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ABSTRACT 

In this paper we present a fast implementation of an 

automatic non-photorealistic image processing technique 

which transforms an input image frame of a video stream 

into a non-photorealistic abstracted cartoon stylised 

render.  The approach presented utilises a fast cosine 

integral image method to create a separable bilateral 

filtering stage which operates in constant time. This is 

subsequently put through a colour quantisation stage and 

combined with an edge overlay system to generate the 

abstracted image output. The algorithm is implemented 

with OpenCV on a Beagleboard-xM running Angstrom 

GNU/Linux to demonstrate the improved performance 

obtained utilising the cosine integral image bilateral filter 

over the OpenCV standard bilateral filter implementation, 

and to demonstrate further performance improvements can 

be obtained through utilising optimised routines on the 

ARM NEON floating point unit of the Beagleboard-xM. 

1.    INTRODUCTION 

Non-photorealistic image abstraction simplifies images 

through efficient smoothing functions, while 

simultaneously enhancing object boundaries and details, 

resulting in a stylised and abstracted image similar to that 

of a cartoon. Developed image abstraction frameworks 

within literature utilise significant mathematically complex 

and multiple stage algorithms for image smoothing and edge 

boundary enhancement functions to obtain a non-

photorealistic abstract stylised effect. Smoothing functions 

are utilised to reduce image detail, while simultaneously 

preserving the high-spatial frequency edge components. 

Complex edge preserving smoothing operations such as the 

Kuwahara [1], bilateral [2] and mean shift filters [3], have 

been previously utilised within non-photorealistic image 

abstraction framework techniques demonstrated from 

Kyprianidis et al. [4], Winnemöller et al. [5] and DeCarlo and 

Santella [6] respectively. Frequent approaches to visually 

enhancing object edge boundaries and details within non-

photorealistic image abstraction algorithms involve 

overlaying the associated edge gradients as black 

components on top of the efficiently smoothed image. There 

are many high-spatial frequency edge detection algorithms 

available, while mathematically complex methods such as 

the Difference of Gaussian (DoG) has extensively been 

utilised in non-photorealistic algorithms due to Gooch et al. 

[7] demonstrating DoG edges can produce highly 

recognisable monochrome stylised facial abstractions, which 

led to Winnemöller et al. [5] utilising DoG edge components 

for obtaining abstracted images through DoG edge overlay. 

Zhao et al. [8] further demonstrated an improved DoG edge 

stylisation response for image abstraction through feature-

flow techniques.  

 The previously described non-photorealistic 

abstraction and stylisation algorithms are mathematically 

complex and intensive, multiple stage techniques, where 

extensive implementation occurs on high level GPU and 

CPU devices with a significant abundance of available 

resources [4, 5, 8 9]. Embedded device non-photorealistic 

abstraction implementation in comparison requires 

significant optimisation and design consideration for the 

stylisation algorithm to efficiently operate within resource 

limited platforms. 

 In this paper we present a fast abstraction algorithm 

for implementation on a Texas Instruments Beagleboard-xM 

DM3730 ARM Cortex-A8 embedded platform [10]. The fast 

abstraction algorithm is designed and optimised for resource 

limited embedded devices, where the implementation utilises 

the Neon optimised instruction set [11] and cosine integral 

image decomposition [12] to obtain significant frame rate 

performance improvement for abstracted non-photorealistic 

image and video. 

 The significant work in image abstraction literature 

and associated complex algorithms have been described, in 

addition to presenting the problem of image abstraction 

suitability within embedded devices. The developed fast 

abstraction algorithm and the various stages designed and 

optimised for embedded implementation are presented in 

Section 2. Section 3 describes the abstraction algorithms 

implemented realisation on a Beagleboard-xM device 

running Angstrom GNU/Linux [13] with a camera input 

video and monitor output. Section 4 presents the fast 

abstraction implementation performance results for the 

various optimisations, while Section 5 discusses and 

concludes the work presented in this paper. 

2.   ABSTRACTION ALGORITHM FOR EMBEDDED 

PLATFORMS 

The developed non-photorealistic abstraction algorithm for 

image and video rendering is demonstrated in Figure 1. The 

image and video frame input is converted from RGB colour 

space to YCrCb space, where the luminance Y component 

Proceedings of the 6th European Embedded Design in Education and Research, 2014

978-1-4799-6843-5/14/$31.00 ©2014 IEEE 55



 

Figure 1 – Non-photorealistic abstraction algorithm framework 

 

is extracted and modified to control the perceptual colour 

contrast levels when converted back to RGB for the system 

output [14]. The extracted luminance component is 

efficiently smoothed through a bilateral filter implemented 

with the Cosine Integral Image (CII) decomposition method 

[12], which then has its associated edge components 

extracted through an edge gradient operator. The smoothed 

luminance frame is then quantised to further enhance the 

non-photorealistic abstraction effect before being combined 

with the original frame colour components CrCb and 

converted back to RGB colour space. The edge components 

are then overlaid and presented as black on the output 

frame as shown in Figure 1. 

