values can be obtained from a

look-up table, therefore removing their calculation cost

during implementation.

 					���	
 cos�$�	∑ ���	�∈� cos�$�	 +																																		sin�$�	∑ ���	�∈� sin�$�			 (5)

 Similarly, a 2D image f(x,y) convolved with cosine

spatial kernel function cos�$��	 cos�$-.	 can be derived to

perform the convolution of two 1D filters; /� and	/-, as

shown in (6).

 /��, �	
 �/���	 ∗ /-��		 ∗ ���, �	 (6)

 Therefore convolution can be determined through applying

function /� with image rows f(x), then filtering the resultant

column values of /���	 with function	/-, as demonstrated

in (7) and (8) for a spatial mask E, where ��, .	 ∈ �.

 				/���	
 cos�$��	 ∑ ���, �	�∈� cos�$��	 +																													sin�$��	∑ ���, �	�∈� sin�$��			 (7)

 				/��, �	
 cos�$-.	 ∑ /���, �	-∈� cos�$-�	 +																													sin�$-.	 ∑ /���, �	-∈� sin�$-�			 (8)

Furthermore, the computational cost is further reduced

through utilising look-up tables for cos�$��	, sin�$��	, cos�$-.	 and sin�$-.	. In addition, convolving an image

with separable 	/� and 	/- kernels produce only double the

computational cost of the 1D CII convolution function.

 The decomposition process presented is for spatial

pixel functions suitable for utilisation with the bilateral

filters spatial		�� component. The bilateral filters CII

intensity component	�� can be obtained in a similar

methodology, where the pixel values of locations s and t

within the spatial mask E would be utilised rather than the

spatial distance. The look-up tables for	cos�$��	, sin�$��	, cos�$-.		and sin�$-.	 of the intensity CII function should

be indexed with pixel value range 0-255.

 The abstraction algorithm presented for embedded

device implementation utilises the described CII

decomposition function to ensure efficient bilateral filtering

operations occur. Furthermore, the CII bilateral filter is

applied for a single iteration to significantly reduce

computation requirements, while still obtaining highly

stylised images.

2.2 Edge Gradient
There are a wide range of edge detection algorithms with

various computational complexity, ranging from the

relatively simple Laplacian and Sobel methods [15] to the

complex multiple stage techniques such as the Canny [16]

and DoG methods. Abstraction algorithms frequently utilise

visually stylised edges, such as the DoG edge gradient as

demonstrated by Winnemöller et al. [5], Gooch et al. [7]

and Kypriandis et al. [9].

 The Sobel edge detection algorithm is a relatively

simple method suitable for obtaining fast operations in

resource constrained embedded devices. The Sobel algorithm

determines edges by derivatively evaluating the intensity

gradient change of pixels within Sobel operator weighted

masks for x-axis 1
 and y-axis 1� components demonstrated

in (9) and (10).

 1

 2 	1	0−1
	2	0	−2

	1	0	−16 (9)

 1�
 2121
		0		0		0

	−1	−2	−16 (10)

The Sobel weighted mask components 1
 and 1� are

convolved with image f to obtain intensity difference

functions 7
 and 7� for the image x-axis and y-axis as

demonstrated in (11) and (12).

 7
��, �	
 ∑ 1
��, .	��� − �, � − .	��,-	∈8� (11)

 7���, �	
 ∑ 1���, .	��� − �, � − .	��,-	∈8� (12)

The Sobel operators absolute difference is then determined

from intensity functions 7
 and 7�, which is then compared

against a pre-assigned threshold value 9 to obtain the output

edge G as demonstrated in (13). Values exceeding the

threshold parameter are determined to be an edge and

assigned a value of 255 and those less than the threshold

parameter are ignored and assigned a value of 0.

 G��, �	
 ;7
��, �	< +7���, �	< > 9 (13)

57

Figure 2 – Beagleboard-xM experimental set-up

2.3 Quantisation

Quantisation enhances the non-photorealistic stylisation as

the frame is segregated into fixed colour regions, obtaining a

more cartoon style effect. Quantisation functions can be of

various complexities, such as a simple colour space range

look-up table split into a specific number of even ranges or a

significantly more complex hyperbolic tangent function as

implemented by Winnemöller et al. [5]. A simple rounding

function look-up table of 5 colour region with a level

difference of 50 was applied for fast quantisation on low-

level embedded devices.

3. IMPLEMENTATION

The described non-photorealistic abstraction algorithm for

embedded platforms was implemented on a Beagleboard-xM

DM3730 ARM Cortex-A8 device with OpenCV running on

Angstrom GNU/Linux at 1GHz as demonstrated in Figure 2.

A camera input configured to 320 x 240 pixel resolution was

processed by the Beagleboard-xM. The Beagleboard-xM

applied the abstraction algorithm, and then displayed the

obtained non-photorealistic abstraction rendered video within

the Gnome desktop environment.

4. RESULTS

The presented abstraction algorithm with a single iteration of

the CII bilateral decomposition function and abstraction with

a standard OpenCV bilateral filter of 5 iterations, typical of

other abstraction algorithms [5, 9], produced significantly

stylised and abstracted images as demonstrated in Figure 3.

The bilateral and CII abstraction methods obtained highly

non-photorealistic stylised images, which are both visually

similar to an extent, with the only significant visual

difference being the sky quantisation levels. The standard

OpenCV bilateral filter implementation utilised multiple

iterations, in comparison to the CII which only utilised a

single pass. In addition a CII abstraction example of a

Cameron Diaz test image is presented in Figure 4,

demonstrating a significantly non-photorealistic stylised

and abstracted rendered image.

