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Abstract: It is hypothesised that a key characteristic of ECG signal is its non-linear dynamic behaviour and that the non-linear
component changes more significantly between normal and arrhythmia conditions than the linear component. This study makes
an attempt to analyse ECG beats from an energy point of view by accounting for the features derived from non-linear component
in time and frequency domains using Teager energy operator (TEO). The key feature of TEO is that it models the energy of the
source that generated the signal rather than the energy of the signal itself. Hence any deviations in the regular rhythmic activity of
the heart get reflected in the Teager energy function. To show the validity of appropriate choice of features, t-tests and scatter plot
are used. The t-tests show significant statistical differences and scatter plot of mean of Teager energy in time domain against mean
of Teager energy in frequency domain for the ECG beats evaluated on selected Manipal Institute of Technology–Beth Israel
Hospital (MIT–BIH) database, which reveals an excellent separation of the features into five different classes: normal, left
bundle branch block, right bundle branch block, premature ventricular contraction and paced beats. The neural network
results achieved through only two non-linear features exhibit an average accuracy that exceeds 95%, average sensitivity of
about 80% and average specificity of almost 100%.
1 Introduction

The issue of selecting an optimal set of relevant features plays
an important role in pattern classification. When we perform
pattern classification, to meet higher accuracy it is not
adequate if we have the best pattern classification system. It
is found that performance of most classifiers deteriorates
when some of the selected features are redundant. This can
happen, for example, when selected features are correlated.
The selected features must be capable of separating the
classes at least to some useful degree. Otherwise they
become irrelevant. It is important that the selected features
must be screened for redundancy and irrelevancy. Hence it
can be concluded that even the extracted feature vector set
must be relevant, non-redundant (uncorrelated), significant
and informative. Different methods can be used to extract
diverse features from the same raw data. Therefore many
times pattern classification turns out to be a problem of
classification with smallest number of extracted features.

For more than three decades, computer-aided systems have
been used for the classification of ECG beats. In designing
such systems, the most important aspect is the integration of
a suitable feature extractor and a pattern classifier. Mehmet
[1] has tried fuzzy-hybrid neural network in classification of
|nManipal Institute of Technology–Beth Israel Hospital
(MIT–BIH) arrhythmia beats with an accuracy of 93.5%,
sensitivity 99.6% and specificity 95.3%. Mehmet also used
auto-regressive coefficients, third-order cumulant and
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wavelet transform variances as features for classification.
Mehmet et al. [2] have compared two statistical classifiers,
Mahalanobis and minimum distance based, with third-order
cumulant, wavelet entropy, auto-regressive coefficients as
feature vectors. The advantage of these classifiers is that
they use only a single iteration for the training step unlike
neural networks that require many iterations. They found
Mahalanobis classifier to outperform the other with an
accuracy of 92.45%, sensitivity 93.81% and specificity
92.26%. A novel method for classification of arrhythmia
using a combination of type-2 c-means fuzzy clustering
algorithm and neural network is also tried [3]. It is shown
that this combination improves the performance of the
classifier compared to individual classifiers and has
accuracy of about 99%. Murthy et al. [4] discuss concepts
of minimum phase correspondent (MPC) and signal length
being used to separate the normal beats from the premature
ventricular contraction (PVC) beats. Parameters of a linear
discriminant function obtained from the training of RR
interval and signal length of MPC as feature vectors were
used for classification. Gholam and Nazeran [5] use
morphological and statistical features to classify a wider
range of arrhythmia with an accuracy of around 90%. With
QRS width chosen as an input feature vector to a linear
discriminant classifier O’Dwyer et al. [6] achieved an
accuracy of 82% in the classification of beats. ECG spectral
feature has also been tried to classify the beats using a
statistical method known as Anova to arrive at high
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accuracy results [7]. They used a feature called half-point of
the function energy, which represents a frequency that
divides the spectrum into two halves, together with other
spectral features to classify the beats. Chen and Chen
discuss a non-linear trimmed moving average filter to
classify QRS complex beats [8] into normal and PVC with
accuracy in excess of 99.8%. However, their classification
was restricted to only normal and PVC beats. Tsipouras
et al. [9] devised an arrhythmia classification system based
on RR interval only as the feature vector. The method when
evaluated using MIT–BIH arrhythmia database exhibited
an accuracy of 98%, sensitivity above 85.14% and
specificity above 87.60%. Using correlation coefficient and
RR interval as feature vectors, ECG beats were classified by
Chuang et al. [10]. They found the method to be suitable
for classification into premature atrial or ventricular beats.
Ivaylo et al. [11] used QRS morphological descriptors as
feature vectors, with matching pursuit algorithms for beat
classification exhibited a good accuracy with sensitivity
above 90.70% and specificity above 95.50%. However, they
had used two ECG leads for their analysis. With signal
variation characteristic as the feature vector, beat
classification into normal, PVC and fusion beats was done
using principal component analysis to achieve high
accuracy [12]. They use only six records from MIT–BIH
arrhythmia database.