2.1 CII Bilateral Filter Decomposition 

The bilateral filter is a nonlinear region adaptive image 

processing algorithm, which efficiently smooth’s an image 

while preserving the images important high-spatial 

frequency edge components. The bilateral filter H performs 

an image region weighted average of image f as 

demonstrated in (1). The pixel weight value applied within 

the image region mask E is determined through Gaussian 

spatial �� and intensity �� components shown in (2) and (3). 

The spatially variant bilateral function determines only 

pixels spatially close and of a similar intensity range value, 

which are used for obtaining the output. Abstraction 

algorithms frequently implement multiple iterative bilateral  
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filters for image smoothing as demonstrated by 

Winnemöller et al.  [5] and Kypriandis et al. [9]. 

 Embedded devices are significantly resource limited 

and require efficient algorithm design to improve realised 

performance. The CII approach presented by Elboher and 

Werman [12] allows the bilateral filters spatial and range 

characteristics to be represented through frequency 

decomposed cosine functions to obtain a significant 

performance improvement in comparison to standard 

bilateral filtering. The bilateral filters Gaussian kernels are 

decomposed to less complex operations with the Discrete 

Cosine Transform (DCT) to obtain an integral image with a 

constant number of operations per pixel, regardless of filter 

size. The bilateral filters associated Gaussian kernels are 

approximated through inverse DCT functions of k-terms,  
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where highly accurate approximations of Gaussian kernels 

can be achieved with 3 cosine function terms as 

demonstrated by Elboher and Werman. These linear cosine 

functions are combined, with a constant number of 

computations, to obtain CII approximated functions of the 

bilateral filters Gaussian spatial and intensity kernels. 

 A cosine kernel function cos(ux), with various 

frequencies u, can be efficiently convolved with a 1D 

image f(x) for a spatial mask E, where � ∈ �, as 

demonstrated as follows: 

 

  ���	 
 ∑ ���	�∈� cos#$�� − �	&  (4) 

 

The convolution may be expanded through the 

trigonometric identity cos�' − (	 
 cos�'	 cos�(	 +sin�'	 sin	�(	, resulting in the function demonstrated in (5), 

where cos�$�	 and sin�$�	 values can be obtained from a 

look-up table, therefore removing their calculation cost 

during implementation. 
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 Similarly, a 2D image f(x,y) convolved with cosine 

spatial kernel function cos�$��	 cos�$-.	 can be derived to 

perform the convolution of two 1D filters; /� and	/-, as 

shown in (6). 
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 Therefore convolution can be determined through applying 

function /� with image rows f(x), then filtering the resultant 

column values of /���	 with function	/-, as demonstrated 

in (7) and (8) for a spatial mask E, where ��, .	 ∈ �.  
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Furthermore, the computational cost is further reduced 

through utilising look-up tables for cos�$��	, sin�$��	, cos�$-.	 and sin�$-.	. In addition, convolving an image 

with separable 	/� and 	/- kernels produce only double the 

computational cost of the 1D CII convolution function.  

 The decomposition process presented is for spatial 

pixel functions suitable for utilisation with the bilateral 

filters spatial		�� component. The bilateral filters CII 

intensity component	�� can be obtained in a similar 

methodology, where the pixel values of locations s and t 

within the spatial mask E would be utilised rather than the 

spatial distance. The look-up tables for	cos�$��	, sin�$��	, cos�$-.		and sin�$-.	 of the intensity CII function should 

be indexed with pixel value range 0-255. 

 

 The abstraction algorithm presented for embedded 

device implementation utilises the described CII 

decomposition function to ensure efficient bilateral filtering 

operations occur. Furthermore, the CII bilateral filter is 

applied for a single iteration to significantly reduce 

computation requirements, while still obtaining highly 

stylised images.  

 

2.2 Edge Gradient 
There are a wide range of edge detection algorithms with 

various computational complexity, ranging from the 

relatively simple Laplacian and Sobel methods [15] to the 

complex multiple stage techniques such as the Canny [16] 

and DoG methods. Abstraction algorithms frequently utilise 

visually stylised edges, such as the DoG edge gradient as 

demonstrated by Winnemöller et al. [5], Gooch et al. [7] 

and Kypriandis et al. [9]. 

 The Sobel edge detection algorithm is a relatively 

simple method suitable for obtaining fast operations in 

resource constrained embedded devices. The Sobel algorithm 

determines edges by derivatively evaluating the intensity 

gradient change of pixels within Sobel operator weighted 

masks for x-axis 1
 and y-axis 1� components demonstrated 

in (9) and (10). 

  1
 
 2 	1	0−1
	2	0	−2
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      1� 
 2121
		0		0		0

	−1	−2	−16          (10) 

The Sobel weighted mask components 1
 and 1� are 

convolved with image f to obtain intensity difference 

functions 7
 and 7� for the image x-axis and y-axis as 

demonstrated in (11) and (12). 

 7
��, �	 
 ∑ 1
��, .	��� − �, � − .	��,-	∈8�   (11) 

 7���, �	 
 ∑ 1���, .	��� − �, � − .	��,-	∈8�   (12) 

The Sobel operators absolute difference is then determined 

from intensity functions 7
 and 7�, which is then compared 

against a pre-assigned threshold value 9 to obtain the output 

edge G as demonstrated in (13). Values exceeding the 

threshold parameter are determined to be an edge and 

assigned a value of 255 and those less than the threshold 

parameter are ignored and assigned a value of 0. 