 The presented embedded platform non-photorealistic

abstraction algorithm was implemented on a Beagleboard-

xM as demonstrated in Figure 2. Abstraction algorithms

utilising the standard OpenCV bilateral filter, CII bilateral

function and a Neon optimised CII bilateral decomposition

function were implemented to determine the performance

variations. Implementing the standard OpenCV bilateral filter

in the non-photorealistic framework obtained 7.3 fps and 5.4

fps for 1 and 5 bilateral filter iterations, where 5 iterations are

common with other abstraction algorithms utilising the

bilateral filter [5]. In comparison the CII bilateral function

(a) Original image

(b) Standard bilateral abstraction

(c) CII bilateral abstraction

Figure 3 - Schoolhouse abstraction comparison

58

 (a) Original Image (b) CII Abstracted Image

Figure 4 – Cameron Diaz image abstraction

obtained 10.2 fps and demonstrated a performance increase

to 10.4 fps with the Neon optimised instruction set. The

implemented Neon CII bilateral decomposition abstraction

algorithm demonstrated 42.5% and 92.6% improvements in

comparison to using the standard OpenCV bilateral filter for

1 and 5 iterations. Furthermore, the presented abstraction

algorithm configured to a 640 x 480 video resolution

obtained 5.2 fps, in contrast the abstraction algorithm

presented by Winnemöller et al. [5] obtained 9-15 fps and

0.3-0.5 fps for implementation on a GeForce GT6800 GPU

and an Athlon 64 3200+ CPU high level platform devices

with significantly more resources than the Beagleboard-xM.

5. CONCLUSION

In this paper we present a fast non-photorealistic abstraction

algorithm suitable for resource limited embedded devices.

The presented abstraction algorithm efficiently smooth’s and

reduces detail, while preserving and enhancing object edge

boundaries to produce a non-photorealistic stylised image

similar to cartoons. The abstraction method performs

operations suitable for embedded devices, such as utilising

the Sobel edge detection algorithm over the computationally

complex DoG edges, a quantisation look-up table and

applying a single bilateral function in comparison to using

multiple iterations. In addition the method presented utilises

a CII bilateral decomposition function to significantly

improve performance. The abstraction algorithm presented

was implemented on a Texas Instruments Beagleboard-xM

DM3730 ARM Cortex-A8 embedded device running

OpenCV on Angstrom GNU/Linux at 1 GHz with a camera

input of 320 x 240 resolution, which was abstracted and

displayed in the Gnome desktop environment. The

abstraction algorithm utilising CII bilateral decomposition

with the optimised Neon instruction set obtained a frame rate

of 10.4 fps, demonstrating a significant 42.5% performance

improvement in comparison to 7.3 fps obtained utilising the

standard OpenCV bilateral function.

REFERENCES

 [1] M. Kuwahara, K. Hachimura, S. Eiho and M.

 Kinoshita,“Processing of ri-angiocardiographics

 images”, Digital Processing of Biomedical Images,

 Springer, pp. 187-202, 1976.

[2] C. Tomasi and R. Manduchi, “Bilateral filtering for

 gray and color images”, Computer Vision, 1998,

 International Conference on, pp. 839-846, 1998.

[3] D. Comaninciu and P. Meer, “Mean shift: a robust

 approach toward feature space analysis”, Pattern

 Analysis and Machine Intelligence, IEEE Transactions

 on, vol. 24, no. 5, pp. 603-619, 2002.

[4] J. E. Kyprianidis, H. Kang and J. Döllner, “Image and

 video abstraction by anisotropic Kuwahara filter”,

 Computer Graphics Forum, vol. 28, no. 7, pp. 1955-

 1963, 2009.

[5] H. Winnemöller, S. C. Olsen and B. Gooch, “Real-time

 video abstraction”, Graphics (TOG), ACM

 Transactions on , vol. 25, no. 3, pp. 1221-1226, 2006.

[6] D. DeCarlo and A. Santella, “Stylization and

 abstraction of photographs”, Graphics (TOG), ACM

 Transactions on, vol. 21, no. 3, pp. 769-776, 2002.

[7] B. Gooch, E. Reinhard and A. Gooch, “Human facial

 illustrations: Creation and psychophysical evaluation”,

 Graphics (TOG), ACM Transactions on, vol. 23, no. 1,

 pp. 27-44, 2004.

[8] H. Zhao, X. Jin, J. Shen, X. Mao and J. Feng, “Real-

 time feature-aware abstraction”, The Visual Computer,

 vol. 24, no. 7-9, pp. 727-734, 2008.

[9] J. E. Kypriandis and J. Döllner, “Image Abstraction by

 Structure Adaptive Filtering”, in Proc. EG UK Theory

 and Practice of Computer Graphics, pp. 51-58, 2008.

[10] Texas Instruments DM3730 Digital Media Processor:

 http://www.ti.com/product/dm3730

[11] ARM Cortex-A8 Technical Reference Manual:

 http://infocenter.arm.com/help/index.jsp?topic=/

 com.arm.doc.ddi0344k/index.html

[12] E. Elboher and M. Werman, “Cosine integral images

 for fast spatial and range filtering”, Image Processing

 (ICIP), 2011 18
th

 IEEE International Conference on,

 pp. 89-92, 2011.

[13] Angstrom GNU/Linux: http://www.angstrom-

 distribution.org/

[14] G. Wyszecki and W. S. Stiles, Colour science: Wiley

 New York, 1982

[15] R. Gonzalez, R. Woods, Digital Image Processing,

 3rd Edition. Prentice Hall, 2007.

[16] J. Canny, “A computational approach to edge

 Detection” Pattern Analysis and Machine

 Intelligence, IEEE Transactions on, vol. 8, no. 6,

 pp:679-698, 1986.

59