When classifying ECG beats, in the literature, it is observed
that more importance has been given to the linear components
of ECG. Although the energy of any two tones at different
frequencies, but equal amplitude, is same, the energy
required to generate the two tones are different. The higher
the frequency of the tone more is the energy required to
generate the same and Teager energy (TE) reflects this
energy. This paper uses the concept of TE function and
analyses ECG beats from an energy point of view. It is
hypothesised that ECG signal consists of both linear and
non-linear components, and that the non-linear component
changes more markedly between normal and abnormal
conditions than the linear component. To quantify energy
changes between normal and abnormal conditions, two
features, TE functions, one in time domain (TD) and the
other in frequency domain (FD) are derived. TE-based
features are widely used in non-linear speech analysis and
processing [13–15]. The prime advantage of using TE
function is it accounts for the energy of the system that
generated the signal and not the energy of the signal itself
[16, 17].

ECG analysis usually commences with the ventricular
complex, QRS complex, which is the most significant
wave. The normal QRS complex is due to the triggering
from Sino-atrial (SA) node and proper propagation through
the conduction path in the ventricles. Under certain
abnormal conditions, it is found that triggering from ectopic
centres and blocks in the conduction path change the course
of the propagation front and lead to QRS complexes with
wide and bizarre waveforms related to PVC and left and
right bundle branch blocks (LBBB, RBBB) or ST segment
elevation. Such complexes will not be related to a
preceding P wave. In this case the signal energy gets spread
over a longer duration in time domain. The instantaneous TE
tracks this modulated energy and identifies instantaneous
amplitude and also corresponding instantaneous frequency.
Consequently, disturbances in the site and frequency of
impulse generation and conduction path during the rhythmic
activity of the heart manifest in the TEO energy function. The
ECG arrhythmia data for analysis includes PVC, LBBB,
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RBBB and paced beats. The results evaluated on MIT–BIH
database using neural network with only two non-linear
features exhibit an average accuracy that exceeds 95%,
average sensitivity of about 80% and average specificity of
almost 100%. This is comparable to that obtained by others
using a large number of features.

2 Methods and materials

2.1 ECG records

The ECG records used are from MIT–BIH database. The
work involved 15 ECG records from normal sinus rhythm
database (16265, 16272, 16273, 16420, 16483, 16539,
16773, 16786, 16795, 17052, 17453, 19090, 19093, 19140
and 19830) and 30 ECG records from arrhythmia database
(100–109, 111–119, 121–124, 200–223 and 228–234).
From each record the modified lead II was only considered
for analysis. The resolution is 200 samples per mV. The
sampling frequency of normal sinus rhythm data is 128 Hz
and that of arrhythmia data is 360 Hz. Each record is
30 min in length. A total of 67 960 beats from MIT–BIH
database were analysed. Out of these 55 465 were normal
beats from normal sinus rhythm database and 12 495 were
arrhythmia beats from arrhythmia database. The arrhythmia
beats included 3685 paced beats, 3270 LBBB beats, 2280
RBBB beats and 3260 PVC beats.