  G��, �	 
 ;7
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Figure 2 – Beagleboard-xM experimental set-up 

 

2.3 Quantisation 

Quantisation enhances the non-photorealistic stylisation as 

the frame is segregated into fixed colour regions, obtaining a 

more cartoon style effect. Quantisation functions can be of 

various complexities, such as a simple colour space range 

look-up table split into a specific number of even ranges or a 

significantly more complex hyperbolic tangent function as 

implemented by Winnemöller et al. [5]. A simple rounding 

function look-up table of 5 colour region with a level 

difference of 50 was applied for fast quantisation on low-

level embedded devices. 

3.  IMPLEMENTATION 

The described non-photorealistic abstraction algorithm for 

embedded platforms was implemented on a Beagleboard-xM 

DM3730 ARM Cortex-A8 device with OpenCV running on 

Angstrom GNU/Linux at 1GHz as demonstrated in Figure 2. 

A camera input configured to 320 x 240 pixel resolution was 

processed by the Beagleboard-xM. The Beagleboard-xM 

applied the abstraction algorithm, and then displayed the 

obtained non-photorealistic abstraction rendered video within 

the Gnome desktop environment. 

4.  RESULTS 

The presented abstraction algorithm with a single iteration of 

the CII bilateral decomposition function and abstraction with 

a standard OpenCV bilateral filter of 5 iterations, typical of 

other abstraction algorithms [5, 9], produced significantly 

stylised and abstracted images as demonstrated in Figure 3. 

The bilateral and CII abstraction methods obtained highly 

non-photorealistic stylised images, which are both visually 

similar to an extent, with the only significant visual 

difference being the sky quantisation levels. The standard 

OpenCV bilateral filter implementation utilised multiple 

iterations, in comparison to the CII which only utilised a 

single pass. In addition a CII abstraction example of a 

Cameron Diaz test image is presented in Figure 4, 

demonstrating a significantly non-photorealistic stylised 

and abstracted rendered image.  

 The presented embedded platform non-photorealistic 

abstraction algorithm was implemented on a Beagleboard-

xM as demonstrated in Figure 2. Abstraction algorithms 

utilising the standard OpenCV bilateral filter, CII bilateral 

function and a Neon optimised CII bilateral decomposition 

function were implemented to determine the performance 

variations. Implementing the standard OpenCV bilateral filter 

in the non-photorealistic framework obtained 7.3 fps and 5.4 

fps for 1 and 5 bilateral filter iterations, where 5 iterations are 

common with other abstraction algorithms utilising the 

bilateral filter [5]. In comparison the CII bilateral function  

 

 

(a) Original image 

 

(b) Standard bilateral abstraction 

 

(c) CII bilateral abstraction 

Figure 3 - Schoolhouse abstraction comparison 

58



 

     

        (a) Original Image                 (b) CII Abstracted Image 

Figure 4 – Cameron Diaz image abstraction 

 

obtained 10.2 fps and demonstrated a performance increase  

to 10.4 fps with the Neon optimised instruction set. The 

implemented Neon CII bilateral decomposition abstraction 

algorithm demonstrated 42.5% and 92.6% improvements in 

comparison to using the standard OpenCV bilateral filter for 

1 and 5 iterations. Furthermore, the presented abstraction 

algorithm configured to a 640 x 480 video resolution 

obtained 5.2 fps, in contrast the abstraction algorithm 

presented by Winnemöller et al. [5] obtained 9-15 fps and 

0.3-0.5 fps for implementation on a GeForce GT6800 GPU 

and an Athlon 64 3200+ CPU high level platform devices 

with significantly more resources than the Beagleboard-xM. 

5.  CONCLUSION  

In this paper we present a fast non-photorealistic abstraction 

algorithm suitable for resource limited embedded devices. 

The presented abstraction algorithm efficiently smooth’s and 

reduces detail, while preserving and enhancing object edge 

boundaries to produce a non-photorealistic stylised image 

similar to cartoons. The abstraction method performs 

operations suitable for embedded devices, such as utilising 

the Sobel edge detection algorithm over the computationally 

complex DoG edges, a quantisation look-up table and 

applying a single bilateral function in comparison to using 

multiple iterations. In addition the method presented utilises 

a CII bilateral decomposition function to significantly 

improve performance. The abstraction algorithm presented 

was implemented on a Texas Instruments Beagleboard-xM 

DM3730 ARM Cortex-A8 embedded device running 

OpenCV on Angstrom GNU/Linux at 1 GHz with a camera 

input of 320 x 240 resolution, which was abstracted and 

displayed in the Gnome desktop environment. The 

abstraction algorithm utilising CII bilateral decomposition 

with the optimised Neon instruction set obtained a frame rate 

of 10.4 fps, demonstrating a significant 42.5% performance 

improvement in comparison to 7.3 fps obtained utilising the 

standard OpenCV bilateral function. 
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