2.2 QRS detection

Software QRS detection has been an arena for research for
more than three decades [18–21]. This paper uses the QRS
detection algorithm proposed by Benitez et al. [19]. First
the raw ECG is band-pass filtered (0.5–40 Hz) to remove
muscle noise, baseline wander and power line interference.
It is then differentiated using a three-point central difference
filter to remove baseline drift and motion artefacts. The
differentiation suppresses lower amplitude P and T waves
while enhances QRS complex. Hilbert transform is then
applied to the differentiated ECG. The time of occurrence
of the peaks in the resulting signal correspond to the times
of R peaks. An adaptive threshold is used to detect the R
peaks. The Q and S peaks are determined using linear
interpolation and second derivative of ECG (slope detection
technique) as suggested in [21].

2.3 Teager energy operator (TEO) and non-linear
energy function

TEO is a non-linear energy tracking operator widely used in
speech applications [13–15]. The specialty of TEO is that it
measures the energy of the system that generated the signal
based on mechanical and physical considerations rather than
the energy of the signal itself [16, 17]. An important
property of TEO is that it is characterised by a time
resolution that can track rapid changes in the energy
(squared product of amplitude and frequency) of the signal.
This is attributed to the fact that TEO operation is almost
instantaneous as it uses only three samples and hence, is
most suitable for real-time applications. Although the
energy of any two tones at different frequencies, but equal
amplitude, is same, the energy required to generate the two
tones are different. The higher the frequency of the tone
more is the energy required to generate the same and TE
reflects this energy. Besides energy, the operator can track
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amplitude envelope and instantaneous frequency (as shown
below).

It is interesting to note that TE function in TD is almost
always positive when the energy modelled by TEO is from
a single source. However, when TEO models energy from
more than one source the resulting energy function will be
negative over some intervals. This property of TE function
can be utilised to identify any disturbance in impulse
generation and conduction path or any deviations from
normal sinus rhythm.

If a signal sample is represented as xn ¼ Acos(Vn +F),
where A is the amplitude, F is the initial phase and V is
the digital frequency in radians/sample and is given by
V ¼ 2pf/fs, where f is the analogue frequency in Hz and fs
is the sampling frequency in Hz, then as per the TE
algorithm the instantaneous energy En at a given instant of
time n is given by [16]

En = x2
n − xn−1xn+1

= A2 sin2(V)

En ≃ A2V2

(1)

for small V. With V , p/4 or f/fs , 1/8, the relative error in
the last approximation is always less than 11%. From the
above equation, it is clear that the instantaneous TE can
track modulation energy and identify instantaneous signal
amplitude and also corresponding instantaneous frequency.
For example, in a normal subject the rhythm originates at
the SA node which fires at a rate of normally 60–100
beats/min. If SA node should become diseased or fail to
function, then bundle of His has pacemaker cells which fire
at an intrinsic rate of 40–60 beats/min. Unlike the usual
instantaneous signal energy which is only proportional to
squared instantaneous amplitude, TE is proportional to the
squared product of both instantaneous amplitude and
instantaneous frequency. This new energy measure is
therefore capable of responding rapidly to changes in both
amplitude and frequency. Consequently, disturbances in
impulse generation and conduction path get reflected in the
TEO energy.

Much of the earlier work on TEO was carried out by
Maragos and his co-workers [22–24]. The original Teager–
Kaiser non-linear energy (NE) for discrete time signal x[n]
is given by [24]

NE{x[n]} = x2[n] − x[n − 1]x[n + 1] (2)

The average non-linear energy in time domain, ANEt, is
defined as

ANEt =
1

N

∑N−1

n=0

NE{x[n]} (3)

where N is the number of samples in the ECG beat/QRS
interval. ANEt, the mean of the TE function over the QRS
interval provides a means for evaluating non-linear
component of ECG signal in the time domain. It is
advisable to use a window, such as Hanning window, to
reduce the artefacts due to edge effects before applying the
operator NE in (2).

The above equations represent TD usage of TEO. To apply
TEO in the FD, the TD Hanning windowed ECG beat is first
transformed to FD by applying discrete Fourier transform
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(DFT) [13]. Then the equations below are applied to find
the TE function and the corresponding mean in FD. If X[ f ]
represents DFT of x[n], then in the FD the above equations
get modified as

NE{X [ f ]} = X 2[ f ] − X [ f − 1]X [ f + 1] (4)

ANEf =
1

N

∑N−1

n=0

NE{X [ f ]} (5)

where N is the number of samples in the DFT. ANEf, the
mean of the TE function, provides a means for evaluating
non-linear component of ECG signal in the FD.

2.4 Classification

2.4.1 Features for classification, significance tests
(t-tests) and scatter plot: Since the TEO captures the
energy of the system that generated the original ECG, as
mentioned earlier, the TEO energy reflects the abnormalities
in the system that generated the ECG signal. In this work
mean of TEO energy functions in TD and FD are the
selected feature vectors. To assess the use of these
parameters individual and pairwise, significance tests (t-
tests) are performed. To show the efficacy of selected
features in separating classes, a scatter plot is used.

2.4.2 Neural network for classification of beats: To
show the efficacy of selected features in separating classes,
a scatter plot is used. However, since artificial neural
networks have proved themselves as proficient classifiers
and are particularly well suited for addressing non-linear
problems, we chose neural network. In this paper neural
network is used as a classifier to identify if a given ECG
beat belongs to normal class or one among the arrhythmia
class based on the selected feature vectors. The two feature
vectors will serve as inputs to the neural network and the
class is the target. Given an input, the neural network is
expected to identify if the beat is normal or arrhythmic
(PVC, paced, LBBB or RBBB). This is achieved through
training the neural network by presenting previously
recorded inputs and tuning the network to produce the
desired targeted outputs.

Once the neural network is set up, the samples are
automatically divided into training, validation and test sets.
The training set is used to teach the network. Training
continues as long as the network continues improving on
the validation set. The test set provides a completely
independent measure of network accuracy. We use a
standard feed-forward network with a hidden layer and
trained with back-propagation, provided by MATLAB
neural network toolbox. The chosen architecture has two
inputs, a hidden layer with 15 neurons and 5 outputs. It is
shown that the classification performance and accuracy
achieved through only two features is comparable to that
obtained by others using a large number of features.

3 Results and discussion

Mean of TE function in TD and FD are chosen as features for
classification, and the beats in the normal sinus rhythm (15
records) and arrhythmia (30 records) database, in all 45
records, of MIT–BIH are classified. The study has focused
on (a) normal (b) PVC (c) LBBB (d) RBBB and (e) paced
beats. Some of the ECG records used for analysis have
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been specified in the respective figure captions together with
the range of discrete samples (within parentheses).

Few illustrations of the application of this new approach to
normal and some arrhythmia beats are shown in Figs. 1–4.
Fig. 1a shows an ECG cycle from the normal sinus rhythm
record 16272. This ECG cycle is windowed using a
Hanning window to reduce the artefacts due to edge effects.
The TE function in TD of the windowed ECG is shown in
Fig. 1b. The TE displays the strong energy required by the
ventricles to contract during the QRS interval. It is to be
noted that the energy is almost always positive in normal
beats. The magnitude spectrum of windowed ECG and the
corresponding TE function in FD are shown in Figs. 1c and
d, respectively. The mean of TE functions in TD and FD
are, respectively, 0.0052 and 0.0048. The TE in Fig. 1d
displays the energy of a normal beat in FD and the
frequency range of energy concentration is 0–17 Hz.

Fig. 2a shows a PVC beat from arrhythmia record 208.
Because such beats arise within an ectopic focus within the
ventricular muscle, the QRS complex is wide, bizarre and
unrelated to the preceding P wave. Further, the iso-electric
ST segment will be usually absent. The atrial beat that
occurred or was about to occur when the PVC happened is
usually blocked, but the subsequent atrial beat will occur on
time, and be conducted normally. To reduce the artefacts
due to edge effects, the ECG beat is windowed using a
Hanning window. The TD TE function of the windowed
578
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ECG is shown in Fig. 2b. The TE in TD shows a good
amount of ripple (with negative peaks) during the inverted
part of QRS interval and a considerable decrease in the
energy from that of the normal. This means there must have
been disturbances in impulse generation and/or conduction
path. The magnitude spectrum of windowed ECG and the
corresponding TE function in FD are shown in Figs. 2c and
d, respectively. The TE in FD shows energy concentration
over the range 0–4 Hz. The mean of TE function in TD is
8.7272 × 1024 and mean of TE function in FD is 0.9182.
It is observed that the mean of TE in TD is lower than that
of normal beat, whereas the mean of TE in FD is greater
than that of normal beat.

Fig. 3a shows a LBBB cycle arrhythmia record 111. A
broadened QRS complex suggests a bundle branch block,
although there are other causes. A tall notched R wave,
absence of Q wave and elevation or depression of ST
segment are typical indications of LBBB. The
corresponding TE function in TD is shown in Fig. 3b. The
TE in TD shows a heavy ripple (with negative peaks)
during the QRS interval and immediately following the
QRS interval. There is a considerable decrease in the
energy from that of the normal. This again implies that
there must have been disturbances in impulse generation
and/or conduction path. The magnitude spectrum of
windowed ECG and the corresponding TE function in FD
are shown in Figs. 3c and d, respectively. The TE in FD
Fig. 1 Normal ECG beat cycle and corresponding TE function in TD and FD

a Normal ECG beat 16272(4376:4497)
b TE in TD
c Magnitude spectrum
d TE in FD
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Fig. 3 LBBB ECG beat cycle and corresponding TE function in TD and FD

a LBBB ECG beat 111(10881:11183)
b TE in TD
c Magnitude spectrum
d TE in FD

Fig. 2 PVC ECG beat cycle and corresponding TE function in TD and FD

a PVC ECG beat 208(10697:10989)
b TE in TD
c Magnitude spectrum
d TE in FD
IET Signal Process., 2011, Vol. 5, Iss. 6, pp. 575–581 579
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shows energy concentration over the range 2–5 Hz. The
mean of TE function in TD is 8.6772 × 1024 and that of
TE function in FD is 0.3439. The statistics of mean values
of TE in TD and FD for the different types of ECG beats
are tabulated in Table 1.

3.1 Significance tests and scatter plot

From the above discussion and Table 1, it is clear that the
mean of TE function in TD for the case of arrhythmia beats

Table 1 All values are expressed as mean+ SD

Beat type Mean TE in TD Mean TE in FD

normal 0.0068 + 0.0039 0.0029 + 0.0029

PVC 0.0025 + 0.0064 0.1703 + 0.2332

paced 8.0458 × 1024 + 1.6783 × 1024 0.7333 + 1.0050

RBBB 6.8027 × 1024 + 4.5719 × 1024 0.6271 + 0.4476

LBBB 0.0011 + 0.0039 0.3773 + 0.4154

Fig. 4 Scatter plot of mean of TE in TD against mean of TE in FD
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is less than that of the normal. However, the mean of TE
function in FD for the case of same arrhythmia beats is
always greater than that of the normal. As mentioned
above, significance tests are performed for each parameter
and the results are tabulated in Tables 2 and 3. The results
confirm that normal ECG beats are statistically
differentiable from arrhythmia beats and that the arrhythmia
beats are statistically differentiable among themselves for
each of the two features. When we combine the two
features in a scatter plot the results exhibit robustness to
separate the beats into different classes. Fig. 4 illustrates
scatter plot of mean of TEO energy function in TD against
mean of TEO energy function in FD, which is used to
show the preliminary results of the validity of appropriate
selection of features and their impact on the separation of
the beats into normal and one of the arrhythmic beats
(PVC, paced, LBBB or RBBB). A total of 67 960 beats
from MIT–BIH database were analysed. Out of these
55 465 were normal beats from normal sinus rhythm
database and 12 495 were arrhythmia beats from arrhythmia
database. The arrhythmia beats included 3685 paced beats,
3270 LBBB beats, 2280 RBBB beats and 3260 PVC beats.
The plot reveals an excellent separation of the features for
normal from those of arrhythmia beats. There is also an
excellent discrimination among different arrhythmia beats.
This validates the discriminating capability of the selected
features for classification of ECG beats.

3.2 Neural network classification results

In practice, a variety of classifiers are available. However, as
explained earlier for want of a better classifier, we resorted to
neural network. The same ECG records from MIT–BIH were
used. In the testing phase out of 26 390 normal beats all were
classified as normal beats and out of 6520 arrhythmia beats
1720 beats were incorrectly classified as other beats.
The results for accuracy, specificity and sensitivity for the
different arrhythmia types are tabulated in Table 4. The
results evaluated on MIT–BIH database with only two non-
linear features exhibit an average accuracy that exceeds
Table 2 p-values and tstat values of t-test for mean TE in TD

Beat type PVC Paced RBBB LBBB

normal p ¼ 0 p ¼ 0 p ¼ 0 p ¼ 0

tstat ¼ 24.26 tstat ¼ 55.10 tstat ¼ 47.64 tstat ¼ 51.16

PVC – p ¼ 0 p ¼ 1.1102 × 10216 p ¼ 4.3222 × 1028

tstat ¼ 9.30 tstat ¼ 8.43 tstat ¼ 5.50

paced – – p ¼ 0 p ¼ 0.0027

tstat ¼ 8.89 tstat ¼ 23.00

RBBB – – – p ¼ 5.0185 × 1024

tstat ¼ 23.48

Table 3 p-values and tstat values of t-test for mean TE in FD

Beat type PVC Paced RBBB LBBB

normal p ¼ 0 p ¼ 0 p ¼ 0 p ¼ 0

tstat ¼ 282.53 tstat ¼ 283.71 tstat ¼ 2160.58 tstat ¼ 2103.78

PVC – p ¼ 0 p ¼ 0 p ¼ 0

tstat ¼ 212.68 tstat ¼ 221.73 tstat ¼ 210.77

paced – – p ¼ 0.0029 p ¼ 0

tstat ¼ 2.99 tstat ¼ 11.99

RBBB – – – p ¼ 0

tstat ¼ 13.60
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95%, average sensitivity of about 80% and average specificity
of almost 100%. This is comparable to that obtained by others
using a large number of features.

4 Conclusions

The rationale that the key characteristic of ECG signals is its
non-linear dynamic behaviour and that the non-linear
component changes more markedly between normal and
abnormal conditions than the linear component has
facilitated the separation of ECG beats into normal and
arrhythmia beats. The classification accuracy achieved
through only two non-linear features, mean of TEO energy
in TD and the mean of TEO energy in FD is comparable to
that obtained by others using a large number of parameters.

Since TEO has excellent time resolution, it can capture an
energy variation that is directly proportional to square of the
product of envelope amplitude and instantaneous frequency
[16]. Therefore instead of using just the mean of TE
functions in the TD and FD, one can use features extracted
from AM–FM estimation. Use of these parameters for the
separation of beats into different classes and also diagnosis
are being investigated.
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